
Revisiting Software Protection�

Paul C. van Oorschot

Digital Security Group, School of Computer Science
Carleton University, Canada
paulv@scs.carleton.ca

Abstract. We provide a selective survey on software protection, includ-
ing approaches to software tamper resistance, obfuscation, software di-
versity, and white-box cryptography. We review the early literature in
the area plus recent activities related to trusted platforms, and discuss
challenges and future directions.

1 Introduction and Overview

Software protection has recently attracted tremendous commercial interest, from
major software vendors to content providers including the movie and music
recording industries. Their digital content is either at tremendous risk of arriv-
ing free on the desktops of millions of former paying customers, or on the verge
of driving even greater profits through new markets. The outcome may depend
in large part on technical innovations in software protection, and related mech-
anisms for digital rights management (DRM) - controlling digital information
once it resides on a platform beyond the control of the originator. Privacy advo-
cates are interested in similar mechanisms for protecting personal information
given to others in digital format. Related activities include Microsoft’s heavy
investment in a next generation trusted hardware platform (Palladium) [41],
and the recent award by the U.S. Air Force Research Laboratory of a US$1.8m
(£1.13m) research contract involving software obfuscation [25].

Software protection falls between the gaps of security, cryptography and engi-
neering, among other disciplines. Despite its name, software protection involves
many assumptions related to hardware and other environmental aspects. A sig-
nificant gulf currently exists between theory and practice. Inconsistencies have
arisen in the relatively sparse (but growing) open literature as a result of dif-
ferences in objectives, definitions and viewpoints. All of these issues provide
research opportunities.

We provide a selective survey on software protection and related areas, and
encourage further research. We offer a number of viewpoints, discuss challenges,
and suggest future directions.

� Version: 15 July 2003.

C. Boyd and W. Mao (Eds.): ISC 2003, LNCS 2851, pp. 1–13, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

2 Paul C. van Oorschot

1.1 Focus

Under the heading of software protection, our main focus is on techniques useful
for protecting software from reverse engineering (by obfuscation), modification
(by software tamper resistance), program-based attacks (by software diversity),
and BORE – break-once run everywhere – attacks (by architectural design).

Protecting content typically requires protecting the software which processes
the content – motivating our focus on software protection. We are interested
in copy protection – a term many use interchangeably with software protection
– to the extent that it requires many of the same protections against reverse
engineering and software tampering. We do not pursue digital watermarks, a
form of steganography (see Petitcolas et al. [44] for a taxonomy); they typically
do not by themselves prevent attacks a priori, but may be used for tracking and
finding violators after-the-fact, often in conjunction with legal remedies.

1.2 Organization

The remainder of this paper is organized as follows. §2 reviews some early
literature on software protection. §3 discusses a selection of software protec-
tion approaches including software tamper resistance, software obfuscation, soft-
ware diversity, and white-box cryptography. §4 provides observations related to
positive and negative results on software obfuscation, the challenges of using
complexity-theory as a basis for security analysis, definitions of efficiency, and
security through obscurity. §5 reviews recent directions in the related area of en-
hancing platform security with low-cost “trusted” hardware and secure software
boot-strapping. §6 provides concluding remarks.

2 Early Research on Software Protection

As usual, we find it instructive to review the earliest published works in any
research area, to learn what was known to the original experts in the area, and
has since been forgotten or re-invented.

One of the earliest published works in software protection is the 1980 the-
sis of Kent [37], which addresses the security requirements of software vendors:
protection from software copying and modification (e.g. the latter by physical
attacks by users, or program-based attacks). Tools proposed to address these
requirements include physical tamper-resistant modules (TRMs) and crypto-
graphic techniques; one approach involves using encrypted programs, with in-
structions decrypted immediately prior to execution. Kent also noted the dual
problem of user requirements that externally-supplied software be confined in
its access to local resources (cf. hostile host vs. hostile code, §3.2 below).

Gosler’s software protection survey [31] examines circa-1985 protection tech-
nologies including: hardware security devices (e.g. dongles), floppy disc signa-
tures (magnetic and physical), analysis denial methods (e.g. anti-debug tech-
niques, checksums, encrypted code) and slowing down interactive dynamic anal-
ysis. The focus is on software copy prevention, but Gosler notes that the strength

Revisiting Software Protection 3

of resisting copying should be balanced by that of analyzing the software (e.g.
reverse engineering to learn where to modify software, and for protecting propri-
etary algorithms) and that of software modification (to bypass security checks).
Useful tampering is usually preceded by reverse engineering.

Gosler also notes that one should expect that an adversary can carry out
dynamic analysis on the target software without detection (e.g. using in-circuit
emulators and simulators), and that in such a case, as a result of repeated exper-
iments, one should expect the adversary to win. The practical defense objective
is thus to make such experiments “extremely arduous”. Another suggestion [31,
p.154] is cycling software (e.g. via some forced obsolescence) at a rate faster
than an adversary can break it; this anticipates the paradigm of forced soft-
ware renewal (cf. Jakobsson and Reiter [36], who propose discouraging pirates
through forced updates and software aging). This approach is appropriate where
protection from attacks for a limited time period suffices.

Herzberg and Pinter [33] consider the problem of software copy protection,
and propose a solution requiring CPU encryption support (which was far less
feasible when proposed almost 20 years ago, circa 1984-85). Cohen’s 1993 pa-
per [19] (see also §3.4 below) on software diversity and obfuscation is directly
related to software protection, and provides a wealth of techniques and insights.

Goldreich and Ostrovsky’s 1996 journal paper [30] (and earlier related indi-
vidual 1987 and 1990 papers) provides one of the earliest theoretical foundation
pieces. They reduce the problem of software protection – which they take to
mean unauthorized software duplication – to that of efficient (in the theoretical
sense) simulation on oblivious RAMs. A new issue they address is the extraction
of useful information gained by an adversary examining the memory access pat-
terns of executing programs. To address this, oblivous RAMs replace instruction
fetches in the original program by sequences of fetches, effectively randomizing
memory access patterns to eliminate information leakage. Interestingly, the sub-
sequent practical tamper resistance system of Aucsmith [6,7] (see §3.3 below)
addresses similar issues by a combination of just-in-time instruction decryption,
and re-arranging instruction blocks at run-time to dynamically change the ad-
dresses of executing statements during program execution.

3 Software Protection Approaches

In this section we outline a selection of software protection approaches: obfusca-
tion through code transformations (for protection against reverse engineering);
white-box cryptography (for protecting secret keys in untrusted host environ-
ments); software tamper resistance (for protection against program integrity
threats); and software diversity (for protection against automated attack scripts
and widespread malicious software). We do not consider copy protection per
se, but note that many of these techniques may serve useful roles in a copy
protection solution. Approaches not discussed include the use of anti-debugging
techniques.

4 Paul C. van Oorschot

3.1 Software Obfuscation via Automated Code Transformations

Several researchers have published papers on software obfuscation using auto-
mated tools and code transformations (e.g. Collberg et al. [21,22]). One idea is to
use language-based tools to transform a program (most easily from source code)
to a functionally equivalent program which presents greater reverse engineer-
ing barriers. If implemented in the form of a pre-compiler, the usual portability
issues can be addressed by the back-end of standard compilers.

For design descriptions of such language-based tools, see Collberg et al. [20],
Nickerson et al. [16], and C. Wang [52]. Cohen [19] suggested a similar approach
already in the early 1990’s, employing obfuscation among other mechanisms as a
defense against computer viruses. Cohen’s early paper, which is strongly recom-
mended for anyone working in the area of software obfuscation and code trans-
formations, contains an extensive discussion of suggested code transformations
(see also Collberg et al. [20], and the substantial bibliography in the circa-2000
survey of Collberg et al. [23]).

C. Wang [52] provides an important security result substantiating this gen-
eral approach. The idea involves incorporating program transformations to ex-
ploit the hardness of precise inter-procedural static analysis in the presence of
aliased variables (cf. Collberg et al. [20, §8.1]), combined with transformations
degenerating program flow control. Wang shows that static analysis of suitably
transformed programs is NP-hard.

Collberg et al. [20] contains a wealth of additional information on software
obfuscation, including notes on: a proposed classification of code transformations
(e.g. control flow obfuscation, data obfuscation, layout obfuscation, preventive
transformations); the use of opaque predicates for control flow transformations
(expressions difficult for an attacker to deduce, but whose value is known at
compilation or obfuscation time); initial ideas on metrics for code transforma-
tions; program slicing tools (for isolating program statements on which the value
of a variable at a particular program point is potentially dependent); and the
use of (de)aggregation of flow control or data (constructing bogus relationships
by grouping unrelated program aspects, or disrupting legitimate relationships in
the original program).

3.2 Untrusted Host Environment and White-Box Cryptography

The fairly well-studied, but still challenging, malicious code problem is as follows:
how should a host machine be protected from potentially untrusted external code
(e.g. downloaded from a web site, or arriving as an email attachment). Standard
solutions include containment through sand-boxing, verification of source by
code-signing, and anti-virus programs.

More closely related to software protection is the less-studied dual, the mali-
cious host problem: how should a trusted program (e.g. containing a proprietary
algorithm, private or critical data, or special access privileges) be protected from
a potentially malicious host. This problem has received the most attention in
the context of mobile code security (e.g. see Chess [14]; Sander and Tschudin

Revisiting Software Protection 5

[46,45]; see also Algesheimer et al. [1]). Both problems were noted already more
than 20 years ago by Kent [37] (see §2).

It is clear that the standard cryptographic paradigm – involving known al-
gorithms, secret keys, and trusted communications end-points – fails entirely in
the malicious host environment, as secret keys are directly visible. Moreover, as
demonstrated by van Someren and Shamir [49], finding cryptographic keys in
memory is quite easy – their randomness and size distinguishes them from other
items in memory, which generally contain redundancy. Thus storing critical keys
in memory is a vulnerability, given the ubiquity of malicious software.

The same malicious host issues arise in digital rights management applica-
tions where software attempts to constrain what end-users may do with content
(e.g. music, movies and books), or with respect to modifying the software itself.
Indeed, the host is effectively considered a hostile environment. Once a software
vendor or content provider makes their digital product available on a system not
under their control, virtually all such control over the digital item is indeed lost.
The threats include manual attacks (humans including legitimate end-users, typ-
ically aided by software tools) benefiting from hands-on access to the executing
software; and program-based attacks by malicious software, programs which ex-
ploit software vulnerabilities, or simple local or remote exploits of access control
failures.

This leads to an extremely severe threat model: the white-box attack context
of Chow et al. [17] (see also [18,35]) and white-box cryptography – cryptographic
implementations designed to withstand attack in the white-box context. The
white-box model contrasts traditional black-box models where only input-output
or external behavior of software may be observed. An intermediate ground is
gray-box attacks (also called side-channel attacks or partial-access attacks), such
as fault analysis attacks (e.g. [10,11]) and the timing and power analysis attacks
of Kocher and others, which involve the use of additional information.

The white-box attack context assumes fully-privileged attack software has full
access to the implementation of cryptographic algorithms (e.g. shares the host),
can view and alter internal algorithm details, and can observe dynamic execution
involving instantiated cryptographic keys. The attacker’s objective is to extract
the cryptographic key, for use on a different platform. As suggested above, in this
context standard cryptographic algorithms fail to provide protection. Here the
choice (diversity) of implementation appears to be a remaining line of defense.

3.3 Software Tamper Resistance

Software obfuscation provides protection against reverse engineering, the goal of
which is to understand a program. Reverse engineering is a typical first step prior
to an attacker making software modifications which they find to their advantage.
Detecting such integrity violations of original software is the purpose of software
tamper resistance techniques. Software tamper resistance has been less studied
in the open literature than software obfuscation, although the past few years has
seen the emergence of a number of interesting proposals.

6 Paul C. van Oorschot

Fundamental contributions in this area were made by Aucsmith [6], in con-
junction with Graunke [7] at Intel. Aucsmith defines tamper resistant software
as software which is resistant to observation and modification, and can be relied
upon to function properly in hostile environments. An architecture is provided
based on an Integrity Verification Kernel (IVK) which verifies the integrity of
critical code segments. The IVK architecture is self-decrypting and involves self-
modifying code.

Working under similar design criteria (e.g. to detect single bit changes in
software), Horne et al. [34] also discuss self-checking code for software tamper
resistance. At run time, a large number of embedded code fragments called
testers each test assigned small segments of code for integrity (using a linear
hash function and an expected hash value); if integrity fails, an appropriate
response is pursued. The use of a number of testers increases the attacker’s
difficulty of disabling testers.

In related work, Chang and Atallah [12] propose a scheme with somewhat
broader capabilities involving a set of guards which can be programmed to carry
out arbitrary tasks – one example is check-summing code segments for integrity
verification providing software tamper resistance. Another suggested guard func-
tion is actually repairing code (e.g. if a damaged code segment is detected,
downloading and installing a fresh copy of the code segment). They also outline
a system for automatically placing guards within code.

Chen et al. [13] propose oblivious hashing, which involves compile-time code
modifications resulting in the computation of a running trace of the execution
history of a program. Here a trace is a cumulative hash of the values of a subset
of expressions which occur within the normal program execution.

3.4 Software Diversity

Diversity is an idea which is part of the software folklore, but it appears to only
recently have received significant attention in the security community. The fun-
damental idea is simple: in nature, genetic diversity provides protection against
an entire species being wiped out by a single virus or disease. The same idea
applies for software, with respect to resistance to the exploitation of software
vulnerabilities and program-based attacks. In this regard, however, the trend
towards homogeneity in software is worrisome: consider the very small number
of different Internet browsers now in use; and the number of major operating
systems in use, which is considerably smaller than 10 years ago.

The value of software diversity as a protection mechanism against computer
viruses and other software attacks was well documented by Cohen [19] already
in 1992-93. The architecture of automated code transformation tools to pro-
vide software obfuscation (see §3.1) can be modified slightly to provide software
diversity: rather than creating one new instance of a program which is func-
tionally equivalent to the original (and hard to reverse engineer), create several
or many. Here the difficulty of reverse engineering or tampering with a single
program instance is one security factor, but a more important factor is that an
exploit crafted to succeed on one instance will not necessarily work against a

Revisiting Software Protection 7

second. Forrest et al. [28] pursue this idea in several directions, including simple
randomizations of stack memory to de-rail high-profile buffer-overflow attacks.

The idea of relying on diversity for improving the reliability and survivabil-
ity of networks has gained recent popularity, subsequent to incidents of global
terrorism (e.g. see C. Wang [52] for contributions and references). The value of
diversity for security and survivability was also recognized in the 1999 Trust in
Cyberspace report [47], among others.

4 Other Observations on Software Protection

The relative scarcity in the open literature of theoretical papers on software pro-
tection and obfuscation suggests that the field remains in its early stages. Not
surprisingly, there exist inconsistencies in definitions, models, and conclusions
in the existing literature, and often practical papers are entirely lacking in the
former two. Often, the objectives of attackers are not clearly (if at all) defined,
making security analysis of proposed solutions a vague pursuit. A further chal-
lenge is that for techniques whose security supposedly is based on the difficulty
of solving hard problems, it is often unclear if attackers must necessarily solve
the underlying difficult problems to achieve their objectives.

4.1 Positive and Negative Theoretical Results

On the side showing promise for software obfuscation are np-hardness results of
C. Wang [52] (see also the earlier report [51]), the related results of Ogiso [43],
and pspace-hardness results of Chow et al. [15]. These results suggest that one
may expect code transformations to significantly (e.g. exponentially) increase
the difficulty of reverse-engineering, and provide the beginnings of a foundation
justifying the approach and security possible through code transformations.

In constrast are the impossibility results of Barak et al. [9], who prove that the
following device does not exist: a software virtual black box generator which can
protect every program’s code from revealing more than the program’s input-
output behavior. While on the surface this result is quite negative for practi-
tioners interested in software obfuscation, upon deeper inspection this is not so
(despite the rather suggestive title of the paper); the results simply arise from
the choice of definitions, model, and question posed.

In practice, the non-existence of such a virtual black box generator would
appear to be of little concern. Of greater interest are several different questions,
such as: to what proportion of programs of practical interest does this result
apply; do obfuscators exist which are capable of obfuscating programs of prac-
tical interest; and can a more practical model be defined, allowing some level of
non-critical information to leak from the execution of a program, provided it is
not useful information to the attacker.

8 Paul C. van Oorschot

4.2 Security Justified by Complexity Class Results

The usual caveats also exist regarding the use of complexity-theoretic argu-
ments as the basis for security. While NP-complete problems [29] are generally
considered intractable, this intractability is based on the difficulty of the hard-
est problem instances. However, some NP-complete problems are easy in the
average case, while random instances of others are still difficult. Thus for use in
security, of greater interest than worst-case is average-case complexity analysis
(e.g. see the overview by J. Wang [50]). In fact, we require not only average-case
difficulty, but the probability of easy instances arising being very low.

Moreover, there are many cryptographic examples where difficult problems
have been used to justify the security of proposals, which were later proven to
be easily broken due to the fact that the particular problem instances built into
actual instantiations turned out, for various reasons, to be far weaker than the
hardest, or average, problem instances.

By way of comparison, it is interesting to recall the definition of the pre-
image resistance property for cryptographic one-way hash functions (e.g. [40,
p.323]): for essentially all pre-specified outputs, it is computationally infeasible
to find any input which hashes to that output. Thus a one-way hash function is
considered good if it is difficult to invert for almost all outputs. Note that the
definition does not simply require that there exist some hard instances.

4.3 Definition of Efficiency

A separate challenge, that is not unique to the literature on software protec-
tion, is the difference between what theoreticians and practitioners refer to as
efficient. In standard complexity theory, slowing down running time by “only”
a polynomial factor leaves a polynomial-time algorithm in polynomial time; and
logarithmic slowdowns are considered quite good. In constrast in practice, a
slowdown by a constant factor of as little as two (2), let alone two orders of
magnitude (constant 100), is often far more than can be tolerated. Indeed in
some cases, an overall slowdown of 10-20% is intolerable. Similar comments ap-
ply for space (although in practice, except in constrained environments, memory
is now typically far less of a barrier - especially for personal computers).

A related comment offers a more graphical illustration for running time: for
any fixed key length t, a t-bit key space can be exhaustively searched in constant
time 2t; therefore, the time to break a strong cipher with a 128-bit key, e.g. AES
[24], is uninteresting from a complexity-theoretic viewpoint – namely, O(1).

4.4 Security through Obscurity Vs. Software Obfuscation

A frequently cited set of cryptographic principles devised by Auguste Kerck-
hoffs in 1883 [38] stipulates that security should not suffer if an adversary knows
all the details of an encryption function aside from the secret key (and there-
fore, all security rests on the secrecy of this key). Amateur cryptographers often

Revisiting Software Protection 9

violate this rule, designing systems whose security relies on secrecy of design de-
tails, which invariably become known. Such “security through obscurity” is thus
severely frowned upon. Due to the language similarity with the phrase “soft-
ware obfuscation”, many people are pre-conditioned to also frown upon software
obfuscation, without thinking further. (Of course, depending on the type of soft-
ware obfuscation, this may be entirely justified.)

In our view, software obfuscation can and should be fundamentally distinct
from security through obscurity. To this end, software obfuscation techniques
should be pursued in which there are a very large space of possible transforma-
tions of an original software program to a transformed program, and indeed the
security should not be compromised by an adversary knowing the set of possi-
ble mappings (or having the software transformation tool itself available). The
choice among possible mappings should be sufficiently large that the security
rests on the wide range of possibilities (analogous to a large key space).

5 Low-Cost Trusted Hardware Approaches

Concerns have continued to mount regarding trust in the Internet as a reli-
able platform for secure e-commerce, and as a foundation for content protection
in digital rights management applications. Behind these concerns are inherent
limitations of software-only security solutions. Such issues have resulted in ef-
forts to develop a low-cost, commercial generic trusted hardware platform. The
Trusted Computing Platform Alliance (TCPA), recently renamed the Trusted
Computing Group [48], began in January 1999 under the efforts of Compaq, HP,
IBM, Intel and Microsoft. Version 1.0 of the TCPA specifications were released
early in 2001, defining the core security funcationality of a trusted subsystem
for computing platforms, intended to “create a foundation of trust for software
processes, based on a small amount of hardware within such platforms” [8, p.5].

Microsoft has also launched a separate (related) initiative originally known as
Palladium, and recently renamed the Next-Generation Secure Computing Base
([41,42]; see also patents by England et al. [26,27]). Lively debate is ongoing (e.g.
see Anderson’s FAQ [2]) about the good and evil which will arise as a result of
either or both TCPA and Palladium, and whether or not erosion of end-user
control of their own devices, due to corporate-controlled DRM, is a likely result.

Earlier, Arbaugh et al. proposed a general architecture of how to develop such
a trust foundation ([4]; and related patent [5]), intializing a computer system
by successively validating the integrity of each layer throughout the bootstrap
process, thereby providing a chain of integrity guarantees based on initial trust
in the hardware layer.

Lie et al. [39] explore an alternate solution to the failures to date of software-
only tamper-resistance, examining the hardware implementation of execute-only
memory. Such memory allows the execution of stored-memory instructions, but
no other manipulations. Gutmann [32] provides a clear discussion of the security
issues facing cryptographic implementations in software under general-purpose
operating systems, and examines the design challenges in overcoming these issues

10 Paul C. van Oorschot

by employing secure cryptographic co-processors. Anderson and Kuhn [3] pro-
vide a number of attacks against tamper resistant (especially low-cost) devices,
and make the case that building and using such devices properly is deceptively
difficult.

6 Concluding Remarks

The theoretical results to date on software obfuscation leave room for software
protection of considerable practical value. This should be of no surprise – indeed,
the impossibility of building a program to determine whether other software is
malicious does not preclude highly valuable computer virus detection technolo-
gies, and a viable (even lucrative) anti-virus industry.

We believe that it is still early in the history of research in the areas of
software protection and obfuscation, and that many discoveries and innovations
lie ahead – perhaps especially in the areas of software diversity (which seems to
be very little utilized presently), and software tamper resistance.

We expect to see more open discussion of specific techniques, and believe
that, similar to the history in the field of cryptography, the surest way to obtain
an increased number of secure techniques is to involve public scrutiny, peer
evaluation, and open discussion in the literature. We see the past trends of
proprietary, undislosed methods of software obfuscation techniques analogous to
the early days in cryptography, where invention and use of (weak) unpublished
encryption algorithms by novices was commonplace.

A factor in favour of those promoting software obfuscation, software tamper
resistance, and related software protection methods is Moore’s law. As comput-
ing cycles become yet faster and faster, and the availability and speed of memory
continue to increase, the computational penalties typically experienced in rela-
tion to many software protection approaches, will be unimportant. (Again, this
seems analogous to the execution of 512-bit RSA being intolerably slow on a PC
20 years ago.)

As has been the case for some time, one of the greatest challenges in this area
remains the lack of analysis techniques, and metrics for evaluating and compar-
ing the strength of various software protection techniques. As a first step before
obtaining such metrics, we believe more work is necessary in clarifying the exact
goals of software obfuscation, and the precise objectives of attackers. We also
believe there is a substantial research opportunity to fill in the large gap between
the practical and theoretical progress in this area. For techniques of practical
interest, we see opportunities to define models and approaches better reflecting
applications for which software protection of short durations suffices (cf. forced
software updates, §2).

Acknowledgements: The author acknowledges the generous support of the Na-
tional Sciences and Engineering Research Council of Canada for support under
both a Canada Research Chair and an NSERC Discovery Grant.

Revisiting Software Protection 11

References

1. J. Algesheimer, C. Cachin, J. Camenisch, G. Karjoth, “Cryptographic Security for
Mobile Code”, pp. 2–11 in Proc. 2001 IEEE Symposium on Security and Privacy
(May 2001).

2. R. Anderson, Trusted Computing FAQ – TCPA/Palladium/NGSCB/TCG,
http://www.cl.cam.ac.uk/∼rja14/tcpa-faq.html.

3. R.J. Anderson, M.G. Kuhn, “Low Cost Attacks on Tamper-Resistant Devices”,
pp. 125–136, 5th International Workshop on Security Protocols, Springer LNCS
1361 (1997).

4. W.A. Arbaugh, D.J. Farber, J.M. Smith, “A Secure and Reliable Bootstrap Ar-
chitecture”, Proc. 1997 IEEE Symp. Security and Privacy, pp.65–71, May 1997.

5. W.A. Arbaugh, D.J. Farber, A.D. Keromytis, J.M. Smith, Secure and Reliable
Bootstrap Architecture, U.S. Patent 6,185,678 (filed Oct.2 1998; issued Feb.6 2001).

6. D. Aucsmith, “Tamper Resistant Software: An Implementation”, Proc. 1st Inter-
national Information Hiding Workshop (IHW), Cambridge, U.K. 1996, Springer
LNCS 1174, pp. 317-333 (1997).

7. D. Aucsmith, G. Graunke, Tamper Resistant Methods and Apparatus, U.S. Patent
5,892,899 (filed June 13 1996; issued Apr.6 1999).

8. B. Balacheff, L. Chen, S. Pearson (ed.), D. Plaquin, G. Proudler, Trusted Comput-
ing Platforms: TCPA Technology in Context, Prentice Hall, 2002.

9. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang,
“On the (Im)possibility of Obfuscating Programs”, pp. 1–18, Advances in Cryp-
tology – Crypto 2001, Springer LNCS 2139 (2001).

10. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems”,
pp. 513–525, Advances in Cryptology – Crypto ’97, Springer LNCS 1294 (1997).
Revised : Technion - C.S. Dept. - Technical Report CS0910-revised, 1997.

11. D. Boneh, R.A. DeMillo, R.J. Lipton, “On the Importance of Eliminating Errors
in Cryptographic Computations”, J. Cryptology 14(2), pp. 101–119 (2001).

12. H. Chang, M. Atallah, “Protecting Software Code by Guards”, Proc. 1st ACM
Workshop on Digital Rights Management (DRM 2001), Springer LNCS 2320,
pp.160–175 (2002).

13. Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, M. Jakubowski, “Oblivious
Hashing: A Stealthy Software Integrity Verification Primitive”, Proc. 5th Informa-
tion Hiding Workshop (IHW), Netherlands (October 2002), Springer LNCS 2578,
pp.400–414.

14. D.M. Chess, “Security Issues in Mobile Code Systems”, pp.1–14 in Mobile Agents
and Security, G. Vigna (ed.), Springer LNCS 1419 (1998).

15. S. Chow, Y. Gu, H. Johnson, V.A. Zakharov, “An Approach to the Obfuscation
of Control-Flow of Sequential Computer Programs”, pp. 144–155, Proc. ISC 2001
– 4th International Information Security Conference, Malaga, Spain 1–3 October
2001, Springer LNCS 2200 (2001).

16. J.R. Nickerson, S.T. Chow, H.J. Johnson, Y. Gu, “The Encoder Solution to Imple-
menting Tamper Resistant Software”, presented at the CERT/IEEE Information
Survivability Workshop, Vancouver, Oct. 2001.

17. S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot, “White-Box Cryptography and
an AES Implementation”, Proc. 9th International Workshop on Selected Areas in
Cryptography (SAC 2002), Springer LNCS 2595 (2003).

18. S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot, “A White-Box DES Imple-
mentation for DRM Applications”, Proc. 2nd ACM Workshop on Digital Rights
Management (DRM 2002), Springer LNCS (to appear).

12 Paul C. van Oorschot

19. F. Cohen, “Operating System Protection Through Program Evolution”, Computers
and Security 12(6), 1 Oct. 1993, pp. 565–584.

20. C. Collberg, C. Thomborson, D. Low, “A Taxonomy of Obfuscating Transforma-
tions”, Technical Report 148, Dept. Computer Science, University of Auckland
(July 1997).

21. C. Collberg, C. Thomborson, D. Low, “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs”, Proc. Symp. Principles of Programming Languages
(POPL’98), Jan. 1998.

22. C. Collberg, C. Thomborson, D. Low, “Breaking Abstractions and Unstructuring
Data Structures”, IEEE International Conf. Computer Languages (ICCL’98), May
1998.

23. C.S. Collberg, C. Thomborson, “Watermarking, Tamper-Proofing, and Obfusca-
tion - Tools for Software Protection”, IEEE Trans. Software Engineering, Vol. 28
No. 6 (June 2002).

24. J. Daemen, V. Rijmen, The Design of Rijndael: aes – The Advanced Encryption
Standard, Springer, 2001.

25. ComputerWeekly.com, “U.S. Software Security Takes Off”, 8 November 2002,
http://www.computerweekly.com/Article117316.htm

26. P. England, J.D. DeTreville, B.W. Lampson, Digital Rights Management Operating
System, U.S. Patent 6,330,670 (filed Jan.8 1999; issued Dec.11 2001).

27. P. England, J.D. DeTreville, B.W. Lampson, Loading and Identifying a Digital
Rights Management Operating System, U.S. Patent 6,327,652 (filed Jan.8 1999;
issued Dec.4 2001).

28. S. Forrest, A. Somayaji, D. H. Ackley, “Building Diverse Computer Systems”,
pp. 67–72, Proc. 6th Workshop on Hot Topics in Operating Systems, IEEE Com-
puter Society Press, 1997.

29. M.R. Garey, D.S. Johnson, Computers and Intractability - A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, 1979.

30. O. Goldreich, R. Ostrovsky, “Software Protection and Simulation on Oblivious
RAMs”, Journal of the ACM, vol.43 no.3 (May 1996), pp.431–473. Based on earlier
ideas of Goldreich (STOC’87) and Ostrovsky (STOC’90).

31. J. Gosler, “Software Protection: Myth or Reality?”, Advances in Cryptology –
CRYPTO’85, Springer-Verlag LNCS 218, pp.140–157 (1985).

32. P. Gutmann, “An Open-source Cryptographic Co-processor”, Proc. 2000 USENIX
Security Symposium.

33. A. Herzberg, S.S. Pinter, “Public protection of software”, pp.371–393, ACM Trans.
Computer Systems, vol.5 no.4 (Nov. 1987). Earlier version in Crypto’85.

34. B. Horne, L. Matheson, C. Sheehan, R. Tarjan, “Dynamic Self-Checking Tech-
niques for Improved Tamper Resistance”, Proc. 1st ACM Workshop on Digital
Rights Management (DRM 2001), Springer LNCS 2320, pp.141–159 (2002).

35. M. Jacob, D. Boneh, E. Felton, “Attacking an Obfuscated Cipher by Injecting
Faults”, Proc. 2nd ACM Workshop on Digital Rights Management (DRM 2002),
Springer LNCS (to appear).

36. M. Jakobsson, M.K. Reiter, “Discouraging Software Piracy Using Software Aging”,
Proc. 1st ACM Workshop on Digital Rights Management (DRM 2001), Springer
LNCS 2320, pp.1–12 (2002).

37. S. Kent, Protecting Externally Supplied Software in Small Computers, Ph.D. thesis,
M.I.T., September 1980.

38. A. Kerckhoffs, “La Cryptographie Militaire”, Journal des Sciences Militaires, vol.9
(February 1883).

Revisiting Software Protection 13

39. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, M. Horowitz,
“Architectural Support for Copy and Tamper Resistant Software”, Proc. 9th Inter-
national Conf. Architectural Support for Programming Languages and Operating
Systems (Nov. 2000).

40. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, 1996.

41. Next-Generation Secure Computing Base (formerly Palladium), Microsoft web site,
http://www.microsoft.com/resources/ngscb/default.mspx.

42. Next-Generation Secure Computing Base - Technical FAQ, Microsoft web site,
http://www.microsoft.com/technet/security/news/NGSCB.asp.

43. T. Ogiso, U. Sakabe, M. Soshi, A. Miyaji, “Software Tamper Resistance Based on
the Difficulty of Interprocedural Analysis”, 3rd Workshop on Information Security
Applications (WISA 2002), Korea, August 2002.

44. F. Petitcolas, R.J. Anderson, M.G. Kuhn, “Information Hiding – A Survey”, Proc.
of the IEEE (Special Issue on Protection of Multimedia Content), vol.87 no.7 (July
1999), pp.1062–1078.

45. T. Sander, C.F. Tschudin, “Towards Mobile Cryptography”, pp. 215–224, Proc.
1998 IEEE Symposium on Security and Privacy.

46. T. Sander, C.F. Tschudin, “Protecting Mobile Agents Against Malicious Hosts”,
pp. 44–60 in Mobile Agents and Security, G. Vigna (ed.), Springer LNCS 1419
(1998).

47. F. Schneider (ed.), Trust in Cyberspace, report of the Committee on Informa-
tion Systems Trustworthiness, Computer Science and Telecommunications Board,
(U.S.) National Research Council (National Academy Press, 1999).

48. Trusted Computing Group, http://www.trustedcomputinggroup.org/home.
49. N. van Someren, A. Shamir, “Playing Hide and Seek with Keys”, pp. 118–124,

Financial Cryptography’99, Springer LNCS 1648 (1999).
50. J. Wang, “Average-Case Computational Complexity Theory”, pp.295–328 in: Com-

plexity Theory Retrospective II, L. Hemaspaandra and A. Selman (eds.), Springer,
1997.

51. C. Wang, J. Hill, J. Knight, J. Davidson, “Software Tamper Resistance: Obstruct-
ing Static Analysis of Programs”, Dept. of Computer Science, Univ. of Virginia,
Tech. Report CS-2000-12 (May 2000). Updated in [52].

52. C. Wang, A Security Architecture for Survivability Mechanisms, Ph.D. thesis, Uni-
versity of Virginia (Oct. 2000).

	Introduction and Overview
	Focus
	Organization

	Early Research on Software Protection
	Software Protection Approaches
	Software Obfuscation via Automated Code Transformations
	Untrusted Host Environment and White-Box Cryptography
	Software Tamper Resistance
	Software Diversity

	Other Observations on Software Protection
	Positive and Negative Theoretical Results
	Security Justified by Complexity Class Results
	Definition of Efficiency
	Security through Obscurity Vs. Software Obfuscation

	Low-Cost Trusted Hardware Approaches
	Concluding Remarks

