
Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs

Christian Collberg I Clark Thomborson Douglas Low

Department of Computer Science
The University of Auckland

Private Bag 92019
Auckland, New Zealand.
Phone: +649-373-7599

(co~tbeTg,cthomboT,d~ou~O~~~@cs.aUc~~and.ac.nz

Abstract

It has become common to distribute software in forms that
are isomorphic to the original source code. An important
example is Java bytecode. Since such codes are easy to
decompile, they increase the risk of mahcious reverse engi-
neering attacks.

In thii paper we describe the design of a Java code obfus-
&OF, a tool which -through the application of code trans-
formations - converts a Java program into an equivalent one
that is more difficuh to reverse engineer.

We describe a number of transformations which obfus-
cate control-flow. Transformations are evaluated with re-

spect to potency (To what degree is a human reader con-
fused?), resilience (How well are automatic deobfuscation
attacks resisted?), cost (How much time/space overhead is
added?), and stealth (How well does obfuscated code blend
in with the original code?).

The resilience of many control-altering transformations
rely on the resilience of opaque predicates. These are boolean
valued expressions whose values are known to the obfuscator
but difficult to determine for an automatic deobfuscator. We
show how to construct resilient, cheap, and stealthy opaque
predicates based on the intractability of certain static anal-
ysis problems such as alias analysis.

1 Introduction

Consider the following scenario. Alice is a small software
developer who wants to make her applications available to
users over the Internet, presumably for a fee. Bob is a rival
developer who feels he could gain a commercial edge over
Alice if he had an insight into to her application’s key algo-
rithms and data structures.

This can be seen as a game between two adversaries: the
software developer (Alice) who tries to protect her code from
attack, and the reverse engineer (Bob) whose task it is to
gain access to the application, anaIyze it, snd convert it into
a form that is easy to read and understand.

This is a problem that has recently received renewed
attention. The reason is that it is becoming more com-

Permission to make digitMnrd copies ofatl or part of this mnterh[fir
pmonrd or clnssroom use is granted without fee provided that the CO+
,a~ not made or distributed for protit or commerciaf advantage, the copy-
right notice, tile title ofthe publication and its dote appear, ;md notice is
givell ht c~pyrigbt is by permission of the ACM, INC. To copy otlaenvise,
to republish, to post on servers or to redistribute to lists, requires specific
pemG.Gon and/or fee.
POPL 9X San Diego CA USA
Cop&~t 1998 ACM O-89791-979-3/981 01 XL50

mon to distribute software in architecture-neutral formats,
(such as Java bytecode [Xl] and ANDF [%I), and because of
the emergence of reverse engineering tools such as decom-
pifers (5, 221 and program slicers [24].

1.1 Means of Software Protection

Alice can protect her code from Bob’s attack using either
legnl[23] or technical [9] protection. Economic realities often
make it difficult for a small company like Alice’s to cnfosco
the law against a larger and more powerful competitor [17].
A more attractive solution is for Alice to protect her coda
by making reverse engineering so technically difficult that it
becomes at the very least economically inviable.

The most secure approach is for Alice not to sell her
application at all, but rather sell its services. In other words,
users never gain access to the application itself but rather
connect to Alice’s site to run the program remotely, paying
a small amount of electronic money every time. Bob will
never gain physical access to the application and will be
unable to reverse engineer it. Because of limits on network
capacity the application will perform much worse than if it
had run locally.

Alternatively, Alice could protect her cdde through en-
cryption 114, 271. This only works if the entire decryp-
tion/execution process takes place in hardware. If the coda
is executed in software by a virtual machine interpreter (as
is most often the case with Java bytecodes), then it will
always be possible for Bob to intercept and decompile tho
decrypted code.

Alice could forgo architecture neutral formats altogether.
When downloading the application, the user’s site would
identify its architecture, and the corresponding native code
version of the application (perhaps digitally signed by Alice
to assure authenticity and harmlessness) would be transmit-
ted. Only having access to the native code will make Bob’s
task more difficult, although not impossible [Ii].

1.2 Code Obfuscation

The final approach, and the one we wiI1 advocate in this pa-
per, is code objuscolion (Figure I). The basic idea is for Al-
ice to run her application through an obfuscator, a program
that transforms the application into one that is functionally
identical to the original but which is much more difficult for
Bob to understand.

Unlike server-side execution, code obfuscation can never
completely protect an application from malicious reverse en-

Alice

Obfuscated

Deobfuscate

Figure 1: Software protection through obfuscation.

gineering efforts. Given enough time and determination,
Bob will always be able to diiect Alice’s application to re-
trieve its important algorithms and data structures. To aid
this effort, Bob may try to run the obhrscated code through
an automatic deobfuscaior that attempts to undo the obfirs-
eating transformations.

Hence, the level of security from reverse engineering
that an obfuscator adds to an application depends on (a)
the sophistication of the transformations employed, (b) the
power of the available deobfuscation algorithms, and (c) the
amount of resources (time and space) available to the de-
obfuscator. Ideally, we would like to mimic the situation in
current public-key cryptosystems where there is a dramatic
difference in the cost of encryption and decryption.

The remainder of the paper is structured as follows. In
Section 2 we give a brief overview of the design of a code
obfuscator for Java, which is currently under construction.
Section 3 describes the criteria used to evaluate different
types of obfuscating transformations. Sections 4 and 5
present a catalogue of obfuscating transformations. Sec-
tion 6 discusses deobfuscation. Section 7 gives implemen-
tation details and considers the cost of obfuscation. Finally,
Section 8 summarizes our results.

2 The Design of a Java Obfuscator

Figure 2 outlines the design of a Java obfuscation tool cur-
rently under development. The input to the tool is

1. a Java application,

2. the required level of obfuscation (the potency),

3. the maximum execution time/space penalty that the
obfuscator is allowed to add to the application (the
cost), and

4. profiling data, as generated by Java profiling tools.

The obfuscator reads and parses the Java class 6le.s along
with any referenced library classes. Symbol tables and inher-
itance graphs are built from the class files’ constant pools,
and control-flow graphs are constructed from method bod-
ies.

The obfuscator contains a large pool of code transforma-
tions which are applied repeatedly to the application until
the required obfuscation potency has been achieved or the
maximum cost has been exceeded. All types of language
constructs in the application can be the subject of obfirsca-
tion: classes can be split or merged, methods can be changed
or created, new control- and data structures can be created
and original ones modified, etc. The output of the tool is
a new application which is functionally equivalent to the
original one.

3 Obfuscating Transformations

Existing obfuscation tools (such as Crema [26]) are based
on the assumption that the original and obfuscated program
must have identical behavior. In the present paper we as-
sume that under certain circumstances it will be possible to
relax this constraint. In particular, we allow most of our ob-
fuscating transformations to make the target program slower
or larger than the original. In special cases we may even al-
low the target program to have different side-effects than
the original, or not to terminate when the original program
terminates with an error condition. Our only requirement
is that the obseruoble behavior of the two programs should
be identical- Formally:

DEFINITION 1 (OBFUSCATING TRANSFORMATION) Let
P 3 P’ be a transformation of a source program P into a
target program P’.

P 3 P’ is an obfuscating transformation, if P and P’
have the same observable behavior. More precisely, in order
for P 3 P’ to be a legal obfuscating transformation the
following conditions must hold:

l If P fails to terminate or terminates with an error con-
dition, then P’ may or may not terminate.

l Otherwise, P’ must terminate and produce the same
output as P.

cl
.

.

I

,’

.

.

185

Obfuscation
Priority l .Sit Source code
Queue

object

with highest priority;
l Tj t Transformation most

appropriate for Sii Yes Revrite
or mar cost * obfuscated

N Apply Tj tO Si; class files.
l Update CFCs, Inheritance

Graph, Call Graphs, Priority;

1OV max cost high

Figure 2: Architecture of a Java obfuscator. The main input to the tool is a set of Java class iiles and the obfuscation level
required by the user. The user aIs. provides files of profiling data. The obfuscator reads all referenced class files [including
Iibrary files) and builds various internal data structures. Symbol tables and inheritance graphs store information on classes
and methods, methods are decompiIed into control iiow graphs, etc. The control flow graphs are annotated with execution
counts. Pagmatic information expresses the kinds of language constructs a class/method contains. See Section 7.3 for further
details.

Observable behavior is defined loosely as “behavior as ex-
perienced by the user.” Thii means that P’ may have side-
effects (such as creating files, sending messages over the In-
ternet, etc) that P does not, as long as these side, effects are
not experienced by the user. Note that we do not require P
and P’ to equally efficient. In fact, many of our transforma-
tions will result in P’ being slower or using more memory
than P.

Obfuscating transformations that cannot be deobfus-
cated using static analysis techniques may also prevent some
code optimizations fIom being applied to a program. An ex-
ample is the introduction of spurious aliases {Section 5.1).
Thus code optimjzation would normally be applied before
obfuscations.

3.1 Classifying Transformations

The main dividing line between different classes of obfusca-
tion techniques is the kind of information it targets. Some
simple transformations - typical of current Java obfuscators
such as Crema [26] - target the lexical structure of the appli-
cation, such as source code formatting, names of variables,

etc. The more sophisticated transformations that we are
interested in target either the data structures used by the
application or its flow of control.

3.2 Obfuscation Quality

The quality of an obfuscating transformation is evaluated
according to four criteria: how much obscurity it adds to
the program (the potency), how difficult it is to break for
an automatic deobfuscator (the resilience), how well the ob-
fuscated code blends in with the rest of the program (the
stealth), and how much computational overhead it adds to
the obfuscated application {the cost).

3.2.1 Measures of Potency

What does it mean for a program P’ to be more obscure (or
wmplez or unreadable) than a program P? To answer thls
question we can examine the complexity formulas found in
the Software Compktity Metrics literature.

Of particular interest to us are the McCabe [la] and Har-
rison [11] metrics. McCabe states that the complexity of a

program grows with the number of predicates it contains.
According to Harrison, the complexity is also proportional
to the nesting level of conditional and looping constructs.

Other metrics express that the complexity of a program
increases with the the complexity of its data structures 1191,
the number of inter-basic block variable dependencies [20],
the number of formal parameters [13], and the depth of its
inheritance tree [4].

We say that a transformation which increases any of
these metrics is a highly potent obfuscating transformation.

3.2.2 Measures of ResiIience

At first glance it would seem to be trivial to construct potent
obfuscating transformations. To increase the McCabe met-
ric, for example, we simply add some arbitrary if-statements
to P:

main0 { main0 {

s1;
if (5==2) 5'1;

s2;
3 S1;’

1
if (2>1) Ss;

I
Unfortunately, such transformations are virtually useless,
since they can easily be undone by simple automatic tech-
niques. It is therefore necessary to introduce the concept of
resilience, which measures how well a transformation holds
up under attack from an automatic deobfuscator. The re-
silience of a transformation 7 can be seen as the combination
of two measures:

Programmer Effort: the effort required to construct an
automatic deobfuscator that is able to effectively re-
duce the potency of 7, and

Deobfuscator Effort: the execution time and space re-
quired by such an automatic deobfuscator to effectively
reduce the potency of 7.

Some highly resilient transformations are one-way, in the
sense that they can never be undone. This is typically be-
cause they remove information (such as formatting, variable
names) from the program. Other transformations add we-
less information to the program that does not change its
observable behavior, but which increases the “information
load” on a human reader. These transformations can be
undone with varying degrees of difficulty.

3.2.3 Measures of Stealth

While a resilient transformation may not be susceptible to
attacks by automatic deobfuscators, it may still be suscepti-
ble to attacks by humans. Particularly, if a transformation
introduces new code that differs wildly from what is in the
original program it will be easy to spot for a reverse engineer.
A predicate such as the one below may be very resilient to
automatic attacks, but will stick out “like a sore thumb” in
most programs:

512-bit integer

if IsPrime@ . . -3853845347527) then - - -
In other words, it is essential that obfuscated code resemble
the original code as much as possible. Such transformations
are stealthy.

Obviously, stealth is a highly context-sensitive metric. A
transformation may introduce code which is stealthy in one
program but extremely unstealthy in another one.

187

3.2.4 Measures of Execution Cost

The cost of a transformation is the execution time/space
penalty which a transformation incurs on an obfuscated ap-
plication.

Some trivial transformations (scrambling of variable
names, removal of formatting) are free, i.e. they incur no
run-time cost. Many of the transformations presented in
this paper will incur a varying amount of overhead.

Like stealth, cost is a context-sensitive metric. For ex-
ample, a statement Tg=6 inserted at the topmost level of
a program will only incur a constant overhead. The same
statement inserted inside an inner loop will have a substan-
tially higher cost.

4 Control Transformations

In this section we will present a few obfuscating control-
flow transformations. For such transformations, a certain
amount of computational overhead will be unavoidable. For
Alice this means that she may have to choose between a
highly efficient program, and one that is highly obfuscated.
Typically, an obfuscator will assist her in this trade-off by
allowing her to choose between cheap and expensive trans-
formations.

Obfuscating control-flow transformations fall into three
categories: (1) hide the real control-flow behind irrelevant
statements that do not contribute to the actual computa-
tions, (2) introduce code sequences at the object code level
for which there exist no corresponding highllevel language
constructs, or (3) remove real control-flow abstractions or
introduce spurious ones. .

4.1 Opaque Predicates

The real challenge when designing control-altering transfor-
mations is to make them not only cheap, but also resis-
tant to attack from deobfuscators. To achieve this, many
transformations rely on the existence of opaque variables and
opaque predicates. Informally, a variable V (or predicate P)
is opaque if it has some property q which is known a priori
to the obfuscator, but which is difficult for the deobfnscator
to deduce.

Being able to create opaque variables and predicates
which are difficult for an obfuscator to crack is a major chal-
lenge to a creator of obfuscation tools, and the key to highly
resilient control transformations.

DEFINITION 2 (OPAQUE CONSTRUCTS) A variable V is
opaque at a point p in a program, if V has a property q
at p which is known at obfuscation time. We write this as
Vz or Vq if p is clear from context.

A predicate P is opaque at2 if its outcome is known at
obfuscation time. We write Pp (PT) if P always evaluates
to False (True) at p, and PJ if P may sometimes evaluate
to True and sometimes to False. Cl ,

The different types of opaque predicates are illustrated
here (solid lines indicate paths that may sometimes be
taken, dashed lmes paths that will never be taken):

.

1

.

.

See Figure 3 for some simpIe examples and Section ii for a
thorough discussion.

l int v, a=5; b=6;
v=ll = a + b; /* v is ii here. */
if (b>5)* ---
if (raudom(l,5) < O)F a.-
if (.-.) . . .

.
: (a and b are unchanged)

if (b < 7jT a++;
p38 = (a > 5)?v=b+b:v=b /* v is 36 here. */

1

Figure 3: Examples of trivial opaque constructs of low re-
silience. We assume random{a, b) is a standard library func-
tion (whose semantics is known to the obfuscator as well as
deob,fuscator) that returns an integer in the range u - - - b. A
deobfuscator can crack these and similar opaque constructs
using simple intra-procedural static analyses.

4.2 insert Dead or Irrelevant Code

The McCabe and Harrison software metrics suggest that
there is a strong correlation between the perceived complex-
ity of a piece of code and the number of predicates it con-
tains. Fortunately, the existence of opaque predicates makes
it easy for us to devise transformations that introduce new
predicates in a program.

Consider the basic block S = Sr .. . S, in Figure 4. In
Figure 4(a) we insert an opaque predicate PT into S, es-
sentially splitting it in half. The PT predicate is irrelevant
code since it will always evaluate to TNK

In Figure 4(b) we again break S into two. We then pro-
ceed to create two difiemnt obfuscated versions S” and Sb
of the second half by applying different sets of obfuscating
transformations to the second half of S. It will not be di-
rectly obvious to a reverse engineer that S’ and Sb in fact
perform the same function. We use a predicate P’ to select
between S” and Sb at runtime.

Figure 4(c) is similar to Figure 4(b), but this time we
introduce a bug into Sb. The PT predicate always selects
the correct version of the code, 9.

4.3 Extend Loop Conditions

Figure 5 shows how we can obfuscate a loop by making the
termination condition more complex. The basic idea is to
extend the loop condition with a PT or P? predicate which
will not affect the number of times the loop will execute.
The predicate we have added in Figure 5(d), for example,
will always evaluate to True since z2(z + 1)’ = 0 (mod 4).

4.4 Convert a Reducible to a Non-Reducible Flow Graph

Often, a programming language is compiled to a native or
virtual machine code which is more expressive than the lan-
guage itself. For example, while the Java virtual machine
code can express arbitrary flow graphs, the Java language
can only express reducible Bow graphs. Language-breaking
transformations take advantage of this to introduce virtual

. machine instruction sequences which have no direct corro-
spondence with any source language construct.

Figure S(a) illustrates a transformation which converts
a reducible flow graph to a non-reducible one, by turning
a structured loop into a loop with multiple headers 111, A
bogus jump (protected by an opaque predicate PF) is added
to the code to make it appear that there is a jump into the
middle of a loop.

A Java decompiler would have to turn a non-reducible
flow graph into one which either duplicates code or which
contains extraneous boolean variables. Alternatively, a de-
obfuscator could guess that all non-reducible flow graphs
have been produced by an obfuscator, and simply remove
the opaque predicate. To counter this we can sometimes
use the alternative transformation shown in Figure 6(b), If
a deobfuscator blindly removes PF, the resulting code will
be incorrect.

5 ManuFacturing Opaque Constructs

Opaque predicates are the major building blocks in the de-
sign of obfuscating control transformations. In fact, the
quality of most control transformations is directly dcpen-
dent on the quality of such predicates.

In Section 4.1 we gave examples of simpie opaque predi-
cates withlow resilience. These opaque predicates could be
broken (an automatic deobfuscator could determine their
value) using simple global static analysis. Obviously, we
generally require a much higher resistance to attack,

EqualIy important is the cost and stealth of opaque predi-
cates. An introduced predicate that differs wildly from what
is in the originat program will be unacceptable, since it will
be easy to detect for a reverse engineer. Similarly, a predl-
cate is unacceptable ifit introduces excessive computational
overhead.

A study of some random Java programs reveal that most
predicates are extremely simple. Common patterns include
Tp==nu~~, ?==q, 5 C= IntLiP’, where p , q i\re pointers and
A is an integer. We must be able to generate cheap and in-
conspicuous opaque predicates that resemble these patterns.

Since we expect most deobfuscators to employ various
static analysis techniques (such as data-flow analysis [lJ
and slicing [24]) it seems natural to base the construction
of opaque predicates on problems which these techniques
cannot handle well. In particular, precise static analysis of
pointer-based structures and parallel regions is known to bo
intractable. Next, we will show how to construct opnquo
predicates based on this insight.

5.1 Opaque Constructs Using Objects and Aliases

Inter-procedural static analysis is significantly complicated
whenever there is a possibility of abasing. In fact, precise,
flow-sensitive alias analysis is undecidable in languages with
dynamic allocation, loops, and if-statements !22],

In this section we will exploit the difficulty of alias analy-
sis to construct opaque predicates which are cheap, stealthy
(in pointer-rich languages like Java), and resilient to auto-
matic deobfuscation attacks.

5.1.1 Alias and Shape Analysis

While in the general case alias analysis may be undecidnblo,
there exist many conservative algorithms that perform ~011
for actual programs written by humans.

188

(b) Sl;..-;Sj

f(Si)=f(q) =fCsf) f(si) = ftsr)
s%) # f(q)

Figure 4: The Branch Insertion transformation.

Of particular interest to us are techniques developed for
shape/heap analysis. The goal of these analyses is to deter-
mine what kind of structure a pointer p points to (a tree,
a DAG, or a cyclic graph), and if two pointers must/may
refer to the same heap object at some particular program
location.

All practical heap analysis algorithms are by necessity
imprecise, but different algorithms will perform more or less
well for particular types of dynamic structures. Ghiya’s [8]
algorithm provides accurate information for programs that
build simple data structures (trees and arrays of trees), but
isn’t powerful enough to handle programs that make major
structural changes to the structure. Chase’s [3] algorithm
also has problems with destructive updates. In particular,
while it handles fist append, it fails to analyze an in-place
list reversal program. Hendren [12] cannot handle cyclic
structures, and many other algorithms only handle recursive
structures that are no more than k levels deep.

The most powerful algorithm to date seems to be
Deutsch [7], but the implementation is complex (8000 lines
of ML) and slow even for small programs (30 seconds to
analyze a 50 line program).

Our goal will be to attempt to exploit the general difli-
culty of the alias analysis problem and the shortcomings of
current conservative algorithms to manufacture cheap and
resilient opaque predicates. The basic technique we will use
is this:

1. Add to the obfuscated application code which builds a
set of complex dynamic structures Sr , Sc, - - -.

2. Keep a set of pointers pl,p2, - - - into these structures.

3. The introduced code should occasionally update the
structures (modifying pointers, adding nodes, splitting
and merging structures, etc), but must maintain cer-
tain invariants, such as “pl will never refer to the same
heap location as ps”, ‘Yhere may be a path from pr to
p2”, etc.

4. Use these invariants to manufacture opaque predicates
when needed.

This mkthod is very attractive for three reasons:

189

1. the introduced code will closely resemble the code
found in many real, pointer-rich, Java applications (i.e.
the bogus code will be stealthy),

2. it is easy to construct ‘destructive update’ operations
which current heap analysis algorithms will fail to an-
alyze (i.e. the bogus code will be resilient), and

3. it is easy to construct invariants which can be tested for
in constant time. (i.e. the bogus code will be cheap).

5.1.2 A Simple Example

Consider the obfuscated method P in Figure 7. Interspersed
with P’s original code are bogus method calls and redundant
computations guarded by opaque predicates. The method
calls manipulate two global pointers g and h which point
into different connected components (G and H) of a dy-
namic structure. The statement rg = Haves(g)’ will non-
deterministically update g to point somewhere else within
G. The statement % = Inserta,r (h)l inserts a new node into
H and updates h to point to some node within Ii. P (and other
methods that P calls) is given an extra pointer argument f
-which also refers to objects within G.

This set-up allows us to construct opaque predicates like
those of statements 4 and 5 of Figure 7. The predicate f==g
may be either True or FaIse since f and g move around
within the same component. Conversely, g==h must be false
since g and h refer to nodes within different components.

Statements 8-9 in Figure 7 exploit aliasing. The pred-
icate in statement 7 will be True or False depending on
whether f and g point to the same or different objects. The
predicate in statement 8 must evaluate to True since f and
h cannot alias the same object.

Statement 10 splits G into two components G’ and G’ ‘,
with f and g pointing into different structures. As a result,
(f==g) must be false in statement 11.

5.1.3 A Graph ADT

To make this more concrete, we will design a Java abstract
data type Graph that can be included with an obfuscated
application. We will use calls to the Graph operations to

.

(a)
I I

J.2 W

i=l;
i=l; j=lOO;

while (i<iOO) {
&

while (WIOO) && (((j * j *(j +i) *(j +1))%4)== Of? (
.*.

..-
i++ ;

iU;

I
I j=j*i+S;

Figure 5: The Loop Condition Insertion transformation.

Sl
if (PF) then {

si
while (E) do (

s2

' k:e (E) do {

Figure 6: The Reducible to Non-Reducible Flow Graph transformation. In (a) we split the loop body S2 into two parts (Si
and $), and insert a bogus jump to the beginning of 5’2. * In (b) we also break Sl into two parts, S,” and 5’:. 5’; is moved
into the loop and an opaque predicate PT ensures that Sf is always executed before the loop body. A second predicate QF
ensures that Sk is only executed once.

.

: \

Node g, h;
method PC-- -,Node f) {

/* 1 */ g = Elovez(g);
h = Moves(h) ;

/* 2 */ h = Insert2,l(h);

/* 3 */ x.R(---, Movez(f));

/* 4 */ if (f==g)? ---
/* 5 */ if (g==h)F --.

/* 6 */ f.Token=False;
g.Token=True;

/* 7 */ if (f-Token)? - - -

.
/* 8 */ f.Token=True;

h.Token=False;
/* 9 */ if (f.Token)T - - -

. .
/* ICI */ g = Splitz(f);
/* 11 */ if (f ==g)F -*.

I

Figure 7: Opaque predicates constructed from objects and aliases. Only introduced (bogus) code is shown. We construct a
dynamic structure made from Nodes. Each Node has a boolean field Token and two pointer fields (represented by black dots)
which can point to other nodes. The generated structure is designed to consist of two connected components, G and H. There
are two global pointers, g and h, pointing into G and H, respectively- -

manufacture opaque predicates that are cheap, resilient, as
well as stealthy within a pointer environment.

Obviously, we must prevent a deobfuscator from identi-
fying the ADT by simple pattern matching. There are three
obvious techniques available to an ambitious obfuscator:

1. The obfuscator should keep a large library of variants of
the Graph ADT that it could randomly select between.
In fact, several variants could be included with (and
used in diierent parts of) the same application.

2. Invocations of the Graph primitives should be subject
to the same obfuscations as the user code, including
inlining, outlining, and name mangling [S].

3. Rather than including the Graph ADT as a stand-alone
class, it could be merged with the most similar user-
defined class. This way, the bogus Graph nodes created
by the obfuscated application would be indistinguish-
able from real objects created by the original applica-
tion.

For clarity [sic], our examples will avoid any such tricks.
Consider the example Graph ADT in Figure 8. It con-

tains operations for adding new nodes to a graph (Node and
addNodei), traversing a graph (selectNode& and splitting a
graph into components (reachableNodes and splitGraph).
A more complete implementation might contain other op-
erations as well such as merging graphs, inverting graphs

191

(changing the direction of pointers), and testing for vari-
ous graph properties (connectivity, acyclicity, reachability,
isomorphiim, etc.).

The Graph ADT operations can be combined to create
any number of code patterns that can be inserted at various
points in the application. Table 1 shows four such patterns.

In Table l(a) Insert inserts a new node at an arbitrary
place in the graph.

In Table l(b) Move makes P point to an arbitrary node
within the graph reachable from P. Note that the node P
pointed to before the move is now unreachable and will be
reclaimed by the garbage collector.

The graphs built by the patterns in (a) and (b) will es-
sentially be tree-shaped. Thus if P and Q point to nodes
in a connected graph, then after one of these operations is
performed, P and Cl can still possibly refer to the same node.

In Table l(c) the Link pattern ensures that we build
general graphs by adding an edge from some leaf b to an
arbitrary node a. The requirement that we only add edges
from leaves ensures that the graph will remain connected.

In Table l(d) the Split pattern breaks up the graph
pointed to by P into two unrelated components. After the
split we know that P and IJ point into different components,
and regardless of which operations are performed on these
components P and Q will never alias one another.

Figure 9 shows how these patterns can be used to con-
struct opaque predicates in a real program. Further trans-
formations, such as inlining, can be applied to disguise the
inserted code.

.

i

.

I CODE PATTERN I EXAMPLE

r = P.selectNodaiO;
return r . addNodej O ;

Node MoveiCNOde PI (
return P.salactNode;O ;

void Linki,jiNdd* P> (
a = P. selectNodei 0 ;
b = P.selectNodej 0 ;
if (b-car == b) b.car=a;

Node Spliti(Node PI {
Q = P.selectNodeiO;
Set A = p.reachableNodeso;
Set B = Q.reachableNodes();

Set D = A.setDifference(B);
P.splitGraph(D,B);

Table 1: Code patterns. These procedures (and others like these) are inserted by the obfuscator. The idea is to maintain
a number of complex dynamic data structures, and pointers into these structures, which will allow the obfuscator to crento
resilient opaque predicates. The code patterns defined in this table use the primitives in the Node class defined in Figure 8.
Insert(P) adds a new node to a component, Move(P) returns a node reachable from P, Link(P) adds a link between two
nodes reachable Corn P, and Split(P) splits a component into two unrelated components. After a q=Split (PI transformation,
pointers P and Q can never alias each other.

192

public class Node {
public Node car, cdr;

public Node0 {
this.car = this.cdr = this; }

/* addNodei is a family of functions
which insert a new node after ‘this'. */

N0ati aaariOae10 {
Node p = new No&(); p-car = this-car;
return this.car = p; }

Noa0 aaaN0ae20 {
Node p = new Node; p.cdr = this-car;
return this-car = p; }

/* selectNodei is a family of functions
which return a reference to a node
reachable from 'this>. */

Node selectNodel0 { return this;)
Node selectNode { return this-car; }
Node selectNodes() { return this.car.cdr; }

public Node selectNoodee(int n) {
return (n <= O)?this:
this.car.selectNode4b(n-1); .

public Node selectNode4b(int n) (
return (II <= O)?this:
this.cdr.selectNodea(n-I);

1

/* Return the set of nodes reachable
from 'this'. */

public Set reachableNodes
{ return reachableNodes(nev Set()); }

Set reachableNodes(Set reached) {
if (!reached.member(this)) {
reached.insert(this);
this.car.reachableNodes(reached);
this.cdr.reachableNodes(reached);

1
return reached;

1
/* A and B are sets of graph nodes.
Remove any references between nodes
in A and B. */

public void splitGraph(Set A, Set B) (
**.

I
private void splitGraph(Set R, Set A, Set B) (

if (!R.member(this)) (
R.insert(this);
this.car.splitGraph(R, A, B);
this.cdr.splitGraph(R, A, B);

if (this.diffComp(this.car. A, B))
this.car = this;

if (this.diffComp(this.cdr, A, B))
this.cdr = this:

/* Returns True if the current node and*/
node b a.re in different components */

private boolean diffComp(Node b, Set A, Set B)
return (A.member(this) && B.member(b)) 11

(B.member(this) && A.member(b));

Figure 8: A simple graph ADT to be used for the manufacturing of opaque predicates. Class Set (not shown) with operations
insert and member implements sets of objects. It could, for example, be implemented by the Java HashTable library class. In
this particular implementation of Node we make sure there are no null pointers by making terminal nodes point to themselves.
This simplifies the implementation of the selectNodei family of functions. The primitives defined in this figure are used by
the code patterns in Table 1.

5.2 Opaque Constructs Using Concurrency

Parallel programs are more difficult to analyze statically
than their sequential counterparts. The reason is their
interleaving semantics: it statements in a parallel region

PAR Sl; SZ; -a-; S,,; ENDPAR
can be executed in n! different ways. In spite of this, some
static analyses over parallel programs can be performed in
polynomial time [15], while others require all n! interieavings
to be considered.

In Java, parallel regions are constructed using lightweight
processes known as tRreuds. Java threads have (fkom our
point of view) two very useful properties: (1) their schedul-
ing policy is not specified strictly by the language specifica-
tion and will hence depend on the implementation, and (2)
the actual scheduling of a thread will depend on asynchro-
nous events generated by user interaction, network traffic,

193

etc. Combined with the inherent interleaving semantics of
parallel regions, this means that threads are very difficult to
analyze statically.

We will use these observations to create highly resilient
opaque predicates. The basic idea is very similar to the one
used in Section 5.1: a global data structure V is created and
occasionally updated, but kept in a state such that opaque
queries can be made. The difference is that V is updated by
concurrently executing threads.

Obviously, V can be a dynamic data structure such as
the graphs created in Figure 7. The threads would randomly
move the global pointers g and h around in their respective
components, by asynchronously executing calls to Move and
Insert. This has the advantage of combining data races
with interleaving and aliasing effects, for very high degrees
of resilience.

In Figure 10 we illustrate these ideas with a much simpler

static void RayTrace {Vector scene, VieuDes v) (
Node p = Insert1 ,I (null); lnsertl,p (p);
Node p = InsertI, (null);
for (int y = 0; y < v-height; y+++) (
if (y >= h - 10)

Insert~,2 (p, (int)(y * 1.5));
if (y == h - 10)

q = Split1 (p);
for (int x = 0; x < v.vidth; x++) {

if ((y <= vheight - 10) &Bi

Iyrzh 4 == ~owb7, z)lF
*.

Ray the&y = v.pixelRay(y, x1;
SceneObject obj = hitObject{theRay, scene);
if <obj !=null>(.
Colaur color = obj.surface.color(
obj.hitPoint, objnormal, v.eyePoint);

Graphics.drauPoint(color, x, y);
~~~1 

Figure 9: An example showing bogus code (in italics) in- 
serted into a small Java routine. The code is constructed so 
that p and q will never point into-the same dynamic struc- 
ture. 

example where V is a pair of global integer variables X and Y. 
It is based on the well-known fact from elementary number 
theory that, for-any integers z and 9, 7y2 - 1 # 2’. 

For inherently sequential applications opaque predicates 
based on introduced bogus threads will be highly unstealthy. 
In such cases we can instead make use of Java’s finoiiters. 
A finalizer is a method that will be invoked on an object at 
some (unspecified) time after it has become unreachable and 
before it is garbage collected. Figure 11 gives an example 
of how opaque predicates can be constructed by combining 
finalizers with the Graph ADT of Section 5.1.3. 

6 Deobfuscation 

To be able to evaluate the resilience of obfuscating transfor- 
mations, it is necessary to consider what tools are available 
to an automatic deobuscator. So far we have assumed that 
these tools mainly analyze the obfuscated program stati- 
cally. For example, the simple opaque predicates in Figure 3 
can be cracked by a-global data flow analysis, the predicate 
(7?JZ - 1 = z”)~ can be cracked by a theorem prover, and 
static slicing techniques can be used to bring together log- 
ically related pieces of code which the obfuscator has dis- 
persed over the program. 

Deobfuscators can also use dynamic analysis. An ob&z- 
cated program can, for example, be hi&unrented to analyze 
the outcome of all predicates. Any predicate that always 
returns True (False) over -a large number of test runs may 
warrant further study, since it may turn out to be an opaque 
PT (Pp) predicate. 

bne possible counter-measure against dynamic analysis 
is to design opaque predicates in such a way that several 
predicates have to be cracked at the same time. The ob- 
fuscator can, for example, introduce opaque predicates with 
side-effects. If, in the example below, the deobfuscator tries 
to replace one (but not both) predicates with True, B will 
overflow. As a result, the deobfuscated program will ter- 

194 

class S extends Thread { 
public void run0 { - 
uhile (true> { 
int R = (int) (Math.randomO * 66636); 
M.X = R*R; Thread.sleep(3); 

11 
class T extends Thread { 
public void runt) { 
while (true) ( 
int R = (int) (Math.randomo * 9300); 
M.Y = 7*R*R; Thread.sleep(2); 
M.X *= M.X; Thread.sleep(S); 

HI . 
public class M { 
public static int X, Y; 
public static void main(String argvC1) ( 

S s = neu SO; s.start.0; 
T t = new T<); t.start(>; 
if ((Y-li)==X)p (: q  
System.out.println("Bogus codeI”); 

s.stopo; z.stopo; 
H 

Figure 10: In this example, the predicate at point q  will 
always evaluate to False. Two threads s and t occaslon- 
ally wake up to update global variables M.X and M.Y with 
new random values. Notice that s and t are involved in n 
data-race on M-X, but that this does not matter as long as 
assignments are atomic. Regardless of whether s or t wins 
the race, M.X will hold the square of a number. 

minate with an error condition. (This particular example 
does not work in Java, since Java does not detect Integer 
over3ow.) 

int k=D; 

boo1 91(x> ( 

I k+=Z31; return (@I) 
L s1; 

. . . 

s2; 

1 

boo1 Q2W ( 

k-=Z3' ; return (@)) 

(if (Q1~j)Tl SI; 
. . . 

if (Qr(k)T) sz;) 

7 Discussion 

Generating opaque predicates is an important task for an ob- 
fuscator. There are, however, many other practical problems 
that must be resolved before building a usable obfuscator. 
We will discuss some of these issues next. 

7.1 The Power of Obfuscation 

The control flow transformations presented here are only a 
few of a large catalogne of obfuscations which target ev- 
ery aspect of a program. Some of these are closely related 
to code optimizations such as inlining, outlining, cloning, 
parallelization, and various loop optimizations [2]. Other 
important transformations target the data structures cre- 
ated by the application or the static structure of the pro- 
gram, such es the module structure and inheritance rcla- 



class A f 
private Node p; 
public A(Node p, Node q) ( 
this.p = p; 
q = Spl&(p); } 

public void finalize() { Inser&,l(p); ) 
1 

class B { 
private Node q; private int i; 
public B(Node q, int i) { 
this.q = q; this-i = i; } 

public void finalize0 { 
Insertfdq); Linh,l(q); } 

1 

public class Main ( 
public static void main(String argva) { 
Node p = Insertn,s (null); Inse&,l (p); 
Node q = Insertl,l (null); 
A a = new Afp. q); 
Bb= new Bfq, 5); 

. 

. 
a= b=null; em 

p = Moves(p); q = Moues(q); 
if (~==q)~ --- X= q  

H 

Figure 11: In this example we combine Java’s jinaIizers with 
the graph-manipulation operations of Section 5.1.3. The 
finalizers may run at any time (or not run at all) after the 
objects a and b have been released at point B Regardless, 
pointers p and q will point to different structures at point 

e 

tionships [6]. The extra complexity that an obfuscator adds 
to a program will depend on the complex interaction be- 
tween all the different types of transformations which have 
been applied to it. 

7.2 The Cost of Obfuscation 

What effect will obfuscation have on the execution behavior 
of an application? There are three main issues: 

Code bIoat Our obfuscator obscures a program primarily 
by hiding the real control flow behind introduced bogus 
control flow. As a result, the obfuscated program will 
be larger than the original. 

Data bloat Opaque predicates based on alias analysis rely 
on the obfuscated program building complex dynamic 
data structures at runtime. Hence, the obfuscated pro- 
gram will generate more dynamic data than the origi- 
nal. 

Cycle bloat Every introduced instruction (that is not part 
of a dead code section) will be executed by the inter- 
preter. Consequently, the obfuscated program will ex- 
ecute more instructioncycksthanthe original. 

Out of these three problems, cycle bloat is the least seri- 
ous. Most introduced instructions are in dead code sections 
guarded by opaque predicates- These predicates will often 
consist of simple pointer or integer comparisons that will 
contribute little to the total runtime of the application. 

Code bloat can have detrimental effect on mobile pro- 
grams since increased code size will result in increased down- 
loading time. Once down-loaded, the obfuscated program 
may run slower due to deteriorated cache- and paging be- 
havior. 

The most serious problem is data bloat. First of all, 
more dynamic data means an increased workload for the 
garbage collector, and, again, higher cache miss rates, More 
seriously, an application that previously ran successfully on 
a particular memory configuration may, after obfuscation, 
not run at al1 since it now exhausts the available heap space. 

1.3 Selecting Transformations 

Figure 2 shows the overall design of our Java obfuscator 
which is currently under construction. It is designed to 
achieve maximal obfuscation potency and stealth and to 
minimize the space and time costs discussed in the previ- 
ous section. 

The obfuscator builds several internal data structures. 
An appropriateness table maps each source code object (ie. 
every class, method, basic block, etc. that may be obfus- 
cated) to a set of transformations that would be stealthy, 
cheap, resilient, and potent for that particular object. To 
find stealthy transformations we simply compare the set of 
language constructs already used by the object (pmgmatic 
information) to the constructs introduced by the transfor- 
mation. 

Not every part of a program contains trade secrets. 
Hence, different parts of the same program will need diier- 
ent levels of obfuscation. Therefore, each source code object 
is given an obfuscation priority describing its required level 
of protection. This can either be provided explicitly by the 
user, or it can be computed using some heuristic based on 
the static structure of the program. The source code objects 
are obfuscated in priority order. After a transformation has 
been applied to an object, its priority is decreased based on 
the potency and resilience of the transformation. 

As seen in Figure 2, control flow graphs are annotated 
with execution counts, either statically estimated or pro- 
vided through profiling. These are used to guide the se- 
lection of transformations and opaque predicates, so that 
frequently executed parts of the application are not obfus- 
cated by very expensive transformations and new dynamic 
memory is not allocated in inner loops. 

8 Conclusion 

We have’shown that it is possible to obfuscate the control 
flow of an application by inserting irrelevant conditionals 
and loops. The resilience of such obfuscations (the extent to 
which they will stand up to attack Tom automatic deobfus- 
caters) depends on the resilience of the inserted predicate. 
The main contribution of this paper is the insight that it 
is possible to base the manufacturing of resilient predicates 
on the intractability of static analysis problems such as the 
analysis of aliasing, concurrency, and data dependence. 

While all transformations described in this paper have 
been cast in terms of Java, it should be clear that most 

195 



: 
;.I 
:,’ .;j 

apply equally well to other languages. In fact, since our 
o&cat& t&gets Java class fii& it is already able to ob- 
fuscate programs written in a variety of languages. The 
reason, of course, is the existence of transIators from many 
languages (including Ada and Scheme) into Java source or 
bytecode [25]. 

Acknowledgments: We would iike to thank Todd 
Proebsting, Chris Fraser, Mark Burgess, and Buz Uzgalis 
for stimulating discussions. 

References 

[l] Alfred V. Aho, Ravi Sethi, and Jefirey D. Ullman. 
Compilers, Principles, Techniques, and Tools. Addison- 
Wesley, 1986. ISBN O-201-10088-6. 

121 David F. Bacon, Susan L. Graham, and Oliver J. 
Sharp. Compiler transformations for high-performance 
computing. ACM Computing Surveys, 26(4):345- 
42O,December1994. http://uw.acm.org/pubs/toc/ 
Abstracts/0360-0300/197406.htmL 

[3] David R. Chase, Mark Wegman, and F. Kenneth 
Zadeck. Analysis of pointers and structures. ACM SIG- 
PLAN Notices, 25(6):296-310, June 1990. 

[4] Shyam R. Chidamber and Chris F. Kemerer. A metrics 
suite for object oriented design. IEEE fiansactions on 
Software Engineeting7 20[6):476-493, June 1994. 

[5] Cristina Cifuentes and K. John Gough. Decompilation 
of binary programs. Soflware - Practice d Experience, 
25(?):811-829, July 1995. 

[6] Christian CoIlberg, Clark Thomborson, and Dou- 
glas Low. A taxonomy of obfuscating transfor- 
mations. Technical Report 148, Department of 
Computer Science, University of Auckland, July 
1997. http://quw.cs.auckland.ac.nz/'collberg/ 
Research/Publications/CollbergThomborsonLon~7a. 

[7] A. Deutsch. Interprocedural may-alias analysis for 
pointers: Beyond &limiting. In SIGPLAN PLDI’94, 
pages 230-241, Orlando (Florida, USA), June 1994. 
ACM. SIGPLAN Notices, 29(6). 

[S] Rakesh Ghiya and Laurie J. Her&en. h it a tree, a 
’ DAG, or a cyclic graph? A shape analysis for heap- 
directed pointers in C. In POPL’g6, pages l-15, St. 
Petersburg Beach, Florida, 21-24 January 1996. 

[9] James R. Gosler. Software protection: Myth or reality? 
In CRYPT095 - Advances in Cryptology, pages 140- 
157, August 1985. 

[lo] James Gosling, Bill Joy, and Guy Steele. The Java 
Language Specification. Addison-Wesley, 1996. ISBN 
0-201-63451-l. 

[ll] Warren A. Harrison and Kenneth I. Magel. A complex- 
ity measure basedon nesting level. SIGPLANNotices, 
16(3):63-74, 1981. 

[12] Laurie J. Hendren and Alexandru Nicoiau. Paralleiizing 
programs with recursive data structures. IEEE Trans- 
actions on Parallel nnd Disttibuted Systems, 1(1):35- 
47, January 1990. 

[13] Sallie Henry and Dennis Kafura. Software structure 
metrics based on information flow. IEEE Dansac- 
tions on Software Engineeting, 7(5):510-518, Scptem- 
ber 1981. 

[14] Amir Herzberg and Shlomit S. Pinker. Public protcc- 
tion of so&are. ACM l3ansactions on Computer Sya- 
tens, 5(4):371-393, November 1987. 

[15] Jens Knoop, Bernhard Steffen, and Jiirgen Vollmcr. 
Paraileiiim for free: Efficient and optimal bitvector 
analyses for parallel programs. TOPLAS, 18(3):208- 
299, May 1996. 

1161 Stavros Macrakis. Protecting source code with 
ANDF. ftp://riftp.osf.org/pub/andf/andf,coll, 
papers/ProtectingSourceCode.ps, January 1993. 

[17] Apple’s QuickTime lawsuit. http:/)vvv. 
macworld.com/pages/june.95~Nevs.848.html and 
may.95/News.705.html, May-June 1995. 

[18] T. J. McCabe. A complexity measure, IEEE ‘Pansac- 
tions on Software Engineering, 2(4):308-320, December 
1976. 

[19] John C. Munson and Taghi M. Kohshgoftaar. Measure- 
ment of data structure complexity. Journal of Sysfems 
Soffu~are, 20:21?-225, 1993. 

1201 E. I. Oviedo. Control flow, data flow, and program 
complexity. In Proceedings of IEEE COMPSAC, pages 
146-152, November 1980. 

[Zl] Todd A. Proebsting and Scott A. Watterson. Krakatoa: 
Decomptiation in java (Does bytecode reveal source?). 
In Third USENIX Conference on Object-Oriepted Tech- 
nologies and Systems (COOTS), June 1997. 

{22] G. Ramalingam. The undecidability of aliasing. ACM 
TOPLAS, 16(5):146?-1471, September 1994. 

1231 Pamela Samuelson. Reverse-engineering someone else’s 
software: Is it legal? IEEE Sofluare, pages 90-96, 
January 1990. 

1241 frank Tip. A survey of program slicing techniques, 
Journal ofProgramming Languages, 3(3):121-189, Sep- 
tember 1995. 

[25] Robert Tolksdorf. Programming languages for the Java 
virtual machine, 1997. http://grunge.cs.tu-berlin, 
de/'tolk/vmlanguages.htmL 

[26] Hans Peter Van Vliet. Crema - The Java ob- 
fuscator. http://uob.inter.nl.net/users/H.P.van, 
Vliet/crema.html,January1996. 

{27] Uwe G. Wilhelm. Cryptographically protected ob- 
jects. In RenPar’9, May 1997. http://lseuwu.opfl, 
ch/'uilhe3.m/CryPO.html. 

196 


