
Improved Watermark Detection for Spread-Spectrum Based 
Watermarking Using Independent Component Analysis 

 

Hafiz Malik 
Dept. of Electrical and Computer 

Engineering University of Illinois at 
Chicago, Illinois, USA 

hmalik@ece.uic.edu 

Ashfaq Khokhar 
Dept. of Electrical and Computer 

Engineering University of Illinois at 
Chicago, Illinois, USA 

khokhar@ece.uic.edu 

Rashid Ansari 
Dept. of Electrical and Computer 

Engineering University of Illinois at 
Chicago, Illinois, USA 

ansari@ece.uic.edu 
 

ABSTRACT 
This paper presents an efficient blind watermark 
detection/decoding scheme for spread spectrum (SS) based 
watermarking, exploiting the fact that in SS-based embedding 
schemes the embedded watermark and the host signal are 
mutually independent and obey non-Gaussian distribution. The 
proposed scheme employs the theory of independent component 
analysis (ICA) and posed the watermark detection as a blind 
source separation problem. The proposed ICA-based blind 
detection/decoding scheme has been simulated using real-world 
audio clips. The simulation results show that the ICA-based 
detector can detect and decode watermark with extremely low 
decoding bit error probability (less than 0.01) against common 
watermarking attacks and benchmark degradations.   

Categories and Subject Descriptors 

H.1.1:  Systems and Information Theory  
General Terms 

Algorithms, Design, Performance, Security  
Keywords 
Spread Spectrum, Independent Component Analysis, Blind 
Source Separation, Watermarking, Detection, Correlation  

1. INTRODUCTION 
Technological and socio-economical factors such as the growth of 
the Internet, the proliferation of low-cost and reliable storage 
devices, the deployment of seamless broadband networks, the 
availability of state-of-the-art digital media production  and 
editing technologies, and the development of efficient multimedia 
data compression schemes  have made digital forgeries and 
unauthorized sharing of digital media a wide spread reality. This 
form of piracy has subjected the entertainment industry to 
enormous annual revenue losses. For example, music industry 
alone claims multi-million illegal music downloads on the 
Internet every week.  It is therefore imperative to develop robust 
technologies to protect copyrighted digital media from illegal 

sharing and tampering. Traditional digital data protection 
techniques, such as encryption and scrambling, alone cannot 
provide adequate protection of copyrighted contents, because 
these technologies are unable to protect digital content once they 
are decrypted or unscrambled. Digital watermarking technology 
complements cryptography for protecting digital content even 
after it is deciphered [1].  

Digital watermarking is a process of imperceptibly 
embedding content protection/authentication information 
(watermark) into the digital media (the host media). 
Consequently, watermark detection/decoding process is employed 
to extract the embedded watermark from the watermarked media. 
Although the performance expected from a given watermarking 
system depends on the target application area [1], robust 
embedding scheme and efficient detection procedure are 
inherently desired.  

The work presented in this paper is focused on investigating 
efficient watermark detection/decoding schemes. In general, the 
existing watermark detectors can be classified into two categories: 
(a) informed detectors that assume that the host signal is available 
at the detector during watermark detection process, and (b) blind 
detectors that assume that the host signal is not available at the 
detector for watermark detection. Similarly, watermark 
embedding schemes can be classified into two major groups: (a) 
blind embedding implies that the watermark embedder does not 
use the host signal information during the watermark embedding 
process (spread spectrum based watermarking schemes [1, 2, 3, 6] 
fall in this category), and (b) informed embedding implies that the 
watermark embedder exploits the properties of the host media 
during the embedding process (quantization index modulation 
based watermarking schemes [1, 4, 6] belong to this category). 

 In order to meet the fidelity requirement of the watermarked 
signal, the power of the embedded watermark (watermark 
strength) is generally kept much lower than the host signal power. 
Blind watermark detection schemes for SS-based watermarking 
employ statistical characterization of the host signal to develop an 
optimal or near-optimal watermark detector (in the maximum 
likelihood (ML) sense) [6]. The salient features of such schemes 
include increased robustness against interference (i.e. 
antijamming capability), simplicity, and low computational 
complexity. The blind watermark detectors for SS-based 
watermarking perform poorly, particularly in terms of decoding 
bit error probability at the decoder due to the presence of host-
signal interference at the decoder. The nonzero decoding bit error 
probability at the watermark decoder even in the absence of 
attack-channel distortion is one of the limitations of the existing 
blind detectors.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DRM’05, November 7, 2005, Alexandria, Virginia, USA. 
Copyright 2005 ACM 1-59593-230-5/05/0011...$5.00. 
 

102



In this paper we develop a novel independent component 
analysis (ICA) based watermark detection method for SS-based 
watermarking. In the past ICA based framework has been used for 
multimedia watermarking [8–13]. However, existing ICA based 
data-hiding schemes are either not applicable to SS-based 
watermarking [8–11] or use an informed detector for watermark 
extraction process [12–13]. For example, Yu et al in [12] have 
proposed ICA based watermark detector that can be used for SS-
based watermarking but their detector uses the watermark and 
private data during watermark extraction process. Similarly,  
Sener et al [13] have presented ICA based watermark detector 
which is also applicable to SS-based watermark detection, but 
their proposed detector also uses watermark during the detection 
process, therefore, cannot be used for blind watermark 
extraction/detection applications. 

The main motivation of this paper is to design a blind 
detector1 for SS-based watermarking schemes capable of 
canceling the host-signal interference at the detector, hence 
improving decoding as well as detection performance. Towards 
this end, we use the theory of independent component analysis 
(ICA) by posing watermark detection as a blind source separation 
problem. The proposed detector assumes that the received 
watermarked signal is a linear mixture and the underlying 
independent components (the host signal and the watermark) obey 
non-Gaussian distributions. The proposed detector falls in the 
category of blind detectors. We can show that the SS-based 
watermark estimation/detection problem fits into the blind source 
separation (BSS) model.  

The proposed ICA-based detector first estimates hidden 
independent components from the received watermarked signal 
using ICA framework. The estimated components are then used to 
detect the embedded watermark. Simulation results show that the 
proposed detector outperforms the correlation based detector 
(commonly used for watermark detection in SS-based 
watermarking), against a variety of signal manipulations and 
degradations applied to the watermarked media. These signal 
degradations include addition of color and white noise, 
resampling, requantization, lossy compression, filtering, time- and 
frequency-scaling, and stirmark benchmark attack [31, 32]. The 
proposed ICA-based watermark detector is applicable to SS-based 
watermarking of all media types, i.e. audio, video and images.  
However, in this paper digital audio is used as the host media for 
watermark embedding, detection, and performance analysis of the 
proposed ICA-based detector. 

2. BASICS OF SS-BASED WATERMARKING 
The spread-spectrum (SS) based watermarking system can be 
modeled using a classical secure communication model [1], 

shown in Figure 1. In Figure 1, N∈ℜs  is a vector containing 
coefficients of an appropriate transform of the host signal. It is 
assumed that coefficients, s[i]: i = 0, 1… N-1, are independent 
and identically distributed (i.i.d.) random variables (r.v.) with 

zero mean and variance 2
sσ . A watermark, { 1}N∈ ±w , is 

generated using (a) an input message b selected from set of 

                                                                 
1 For the rest of the paper we will treat watermark detector as a 

blind watermark detector unless otherwise stated. 

possible embedding messages, and (b) a data embedding secret 
key K. We assume that the watermark w[i] and the host signal 
coefficients s[i] are mutually independent. The watermarked 
signal x is obtained by adding an amplitude-modulated watermark 
w to the host signal s. In order to meet the fidelity requirement of 
the watermarked media x, i.e, to ensure that the embedded 
watermark is imperceptible, the amplitude-modulated watermark 
is spectrally shaped according to perceptual maskα, estimated 
based on the human auditory system (HAS) and the host signal s 
i.e. ( , )f HAS=α s . 
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 Figure 1: Depiction of a Perceptual Based Data Hiding 
System with Blind Receiver as a Standard Secure 

Communication Model 

The watermarked signal x can be expressed as  

(1)b⋅x = s + α w  

where [ ⋅ ] denotes element-wise product of the two vectors. 
Embedding distortion generally serves as a fidelity measure for a 
given watermarking scheme and can be expressed as: 

(2)
e
= −d x s

 
The mean-squared error embedding distortion be expressed as:  

12 2 2 2 2
w

0

1
[ ] (3)

N

e
i

D i
N

α σ
−

=
∑⋅ = ==e = d = x - s α w  

where ⋅  represents the Euclidian norm.  

The signal distortion due to an active adversary attack can be 
viewed as a channel noise, n, shown in Figure 1. The resulting 
watermarked signal, x , is processed for watermark detection and 
is expressed as: 

(4)x = x + n  

The received watermarked signal is used to extract embedded 
information. The SS-based watermarking schemes use 
probabilistic characterization of the host data to develop an 
optimal or near-optimal watermark detector (in ML sense). Pérez-
González et al have shown in [6] that the SS-based watermarking 
schemes are inherently bounded by the host-signal interference at 
the watermark detector as far as decoding and detection 
performance at the watermark detector are concerned. The main 
objective of this paper is to design a watermark detector for SS-
based watermarking schemes with improved watermark detection 
performance by rejecting the host-signal interference at the 
detector using ICA framework. The fundamentals of ICA theory 
are briefly outlined in the following section followed by details of 
the proposed ICA-based detector. 
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3. INDEPENDENT COMPONENT ANALYSIS  
Independent Component Analysis (ICA) is a statistical framework 
for estimating underlying hidden factors or components of a 
multivariate statistical data. In the ICA model, data variables are 
assumed to be linear or nonlinear mixtures of some unknown 
latent variables, and the mixing system is also unknown [14–16]. 
Moreover, these hidden variables are assumed to be non-Gaussian 
and mutually independent. The ICA model can be considered as 
an extension of the principal component analysis (PCA) and 
factor analysis [14–16]. In fact, ICA can be treated as non-
Gaussian factor analysis, since data is modeled as a linear mixture 
of some underlying factors.  The ICA framework has been used in 
diverse application scenarios including blind source separation 
(BSS), feature extraction, telecommunication, and economics 
[14–16]. In the following we will review only linear ICA 
framework since that is applicable to the SS-based watermarking 
model. 

In general, the linear ICA model for the noise free as well as 
noisy observation can be defined as 
Noise free ICA model: ICA of a random vector x  consists of 
estimating the following generative model of the data: 

A (5)x = s  
where x represents the observed m-dimensional random vector, 
the hidden variables (components) si is the vector s =(s1,…,sn1)T 
are assumed statistically independent, and the matrix A  is a m x 
n1 mixing matrix. 
Noisy ICA model: ICA of a random vector x  consists of 
estimating the following generative model of the data: 

A (6)+x = s n  
where n is m-dimensional random noise vector ,x, s , and A are 
as in noise free model. 

In this paper, we use noisy ICA generative model to design 
an ICA-based watermark detector for SS-based watermarking 
schemes. The proposed ICA-based watermark detector will 
estimate embedded watermark from the received watermarked 
signal by reducing the host-signal interference at the watermark 
detector. In order to understand the basics of ICA, noise fee ICA 
generative model is discussed first. Before estimating the 
underlying independent components from observed data using 
ICA framework, the generative model should meet certain 
conditions to ensure the identifiability of the ICA model. The 
identifiability constraints, as proposed in [14], for noise free ICA 
model are outlined as, 
1. Statistical independence: The hidden (latent) variables/ 

sources are statistically independent. 
2. Non-Gaussianity: At the most one independent components 

si : i = 1, 2 … n1, is normally distributed.  
3. More sensors than sources: Number of observed linear 

mixtures (sensors) m must be greater or equal to the number 
of independent components (sources) n1 i.e. 

1m n≥ . 
4. Full rank mixing matrix: The rank of the mixing matrix, A, 

must be full column rank. 
Moreover, x and s are assumed to be centered. 
Here, third condition (i.e. more sensors than sources) is a 
relatively loose restriction, as ICA model is identifiable even for 

more latent components (sources) than observations (sensors), 
i.e. 

1m n< , scenarios [21–24].  

The identifiability of the noisy ICA model (Eq. (6)) requires 
almost the same set of restrictions excluding third, i.e. 

1m n≥ , 
and fourth. If we assume that noise is independent from the 
underlying independent components then the noisy ICA model 
can be treated as a special case of noise free ICA, that is, 
degenerate case, e.g. for more sources than sensors scenario i.e. 

1m n< . For more details on identifiability of noisy ICA model 
please see [21–25] and references there. 

Independence and maximum non-Gaussianity are two 
fundamental ingredients of the ICA theory. Independence of the 
underlying components is one of the assumptions to estimate 
independent components from the linear mixture of the 
underlying independent components. This should be noted that 
independence of the underlying components is a much stronger 
condition than their uncorrelatedness. For example, in case of 
BSS, there might be many dependent but uncorrelated 
representations of the observed signals and these uncorrelated but 
dependent representations of the observed signals can not separate 
the mixed sources [14], therefore uncorrelatedness itself is 
insufficient constraint to solve the BSS problem. Actually 
independence implies nonlinear uncorrelatedness [14], that is, if s1 
and s2 are two independent components then their any nonlinear 
transformations say, 

1 1
( )sϕ  and 2 2

( )sϕ , are uncorrelated as well 

(i.e. their covariance is zero). On the other hand, if s1 and s2 are 
simply uncorrelated then in general, such nonlinear 
transformations, not necessarily have zero covariance. Thus to 
perform ICA, a stronger form of decorrelation of the underlying 
components is required, that is, nonlinear decorrelation. The 
suitable selection of nonlinearities i.e., 1 ( )ϕ ⋅  and 2 ( )ϕ ⋅  can be 
achieved using tools like maximum likelihood and mutual 
information from estimation theory and information theory [7]. 

Maximum non-Gaussianity is another important requirement 
of ICA-based hidden components estimation [14–19, 26, 27]. 
Fourth-order statistics also called kurtosis, k, is generally used as 
a non-Gaussianity measure of a random variable. The normalized 
kurtosis of a real r.v. s can be defined as, 

4 2 2( ) { } { } 3 (7)k s E s E s= −  

here E{.} denotes expected value of a r.v. 
This is observed that the normal r.v. has zero normalized kurtosis; 
therefore, kurtosis is a measure of the distance of a r.v. from 
Gaussianity. In addition, r.v. having positive kurtosis i.e. k > 0 are 
generally called as super-Gaussian, the Laplacian distribution is a 
typical example of a super-Gaussian r.v.; similarly, r.v. having 
negative kurtosis value, i.e., k < 0 are generally called as sub-
Gaussian, e.g., the uniform distribution. 

The BSS is one of the most explored applications of the ICA 
model [14–19, 26, 27]. In BSS, the observed random vector x  
corresponds to a realization of an m-dimensional discrete-time 
signal x(t), t = 1,2,…, and the underlying independent 
components si (t) are called as source signals. The goal is to 
recover independent sources 1( ) :is t i n∈ , from the observation x. 
The cocktail party problem is a classical example of BSS where 
several people are simultaneously speaking in the same room and 
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the problem is to separate the voices of different speakers 
(sources), using recordings of several microphones 
(observations/sensors) in the room.  

The ICA model is a suitable framework to solve the cocktail 
party problem, because the underlying variables are independent 
in the observed data. In case of SS-based watermarking, the 
watermarked signal x at the detector can be treated as an 
observation which is a linear mixture of the underlying hidden 
independent components, i.e., the host signal s and the 
watermark bwα . To this end, the ICA framework can be used to 
find a linear representation of the underlying components. In 
other words, BSS using ICA framework is to estimate the 
demixing matrix B̂   based on the observed data x. The estimated 
demixing matrix B̂  is the inverse (or generalized inverse) of 
mixing matrix A, i.e., 

† 1ˆ ˆ ˆ ˆˆ ( ) (8)H HB A A A A−= = . 

Most of existing BSS schemes using ICA model are based on the 
information-theoretic framework, for example, Bell et al’s [26] 
ICA scheme is based on the idea of information maximization or 
“infomax” among the estimated independent components, Comon 
[15] used higher-order cumulants, Gaeta et al [20] used ML 
method, and extensions of infomax, higher-order cumulants, ML 
method etc. can be found in [14, 16, 26, 27]. 

4. PROPOSED ICA BASED WATERMARK 
DETECTOR 

The proposed ICA-based watermark detector consists of two 
stages: 1) watermark estimation stage, and, 2) watermark 
decoding and/or detection stage. The watermark estimation stage 
estimates watermark ŵ  from the received watermarked audio x  
using ICA framework, whereas, the watermark decoding and/or 
detection stage decodes and/or detects the embedded watermark. 
The block diagram of the proposed watermark detector is given in 
the Figure 2. 
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Figure 2: Block Diagram of the Proposed ICA-based 

Watermark Detector 

In general the ICA model for BSS estimates demixing 
matrix B̂ , from the observed data x. This model is extendable to 
the watermark estimation problem, assuming identifiability and 
separability conditions of the ICA model are satisfied. To explore 
the fact that SS-based watermarking satisfies the identifibility 
constraints of an ICA model; Let us assume additive SS-based 
watermark embedding scenario, to this end, the watermarked 
signal is obtained by a linear combination of the host signal and 
the watermark. Recalling Eq. (1) with b = 1, we have, 

⋅x = s + wα  

Also recall the fact that watermark sequence, w, and the host 
signal, s, are assumed to be mutually independent for all SS-based 
watermarking schemes. We only need to show that the underlying 
components are non-Gaussian and the observation satisfies the 

full-rank condition. For non-Gaussianity requirement, the real-
world audio and image coefficients in DWT domain can be 
approximated by the Laplacian distribution [5, 6, 26, 32]. If the 
watermark, w, is generated based on some non-Gaussian 
distribution then non-Gaussianity condition of the watermark is 
also satisfied. The full-rank condition can be relaxed if ICA 
framework of more sources than sensors [21–25,] is used for 
watermark estimation. However, for our watermark estimation 
stage we have used standard ICA model for BSS which requires 
full-rank constraint along with other three constraints for its 
identifiability. In order to meet the full-rank condition of the 
observation, at least one observation independent of the received 
watermarked audio is required. This is because, in case of SS-
based watermarking, the received watermarked signal is a mixture 
of two independent components, i.e., host signal and watermark 
(under zero attack-channel distortion). Therefore, in order to meet 
the full-rank requirement, another observation independent of the 
received watermarked audio is generated locally, i.e. at the 
detector, using watermarked signal and an independent pseudo-
random noise. 

Once identifiability conditions of the standard ICA model 
are satisfied at the watermark detector, both the noise free ICA 
model as well as noisy ICA model can be extended to solve the 
watermark detection problem for SS-based watermarking. Before 
applying an ICA model for watermark estimation, the following 
lemma will show that SS-based watermark detection model fits 
into the ICA model. 
Lemma:  

SS-based watermark estimation model fits into ICA model. 
Proof: 
Let s1 be the host signal to be watermarked based on additive SS-
based watermarking, then the corresponding watermarked signal 
using Eq. (1) with b = 1, can be expressed as  

1 1 1 (9)⋅x = s + α w  

where 1α  is the estimated perceptual mask of the host signal, s1, 
based on the HAS.  

The observed watermarked signal, 1x , at the detector in the 
presence of additive attack-channel distortion nattack1 can be 
expressed as 

1 1 1

1 1 1 (10)

attack

attack= ⋅

x = x + n

s + α w + n
 

In order to meet the full-rank requirement for identifiability of the 
ICA model, an observation generated which is given as,  

1

1 1 (11)

g

attack= +

x = x + ν

x + n ν
 

where v is the pseudo-random noise, independent of the received 
watermarked signal, 1x . Here v can be expressed as,  

(12)ε ′⋅ν = w + ν  

where 0 1ε≤ ≤  
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therefore, 

1 1 1

1 1 1

1 1

( )

(13)

attackg

attack

ε

ε

′= + ⋅ + ⋅

′= + + ⋅ +

= + ⋅ +

x s α w n + w + ν

s α w n + ν

s α w n

 

 where 1 ε+α = α , and ng = nattack1  + v’ 

The received watermarked signal and locally-generated 
observation in matrix form, 

11 1 1 (14)attack

g g

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

nx 1 α s
= +

x n1 α w
 

Let 

1

g
′′ =

⎡ ⎤
⎢ ⎥⎣ ⎦

x
x

x
, 1′′ =

⎡ ⎤
⎢ ⎥⎣ ⎦
1 α

A
1 α

, 1′′ =
⎡ ⎤
⎢ ⎥⎣ ⎦

s
s

w
, and 1attack

g
′′ =

⎡ ⎤
⎢ ⎥⎣ ⎦

n
n

n
 

rewriting Eq. (15) we have,  

(15)′′ ′′ ′′ ′′⋅x = A s + n  

therefore, Eq. (15) is equivalent to Eq. (6),  
hence, SS-based watermark estimation model fits into the noisy 
ICA model.   
Therefore, an ICA model can be used to solve SS-based 
watermark estimation problem.                                                     ⁭ 
In the above proof, we assumed that watermark is embedded into 
the entire host audio clip (non-segmentation scenario). The ICA 
model is still extendable to SS-based repeated watermark 
embedding scenario.  

4.1 Watermark Estimation 
For watermark estimation, the proposed watermark detector first 
estimates the watermark-mixing matrix ˆ ′′A  which is used to 
estimate the underlying independent components (i.e., the host 
signal s  and the watermark w ). An estimate of the watermark-
mixing matrix ˆ ′′A is obtained by optimizing some highly 
nonlinear function also known as contrast function. The pseudo-

inverse of the estimated watermark-mixing matrix †Â′′  is applied 
to the observed mixture to estimate the host signal ŝ  and the 
watermark ŵ . However, as noted earlier, in case of blind 
detectors for SS-based watermarking schemes, watermark 
estimation using ICA framework is a degenerate case, i.e., m < n1. 
Hence, just the estimation of watermark-mixing matrix is 
insufficient to separate the underlying independent components 
perfectly. In the case of SS-based watermarking, the equation 

Â′′=x s  has an affine set of solutions [28]. A preferred solution 
in this affine set is generally selected using probabilistic prior 
model of the independent components. The performance of the 
proposed ICA-based watermark estimator depends on the 
separation quality of the separated (estimated) watermark ŵ . The 
separation quality of the separated source is generally measured 
in terms of source-to-interference ratio (watermark-to-
interference ratio (WIR), in case of watermark estimation), 
source-to-noise ratio and source-to-artifact ratio (for further 

details on these separation quality measures please see [28] and 
references therein). For performance analysis of the proposed ICA 
detector, only WIR distortion measure is considered here; 
therefore, the estimated watermark ŵ  can be expressed as 

1 interfŵ[ ] [ ] [ ]w[ ] s [ ] (16)i i i i b iη α= +  

where 1η  is real constant 10 1η≤ ≤ , and interfs  is interference 
due to the host signal. 

Let interf 2 2s s, 0 1η η= ≤ ≤  then Eq. (16) can be rewritten as, 

1 2ˆ (17)bη η= +w αw s  

The relative distortion due to interference in the estimated 
watermark is defined as, 

2
interf 1 2( ) (18)D η η=  

and interf10 log( )WIR D= ⋅  

In general, interf 1D >  for most of the existing BSS schemes that 
use ICA framework. 
Several researchers have proposed elegant BSS algorithms based 
on ICA model for noisy data [17, 19, 21–25, 27], and these 
algorithms can be used for watermark estimation. However, we 
have selected the FastICA for noisy data [17] in our 
implementations due to its better computational performance and 
separation quality over existing algorithms [28, 29]. 

5. SIMULATION RESULTS 
In order to evaluate the detection-performance of the proposed 
ICA-based watermark detector (ICAWD), we applied the 
conventional normalized correlation based watermark detector 
(NCWD) [1] to the watermark estimated using ICA framework. 
The proposed ICAWD can be used to detect watermark for most 
of the existing SS-based watermark embedding schemes [1–3]. 
The simulation results presented here are obtained using our 
frequency selective spread spectrum (FSSS) audio watermarking 
scheme [3]. For the sake of completeness we briefly discuss 
embedding and detection details of the FSSS audio watermarking 
[3]. 

• Watermark Embedding: For the watermark embedding 
process, we have used same the settings as outlined in [14] except 
the watermark generation process. The simulation results 
presented here are based on the watermark, generated using a 
pseudo-random noise generator obeying some non-Gaussian 
distribution. The non-Gaussian distribution of the watermark is to 
satisfy the non-Gaussianity requirement of the ICA model. To 
improve the watermark detection performance further, watermark 
is generated using different non-Gaussian distributions depending 
on encoding symbols. For example, in case of binary embedding, 
in order to embed symbol ‘0’ watermark 0w  is generated based 

on non-Gaussian distribution, 
0

( )Xf x , and to embed symbol ‘1’ 

watermark 1w  is generated based on a different non-Gaussian 

distribution, 
1

( )Xf x . Here 0 ( )f ⋅  and 1( )f ⋅ are different 
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distributions (for the simulation results presented, 0w is 

generated based on the Laplacian distribution and 1w  is 
generated based on the Uniform distribution). In addition, a secret 
key wK  is used as a ‘seed’ for the pseudo-random noise generator 
during watermark generation process. The block diagram of the 
FSSS-based watermark generation and embedding used for 
simulations is illustrated in Figure 3. 
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Figure 3: Block Diagram of the FSSS-based Watermark 

Embedding 

• Watermark Detection: The proposed ICA-based detector 
has access to the secret key K only, which is a combination of Ksb 
(subband selection key) and wK  (watermark generation key), 

i.e. W|sbK K K= . The watermark detection process for FSSS-
based audio watermarking under proposed detection scheme 
consists of watermark estimation step using ICA framework 
followed by correlation based detection step, as outlined below, 
o Sync Point Extraction: The received audio signal is analyzed 

first to extract the set of sync points (SP) [2, 3] in order to 
combat desynchronization attacks. 

o Segmentation: An audio frame consisting of N-samples is 
selected around each SPi: i = 1,2,…M, where M is the 
cardinality of set SP. 

o Frame Decomposition: Each frame is then decomposed into 
p–subband signals using l–level analysis filter bank 
discussed in [3]. 

o Subband Selection: A secret key
isbK , is used to select a 

subband from lower p-1 –subbands of ith frame i.e. ,i jbs . 

o Watermark Estimation: The selected subband ,i jbs  and 

independently generated pseudo-random Gaussian noise, v, 
(defined according to Eq. (12)), are used to generate an 
independent observation locally (at the watermark detector), 
in order to meet the full-rank requirement for the 
identifiability of an ICA model for BSS, i.e.,  

, (19)g i jb b= +s s v  

Here, the observation, x, in matrix form can be expressed as, 

,[ , ] (20)T
i j gb b=x s s  

For watermark estimation using ICA framework for BSS, 
Oja et al’s FastICA for noisy data [17] is used.  

• Information Decoding: To determine the presence or 
absence of the watermark in the estimated signals, binary 
hypothesis testing is employed. For fast and reliable information 
decoding, normalized correlation between the estimated signals 
and the key dependent watermarks (i.e. w0 and w1) generated at 
the watermark detector are used. The normalized correlation 
between w and estimated signals ris  is compared against the 
threshold, Th, to determine the presence or absence of the 
watermark. The binary hypothesis testing used for binary 
information decoding is given as, 

1

0

: if  max ( , ) , Decode:

: else no watermark

ri
H ncor Th

H

ξ ξ≥s w
 

where ncor(.,.) is the normalized correlation function defined as, 

2 2
0 0

s

s

( ) w ( )
( , ) : 0 ,1 (21)
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l N
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where ŵ is the estimated signals using ICA, Th is the decoding 
threshold, and i = 1,2. 
The block diagram of the proposed ICA-based watermark 
estimation followed by normalized correlation based detection 
used for FSSS audio watermark detection process is illustrated in 
Figure 4. 
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Figure 4: Block Diagram of the proposed ICAWD for 
FSSS-based Audio Watermarking 

In order to compare the detection performance of the proposed 
detector with existing SS-based watermark detection schemes, 
blind detector based on normalized correlation to the received 
watermarked audio. Details of the watermark detection process 
using blind normalized correlation detector for FSSS-based 
watermarking are outlined in [3]. The block diagram of the blind 
watermark detector using normalized correlation for watermark 
detection process used for the FSSS-based audio watermarking 
scheme is shown in Figure 5. 
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Figure 5: Block Diagram of the Blind NCWD used for 
FSSS-based Audio Watermarking 
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5.1 Experimental Results 
To evaluate the robustness performance of the proposed 
watermarking scheme we performed several experimental tests in 
which the watermarked audio is subjected to commonly 
encountered degradations. These degradations include addition of 
white and colored noise, resampling, lossy compression (MPEG 
Audio compression), filtering, time and frequency-scaling, 
requantization, and stirmark benchmark attacks for audio. We use 
decoding bit error probability, Pbe, at the watermark detector, as a 
performance measure in this section. The decoding bit error 
probability, Pbe, is defined as, 

1 (22)e
Number of BitsCorrectly Detected

Pb
Number of Bits Embedded

= −  

The watermark detection results presented in this section are 
based on an ICAWD (ICA_Detector) and a NCWD 
(Cor_Detector) [3]. The detection performance, in terms of Pbe 
assessed in the presence of different attacks, reveals that an 
ICAWD outperforms the NCWD due to its better host-signal 
interference cancellation capability. The penalty for this improved 
performance is higher computational cost ICAWD.  
The simulation results presented here are based on five audio 
clips belonging to four different music categories (rock/pop, 
melodic, vocal, and Indian semi-classical. In Table 1, the name, 
type, and duration of the selected audio clips are listed. 
The detection results presented in this section assume, (a) no 
channel coding, (b) same watermark is embedded into two frames 
around consecutive SPs, that is, if watermark w is embedded in jth 
subband of ith frame then w is also embedded in jth subband of 
(i+1)th frame, (c) wavelet decomposition level, l is set to 5, and 
(d) hypothesis testing threshold, Th, is set to the value of 0.15 
which corresponds to a false positive rate of 3.5x10-4. 

• Addition of White Noise: White Gaussian noise with power 
from zero to 200 % of the power of the audio signal is added to 
the corresponding watermarked audio clips. The detection 
performance, Pbe, of ICAWD and NCWD for different SNR 
values is plotted in Figure 6. The ICAWD clearly outperforms the 
NCWD and the improvement may be attributed to its better host-
signal interference cancellation ability. Figure 6 also shows that 
for SS-based watermarking very low decoding bit error 
probability is possible even in the presence of noise with power 
60 - 70 % of the power of the audio signal, given ICA-based 
detector is used of watermark detection process.  
• Addition of Colored Noise: To simulate an attack with 
colored noise, white Gaussian noise is spectrally shaped 
according to the estimated masking threshold. The masking 
threshold of watermarked audio clip is estimated based on the 
HAS model [1, 7]. The just audible colored noise is then added to 
the watermarked audio signal. The detection performance, Pbe, 
for ICAWD and NCWD, for each watermarked audio clip, is 
presented in Figure 8. This is observed that the NCWD performs 
poorly, this is due to the increase in interference level (colored 
noise); as the colored noised is generated with a process profile 
almost identically to that of the watermark. The colored noise acts 
as a second watermark, interfering with the watermark to be 
detected. On the other hand, ICAWD is effective in handling such 
attacks due to its interference cancellation ability and Figure 8 
reflects this fact. 

• Rescaling: Rescaling attacks include time- and frequency-
scaling. Time-scaling attacks can be used to desynchronize a 
watermark detector, for SS-based watermarking systems. To test 
the robustness of our proposed detector against time-scaling 
attacks, the watermarked audio signals are time-scaled by a factor 
of ts = ± 1 %. The detection performance for ICA-based detector 
along with correlation based detector is illustrated in Figure 9. 
Similarly, the frequency-scaling attacks are generally used to 
adversely affect the detection performance of frequency domain 
watermarking schemes. To mount frequency scaling attack, the 
watermarked audio signals are frequency scaled by a factor of fs = 
± 1 %. The detection performance in terms of Pbe of the ICAWD 
and NCWD, against frequency-scaling attack, is presented in 
Figure 10. The better performance of ICAWD is evident in 
Figures 9 and 10. 
• Resampling: To simulate resampling attack, watermarked 
audio signal is down-sampled at a sampling rate of fs / rf (where rf 
is the down-sampling factor) and then up-sampled back to fs. The 
watermark detection is applied to this resampled watermarked 
audio clip. The detection performance, Pbe, for each audio clip for 
rf = 2, 3, 4… 10, is illustrated in Figure 11. Figure 11 shows that 
ICAWD performs reasonably well against resampling attacks up 
to rf = 5 for each watermarked audio clip. 
• Requantization: To simulate a requantization attack, each 
watermarked audio clip is quantized using 8-bit quantization 
level. The detection performance after a requantization attack is 
illustrated in Figure 7. 
• Lossy Compression: Lossy audio compression, e.g., MP3, is 
generally applied to the digital audio for multimedia applications 
like transmission and storage to reduce the bit rate. To test the 
survivability of the watermark, the MP3 encoding/decoding is 
applied to the watermarked audio using ISO/MPEG-1 Audio 
Layer III [7] coder for different bit rates i.e. 32, 64, 96, 112, 128, 
192, 256, and 320 k bits/s (kbps). The detection performance after 
lossy compression attack for these bit rates for ICAWD and 
NCWD is illustrated in Figure 12 and 13 respectively.  
• Filtering: To test the robustness of the proposed watermark 
detector against filtering attacks, the watermarked audio signal is 
subjected to lowpass filtering, highpass filtering, and bandpass 
filtering attacks. To test the performance for low-pass filtering the 
watermarked audio signal is passed through a low-pass filter with 
fc = 5 kHz and 12 dB/ Octave roll-off. The detection performance 
after lowpass faltering attack is illustrated in figure 14a. 
Similarly, for highpass filtering attack, the watermarked audio 
signal is passed through the first-order highpass filter with fc = 
100 Hz. The detection performance against highpass filtering 
attack, for all watermarked audio clips, is presented in Figure 14b. 
And 1st- order bandpass filtering attack, with cut-off frequencies 
fc_low = 50 Hz, and fc_up = 4.5 kHz, are presented in Figure 14c.  
• Stirmark Audio Benchmark: We have also tested the 
performance of ICAWD and NCWD for FSSS-based 
watermarking against stirmark audio benchmark [31] attacks. 
Watermark detection results on the watermarked audio clips 
degraded with the stirmark audio benchmark attack [32] are listed 
in Table II. These detection results are for the attack parameters 
from the version of the tool available online [32]. The detection 
performance results presented in Table II are averaged over all 
audio clips listed in Table 1. 
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Figure 6: Decoding Performance, Pbe, for 
an ICAWD and NCWD against AWGN 
attack for different SNR (dB) values. 
 

 
Figure 7: Decoding Performance, Pbe, for 
Requantization attack applied to each 
Watermarked Audio Clip. 
 

 
Figure 8: Decoding Performance, Pbe 
against Just Audible Colored Noise attack 
applied to each Watermarked Audio Clip. 

 

 
 
Figure 9: Decoding Performance, Pbe, for 
Time-Scaling attack for ts = ± 1% applied 
to each Watermarked Audio Clip. 

 

 

 
 
Figure 10: Decoding Performance, Pbe, 
for Frequency-Scaling attack for fs Values 
± 1% applied to each Watermarked 
Audio Clip. 
 

 

 

 

 

 
Figure 11: Decoding Performance, 
Pbe, of each Audio Clip, against 
Resampling attack for different 
values of Resampling Factor, rf. 
 

 
 

Figure 12: Decoding Performance, Pbe, 
against Lossy Compression attack for 
different bits rates using ICAWD applied 
to each Watermarked Audio Clip. 
 
 

 
 
Figure 13: Decoding Performance, Pbe, 
against Lossy Compression attack for 
Different bits rates using NCWD applied 
to each Watermarked Audio Clip.

109



 
(a) 

 
(b) 

 
(c) 

Figure 14: Decoding Performance, Pbe, for Filtering attack, Lowpass Filtering (a),  Highpass Filtering (b), and  Bandpass Filtering 
(c), applied to each Watermarked Audio Clip,  

TABLE 1 
SELECTED AUDIO CLIPS 

 Singer Name /Song Title Type Duration (Sec) 

1 Backstreet Boys, I Want It That Way … Pop, (Pop1) 22 

2 Lata Mangeshkar, Kuch Na Kaho … Melodic, (Melodic) 15 

3 Asha Bhosle, and Richa Sharma, Kahin Aag Laga … Pop, (Pop2) 10 

4 Nusrat F. A. Khan, Afreen Afreen … Indian Semi-Classic, (Classical) 20 

5 Suzanne Vega, Tom's diner Female Vocal, (Vocal) 5 
                                                                             Here, all Audio Clips are Mono, Sampled at 44.1 kHz, and 16 Bit Resolution. 

TABLE II 
AVERAGE DETECTION PERFORMANCE RESULTS ON WATERMARKED AUDIO CLIPS ATTACKED WITH THE 

STIRMARK AUDIO BENCHMARK 

 Stirmark Attack Pbe_ICA Pbe_Cor 

addbrumm_100 0 0.2258 

addbrumm_1100 0 0.2258 

addbrumm_2100 0 0.2258 

addbrumm_3100 0 0.2258 

addbrumm_4100 0 0.2581 

addbrumm_5100 0 0.2581 

addbrumm_6100 0 0.2581 

addbrumm_7100 0.0323 0.2903 

addbrumm_8100 0.0323 0.3226 

Addbrumm_9100 0.0323 0.3226 

Addbrumm_10100 0.0646 0.3548 

addnoise_100 0 0.2258 

addnoise_300 0 0.2258 

addnoise_500 0 0.2258 

 Stirmark Attack Pbe_ICA Pbe_Cor 

addnoise_700 0 0.2258 

addnoise_900 0 0.2258 

Addsinus 0 0.2258 

Amplify 0 0.2258 

Compressor 0 0.2581 

Dynnoise 0 0.2581 

Echo 0.0323 0.3548 

exchange 0 0.2258 

extrastereo_30 0 0.2258 

extrastereo_50 0 0.2258 

extrastereo_70 0 0.2258 

fft_hlpass 0.0323 0.2258 

fft_invert 0 0.2258 

fft_real_reverse 0 0.2258 

 Stirmark Attack Pbe_ICA Pbe_Cor 

fft_stat1 0.1931 0.4839 

fft_test 0.1931 0.4839 

Flippsample 0.1613 0.4839 

Invert 0 0.2258 

Lsbzero 0 0.2258 

Normalize 0 0.2258 

rc_highpass 0.0323 0.2258 

rc_lowpass 0 0.2258 

Smooth 0 0.2258 

smooth2 0 0.2581 

stat1 0 0.2258 

stat2 0 0.2258 

Zerocross 0 0.2258 

Zeroremove 0.0323 0.2258 

 

6. CONCLUSION 
An improved watermark detector for SS-based watermarking is 
presented in this paper. The proposed watermark detector is 
capable of canceling the host-signal interference at the watermark 
detector using ICA framework. The proposed ICA-based detector 
can be used for SS-based watermarking for all types of 

multimedia data, e.g., audio, video, images, etc. Simulation 
results for real-world data show that the proposed ICA-based 
detector performs much better than the conventional normalized 
correlation based detector. Moreover, the detection performance 
of the proposed detector can be improved further by employing 
channel coding. Theoretical results of the proposed ICAWD are 
available in [33]. Currently we are investigating the performance 
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of the proposed ICAWD for SS-based image and video 
watermarking. We are also looking forward to use the proposed 
ICA-based detector for multimedia fingerprinting for secure 
multimedia distribution on the Web and multimedia usage 
tracking applications.  
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