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Abstract. Bytecode, Java’s binary form, is relatively high-level and therefore
susceptible to decompilation attacks. An obfuscator transforms code such that
it becomes more complex and therefore harder to reverse engineer. We develop
bytecode obfuscations that are complex to reverse engineer but also do not sig-
nificantly degrade performance. We present three kinds of techniques that: (1)
obscure intent at the operational level; (2) complicate control flow and object-
oriented design (i.e. program structure); and (3) exploit the semantic gap between
what is legal in source code and what is legal in bytecode. Obfuscations are ap-
plied to a benchmark suite to examine their affect on runtime performance, con-
trol flow graph complexity and decompilation. These results show that most of the
obfuscations have only minor negative performance impacts and many increase
complexity. In almost all cases, tested decompilers fail to produce legal source
code or crash completely. Those obfuscations that are decompilable greatly re-
duce the readability of output source.

1 Introduction

Reverse engineering is the act of uncovering the underlying design of a product through
analysis of its structure, features, functions and operation. It has a long history, includ-
ing applications in military and pharmacology industries, but it could be argued that
software has proven to be among the most susceptible to its attacks. Since software
is an easily and cheaply reproduced product it must rely on either passive protection
such as a patent or some form of active protection such as hiding software on servers,
encryption, or obfuscation.

Obfuscation is the obscuring of intent in design. It is one way of foiling decom-
pilers. With software this means transforming code such that it remains semantically
equivalent to the original, but is more esoteric and confusing. A simple example is the
renaming of variable and method identifiers. By changing a method from getName to
a random sequence of characters such as sdfhjioew, information about the method
is hidden that a reverse engineer could otherwise have found useful. A more complex
example is introducing unnecessary control flow that is hidden using opaque predi-
cates, expressions that will always evaluate to the same answer (true or false) but whose
value is not possible to estimate statically. Obfuscation is one of the more promising
forms of code protection because, while it may be obvious to a malicious attacker that a
program has been obfuscated, this fact will not necessarily improve their chances at de-
compilation. Also, obfuscation can severely complicate a program such that even if it is
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decompilable it is very difficult to understand, making extraction of tangible intellectual
property close to impossible, without serious time investment.

Java is particularly vulnerable to reverse engineering because its binary form, byte-
code, is relatively high-level and contains considerable information about types, and
field and method names. There are also many references in the code to known fields
and methods in publicly-available class libraries, including the standard ones provided
with a Java implementation. Java decompilers exploit these weaknesses and there are
quite a few products that convert bytecode into Java source code that very similar to the
original and is quite readable, particularly when the bytecode is in exactly the format
produced by known javac compilers [20, 15, 12, 17, 14, 13].

This paper presents and studies a wide range of techniques for obfuscating Java
bytecode. However, a very important factor is that one wants the obfuscations to make
reverse engineering difficult (the most pain), but at the same time not hurt performance
of the obfuscated application (the least gain). This tradeoff is not obvious, since the
same obfuscations that make it hard for a decompiler may also severely impact the
analysis and optimizations in JIT compilers found in modern Java Virtual Machines
(JVMs).

This tradeoff is the main goal of our work. We developed and implemented a collec-
tion of obfuscations that hinder reverse engineering attempts, while at the same time do
not affect performance too much. We examine some variations of previously suggested
obfuscations and we also develop some new techniques, most notably those which ex-
ploit the semantic gap between what can be expressed in Java bytecode and what is
allowed in valid Java source.

The remainder of the the paper is organized as follows. In Section 2 we give a short
summary of previous work. Section 3 gives a high-level overview of our software ob-
fuscator, the Java Bytecode Obfuscator (JBCO). Sections 4 through 6 present our ob-
fuscations grouped by type: operator-level obfuscation, program structure modification,
and semantic gap exploitation. Each section ends with a summary of the impact of the
obfuscations on three decompilers. Due to space limitations we briefly describe each
obfuscation. However, detailed code examples and challenge cases for decompilers can
be found at http://www.sable.mcgill.ca/JBCO. In Section 7 we introduce
a benchmark set and provide a summary of the impact of each obfuscation on runtime
performance and control flow complexity. Finally, Section 8 gives conclusions and fu-
ture work.

2 Related Work

Obfuscation is a form of security through obscurity. While Barak argues that there are
seemingly few truly irreversible obfuscations [2] and, in theory, “deobfuscation” under
certain general assumptions has been shown by Appel to be NP-Easy [1], obfuscation
is nevertheless a valid and viable solution for general programs.

Early attempts involved machine-level instruction rewriting. Cohen used a tech-
nique he called “program evolution” to protect operating systems that included the
replacement of instructions, or small sequences of instructions, with ones that perform
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semantically equal functions. Transformations included instruction reordering, adding
or removing arbitrary jumps, and even de-inlining methods [5].

Much later, a theoretical approach was presented by Collberg et al. [6]. They outline
obfuscations as program transformations and develop terminology to describe them in
terms of performance effect and quality. They rely on a number of well-known soft-
ware metrics [4, 11, 16] to measure quality. Later, in [7], they reconsider lexical obfus-
cations (name changing) and data transformations (e.g., splitting boolean values into
two discrete numerics that are combined only at evaluation time). However, their chief
contributions are in control-flow modifications. They make use of opaque predicates to
introduce dead code, specifically engineering the dead branches to have buggy versions
of the live branches.

Sakabe et al. concentrate their efforts on the object-oriented nature of Java — the
high-level information in a program. Using polymorphism, they invent a unique return
type class which encapsulates all return types and then modify every method to return
an object of this type [18]. Method parameters are encapsulated in a similar way and
method names are cloned across different classes. In this way the true return types of
methods and the number and types of a method’s parameters are hidden. They fur-
ther obfuscate typing by introducing opaque predicates that branch around new object
instantiations which confuses the true type of the object and they use exceptions as
explicit control flow. Unfortunately, their empirical results show significantly slower
execution speeds — an average slowdown of 30% — and a 300% blowup in class file
size.

Sonsonkin et al. present more high-level obfuscations which attempt to confuse pro-
gram structure [19]. They suggest the coalescing of multiple class files into one —
combining the logic of two or more functionally-separate sections of the program —
and its reverse, splitting a single class file into multiples.

The obfuscations presented in this paper build upon both the simple operation-level
obfuscations as well as control flow and program structure obfuscations. We have also
developed a new set of obfuscations, which exploit the semantic gap between Java byte-
code and Java source. Many of these were inspired by our experiences in building Java
bytecode optimizers and and decompilers. The cases that are difficult for those tools are
exactly the cases that should be created by obfuscators.

3 JBCO Structure

JBCO – our Java ByteCode Obfuscator – is built on top of Soot [21]. Soot is a Java byte-
code transformation and annotation framework providing multiple intermediate repre-
sentations and infrastructure for dataflow analysis and transformations. JBCO uses two
intermediate representations: Jimple, a typed 3-address intermediate form; and Baf, a
typed abstraction of bytecode.

JBCO is a collection of Jimple and Baf transformations and analyses. Whenever
possible, we analyze and transform Jimple, since it is at a higher abstraction and easier
to work with. However, some low-level obfuscations are implemented in Baf since they
require modifying actual bytecode instructions. There are three categories of analyses
and transformations:
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Information Aggregators: collect data about the program for the transformationsi,
such as constant usage and local variable-to-type pairings.

Code Analyses: collect information about the code such as control flow graphs, type
data, and use-def chains, which help identify where in the program transformations
can be applied (e.g. in order to produce verifiable bytecode we must ensure proper
matchings between allocations of objects and their initializations).

Instrumenters: are the actual obfuscations, ransforming the code to obscure meaning.

JBCO can be used as a command-line tool or via a graphical user interface.1 Each
obfuscation can be activated independently and, depending on the severity of the ob-
fuscation desired, a weight of 0-9 can be given where 0 turns it off completely and 9
corresponds to applying it everywhere possible. We also provide a mechanism to limit
the obfuscations to specific regions of a program by using regular expressions to spec-
ify certain classes, fields or methods. This is useful if a user wants certain parts to be
heavily obfuscated or when a specific hot method should not be obfuscated because of
performance considerations.

4 Operator-Level Obfuscation

Our first group of obfuscations works at the operator level. That is, we convert a local
operation into a semantically equivalent computation that is harder for a reverse en-
gineer to understand. These obfuscations should be decompilable, but the decompiled
code is expected to be harder to understand.2,3

4.1 Embedding Constant Values as Fields (ECVF)

Programmers often use constants, particularly string constants, to convey important in-
formation. For example, a statement of the formSystem.err.println("Illegal
argument, value must be positive."); provides some context to the reverse
engineer. The point of the ECVF obfuscation is to move the constant into a static field
and then change references to the constant into references to the field. This could lead
to something like System.err.println(ObjectA.field1);, which conveys
significantly less meaning. An interprocedural constant propagation could potentially
undo this obfuscation. However, if the initialization of the field is further obfuscated
through the use of an opaque predicate, this is no longer possible.

4.2 Packing Local Variables into Bitfields (PLVB)

In order to introduce a level of obfuscation on local variables with primitive types
(boolean, char, byte integer), it is possible to combine some variables and pack them

1 JBCO will soon be released as a new component of Soot.
2 Our identifier renamer obfuscation was left out of the paper due to space limits. We developed

a unique approach to garbleing names, but the overall technique is quite common.
3 For each obfuscation, we give the acronym we use for it. This acronym is used both in the

experimental results and also as the flag used to enable the obfuscation in JBCO.
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into one variable which has more bits. To provide maximum confusion we randomly
choose a range of bits to use for each local variable. For example, an integer variable
may get packed into bits 9 through 43 of a 64-bit long. Each read or write of the orig-
inal variable must be replaced by packing and unpacking operations in the obfuscated
code and this might slow down the application. Thus, it is used sparingly and applied
randomly to only some locals. Without further obfuscation of the bitshifting and bit-
masking constants used for packing and unpacking, however, a clever decompiler could
overcome this technique.

4.3 Converting Arithmetic Expressions to Bit-Shifting Operations (CAE2BO)

Optimizing compilers sometime convert a complex operation such as multiplication
or division into a sequence of cheaper ones. This same trick can be used to obfuscate
the code. In particular, we look for instances of expressions in the form of v ∗ C (a
similar technique is used for v/C), where v is a variable and C is a constant. We extract
from C the largest integer i where i < C and is also a power of 2, i = 2s, where
s = floor(log2(v)). We then compute the remainder, r = v − i. If s is in the range of
−128 . . .127, we can convert the original to (v << s)+(v ∗r) and the expression v ∗r
can be further decomposed. In order to further obfuscate we don’t use the shift value
s directly, but rather find an equivalent value s′. To do this we take advantage of the
fact that shifting a 32-bit word by 32 (or a multiple of 32) always returns the original
value. We choose a random multiple m, and compute a new but equivalent shift value,
s′ = (byte)(s + (m ∗ 32)).

As an example, an expression of the form v ∗ 195 would be converted first to
(v << 7) + (v << 6) + (v << 1) + v and then the three shift values would be
further obfuscated to something like (v << 39) + (v << 38) + (v << −95) + v.

A decompiler that is aware of this calculation could potentially reverse it, but if one
or more of the constants were hidden with an opaque predicate, it could stymie the
attempt.

4.4 Impact of Operator-Level Obfuscations on Decompilers

Although we fully expected all of these simple, operator-level, obfuscations to be de-
compilable (i.e. correct and compilable source code would be produced, even if less
readable than the original), we were surprised to find the results in Table 1. For these
and subsequent decompiler tests in this paper, we created some small micro-tests for
each obfuscation.4 A score of Pass indicates that the decompiler produced correct Java
source that could be recompiled by javac, Fail indicates that the produced code would
not recompile, and Crash is the result of a decompiler not terminating normally.

Why do decompilers fail on these simple obfuscations? The three obfuscations un-
wittingly exploit a semantic gap between bytecode and Java source. Booleans, bytes and

4 We used micro-tests because some decompilers, most notably pattern-based Jad, are very sen-
sitive to whether the bytecode looks exactly like it came from a javac compiler or not. Since
all of our tests have been run through Soot, which even without obfuscations is sometimes
enough to confuse decompilers, we wanted to ensure that our tests were small enough to mea-
sure the impact of the obfuscation itself and not indirect effects due to processing with Soot.
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Table 1. Measuring Decompiler Success against Operator-level Obfuscations

Obfuscation Jad SourceAgain Dava
Embedding Constant Values as Fields Fail Fail Fail
Packing Local Variables into Bitfields Fail Fail Fail
Converting Arithmetic Expressions to Bit-Shifting Ops Fail Fail Pass

chars are expressed as integers in bytecode, whereas in source these are given unique
types which must be used consistently and in a manner so as not to lose precision.
The decompilers failed to properly type and cast for these computations and produced
output that was not recompilable.5

5 Obfuscating Program Structure

Program structure can be thought of as the framework. In a building this would be the
supporting beams, the floors, and the ceiling. It would not be the walls or the carpeting.
We define structure to include two facets: low-level method control flow and high-level
object-oriented design. Modern decompilers such as SourceAgain and Dava should be
able to handle these techniques, in principle.

5.1 Adding Dead-Code Switch Statements (ADSS)

The switch construct in bytecode offers a useful control flow obfuscation tool. It is the
only organic way (other than the try-catch structure) to manufacture a control flow graph
that has a node whose successor count is greater than two. This can severely increase
the complexity of a method.

This obfuscation adds edges to the control flow graph by inserting a dead switch. To
ensure that the switch itself is never executed it is wrapped in an opaque predicate. All
bytecode instructions with a stack height of zero are potentially safe jump targets for
cases in the switch. We implemented an analysis to find these zero-height locations and
we randomly select some as targets for the cases switch. This increases the connected-
ness and overall complexity of a method. A decompiler cannot remove the dead switch
because it cannot statically determine the value of the opaque predicate.

5.2 Finding and Reusing Duplicate Sequences (RDS)

Because of the nature of bytecode, there is often a fair amount of duplication even within
a single method. By finding these clones and replacing them with a single switched
instance we can potentially reduce the size of the method while also confusing the
control flow, creating patterns not naturally expressed in Java.

We determine when a duplicate sequence D is a clone of the original sequence O
using the following rules:

5 Clearly our research group would like to fix Soot/Dava to properly handle this variation of the
typing problem - it is quite interesting to have one subgroup building a decompiler, while at
the same time another subgroup is trying to break it!
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– D must be of the same length as O and for each index i, instruction Di must
equal Oi.

– Each Di must be protected by the same (or no) try blocks as the original Oi.
– Every instruction in a sequence other than the first must have no predecessors that

fall outside the sequence (i.e. no branching into the middle of a sequence).
– Each Di must share the same stack height and types as the original Oi.
– Each Di must not have the same offset within the method as any instruction Oj .

The algorithm searches for duplicates of length 3 to 20. When a duplicate sequence
is found, a new integer is created to act as a control flag. Each duplicate is removed
and replaced with an assignment of the flag to a unique id followed by a goto directed
at the first instruction in the original sequence. The original sequence is prepended
with instructions which store 0 to the flag (the “first” unique id) and appended with a
switch. The default switch jump falls through to the next instruction (the successor of
the original sequence). A jump to the successor of each duplicate sequence is added to
the switch based on its flag id.

5.3 Building API Buffer Methods (BAPIBM)

A lot of information is inherent in Java programs because of the widespread use of the
Java libraries. These libraries have clear and well-defined documentation. The very ex-
istence of library objects and method calls can give shape and meaning to a method
based entirely on how they are being used. The method calls that direct execution into
the native Java libraries cannot be renamed because the obfuscator should not change li-
brary code6. Therefore, the next best option is to hide library method calls. We do this by
indirecting library calls through intermediate methods that have nonsensical identifiers.

Each program method is checked for library calls. A new method M is then created
for each library method L referenced in the program. M is modified to invoke L. M is
placed in a randomly chosen class in order to cause “class-coagulation” — an increase
in class interdependence. Therefore, this obfuscation is two-fold. It confuses the object-
oriented design of the program and hides the library method calls by indirecting them
through a different “physical” part of the program.

5.4 Building Library Buffer Classes (BLBC)

Having a class that extends a library class directly can also lend a certain amount of
clarity to a program. Parent class methods that are over-ridden in the child are more
obvious as well. Experienced Java programmers are able to quickly grasp design intent
from this information.

This obfuscation attempts to cloud this particular design structure of Java. For each
class C, which directly extends a library class L, we create a new buffer class B. It is
inserted as a child of L and a parent of C. Since no part of the program itself ever uses

6 While it is not impossible, it is not reasonable. Obfuscating library code would mean that those
modified libraries would have to be distributed with the program, causing both licensing issues
and an unreasonable increase in the program’s distribution size.
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B directly, methods over-ridden in C can be defined as nonsense methods in B, further
adding confusion. This complicates and confuses the design of the program by adding
extra layers. Ultimately, it spreads the single-intent class structure over multiple files
making it difficult for a reverse engineer to understand.

5.5 The Impact of Program Structure Obfuscations on Decompilers

The results are shown in Table 2. Jad fairs badly when decompiling our structure ob-
fuscations, most likely due to its lack of control flow analysis. It resorts to leaving pure
bytecode in its output where it is unable to produce correct source. More surprisingly,
SourceAgain also has difficulty with the heavier control flow obfuscations. RDS causes
it to crash completely.

Table 2. Measuring Decompiler Success against Structure Obfuscations

Obfuscation Jad SourceAgain Dava
Adding Dead-Code Switch Statements Fail Fail Pass
Finding and Reusing Duplicate Sequences Fail Crash Pass
Building API Buffer Methods Fail Fail Fail
Building Library Buffer Classes Fail Pass Pass

None of the decompilers were able to properly mark which methods might throw ex-
ceptions, which is a requirement of Java source. Because some methods indirected by
BAPIBM might throw exceptions the new methods that call them are required to as well.

6 Exploiting the Design Gap

Certain gaps between what is representable in Java source code and what is repre-
sentable in bytecode exist. The classic example is the goto instructioni that has no direct
counterpart in source7.

The obfuscations detailed in this section were designed to exploit these bytecode-
to-source gaps. Smart decompilers can sometimes transform the obfuscated bytecode
into a semantically equivalent form of source code yet it is usually unreadable. Often,
however, the result is incorrect decompiled code or no decompiler output whatsoever.
Sometimes a decompiler crashes altogether.

6.1 Converting Branches to jsr Instructions (CB2JI)

The jsr bytecode8, short for Java subroutine, is analogous to the goto other than the
fact that it pushes a return address on the stack. Normally, the return address is stored

7 Abrupt jumps in source must be performed through the break or continue statements
which force a certain level of structure since they must always be directly associated with
well-defined statement blocks.

8 The jsrwas originally introduced to handle finally blocks — sections of code that are ensured
to run after a try block whether an exception is thrown or not. It is a historical anomaly that is
no longer used by modern javac compilers.
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to a register after a jsr jump and when the subroutine is complete the ret bytecode
is used to return.

The jsr - ret construct is very difficult to handle when dealing with typing issues
because each subroutine can be called from multiple places, requiring that type infor-
mation be merged which gives a more conservative estimate. Also, decompilers will
usually expect to find a specific ret for every jsr.

This obfuscation replaces if and goto targets with jsr instructions. The old jump
targets are each prepended by a pop in order to throw away the return address which is
pushed onto the stack. If the jump target’s predecessor in the instruction sequence falls
through then a goto is inserted after it which jumps directly to the old target (stepping
over the pop).

6.2 Reordering load Instructions Above if Instructions (RLAII)

Patterns in bytecode produced by javac can be examined for areas of possible ob-
fuscation. This simple obfuscation looks for situations where a local variable is used
directly following both paths of an if. That is, along both branches the first instruction
loads the variable on to the stack. This is a somewhat common occurance.

The obfuscation then moves the load instruction above the if, removing its clones
along both branches. While a modern decompiler like Dava, which is based on a 3-
address intermediate representation, will be able to overcome this change, any decom-
piler relying on pattern matching (such as Jad) will become very confused.

6.3 Disobeying Constructor Conventions (DCC)

The Java language specification [8] stipulates that class constructors – those methods
used to instantiate a new object of that class type – must always call either an alternate
constructor of the same class or their parent class’ constructor as the first directive. In
the event that neither is specified in source javac explicitly adds a call to the parent at
the beginning of the method.

While this super call, as a rule, must be the first statement in the Java source it is,
in fact, not required to be the first within the bytecode. By exploiting this fact it is pos-
sible to create constructors with no valid source code representation. This obfuscation
randomly chooses among four different approaches in order to confuse decompilers:

Wrapping the super call within a try block: This ensures that any decompiled source
will be required to wrap the call in a try as well to conform to the rules of Java. To
properly allow the exception to propagate, the handler unit — a throw instruction
— is appended to the end of the method.

Taking advantage of classes which are children of java.lang.Throwable: This app-
roach inserts a throw before the super call and creates a new try block that traps
just the new throw. The handler unit is designated to be the super call itself. This
takes advantage of the fact that the class is throwable and can be pushed onto the
stack through the throw mechanism instead of the standard load.
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Inserting a jsr jump and a pop directly before the super constructor call: The
jsr’s target is the pop, which removes the subsequent return address that is pushed
on the stack by the jsr. This confuses the majority of decompilers which have
problems dealing with jsr instructions.

Adding new instructions before the super call: This approach inserts a dup follo-
wed by an ifnull before the super call. The ifnull target is the super call.
The if branch instruction will always be false since the object it is comparing is
the object being instantiated in the current constructor. A push null is inserted,
followed by a throw, along the false branch of the if. A try block is created
spanning from the ifnull up to the super call. The catch block is appended to the
end of the method as a sequence of pop, load o, goto sc (o is the object
being instantiated and sc is the super call). This confuses decompilers because it
is more difficult to deduce which local will be on the stack when the super call site
is reached.

6.4 Partially Trapping Switch Statements (PTSS)

There is a big gap between high-level structured use of try-catch blocks in Java source
and their low-level byte implementation. The Java construct allows only well-nested and
structured uses, but the bytecode implementation is at a lower abstraction. A bytecode
trap specifies a bytecode range a . . . b, a handler unit h, and an exception type E. If an
exception T is raised within the method at bytecode c then the JVM searches for a trap
in the list matching either the type of T or a parent type of T whose bytecode range
a . . . b contains c. If a trap is found then the stack is emptied, T is pushed on top, and
the program counter is set to the handler h. There are no rules that enforce nesting of
these ranges. They may overlap or even share code with handler code.

Thus, one way of confusing decompilers is to trap sequential sections of bytecode
that are not necessarily sequential in Java source code. An example of this is the switch
construct. In source, the switch encapsulates different blocks of code as targets of the
switch. However, in bytecode there is nothing explicitly tying the switch instruction
to the different code blocks (i.e. there is no explicit encapsulation).

If the switch is placed within a trap range along with only part of the code blocks
which are associated as its targets then there will be no way for an automatic decompiler
to output semantically equivalent code that looks anything like the original source. It
must reproduce the trap in the output, potentially by duplicating code.

This transformation is conservatively limited to those switch constructs which are
not already trapped, which alleviates some analysis work. This implies that the switch
instruction itself and any additional instructions that are selected for trapping were not
previously trapped in any way.

6.5 Combining Try Blocks with Their Catch Blocks (CTBCB)

Java source code can only represent try-catch blocks in one way: with a try block di-
rectly followed by one or more catch blocks associated with it. In bytecode, however,
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try blocks can protect the same code that is used to handle the exceptions it throws or
one of its catch blocks can appear “above” it in the instruction sequence.

This obfuscation combines a try-catch block such that both the beginning of the try
block and the beginning of the catch block are the same instruction. This is accom-
plished by prepending the first unit of the try block with an if that branches to either
the try code or the catch code based on an integer control flow flag. Once the try section
has been officially entered, the flag is set to indicate that any execution of the if in the
future should direct control to the catch section. The integer flag is reset to its original
value when the try section is completed.

6.6 Indirecting if Instructions (III)

While javac always produces predictable try blocks it is possible to abuse them
in other ways. This obfuscation takes advantage of this by indirecting if branching
throughgoto instructions which are within a special try block. Normally, modern com-
pilers would remove the goto and modify the if to jump directly to its final target.
However, since a try block protects all these gotos it is not valid to remove them unless
the code can be statically shown to never raise an exception. Since there is no explicit
goto allowed in Java source, it is difficult for decompilers to synthesize equivalent
source code.

6.7 Goto Instruction Augmentation (GIA)

Explicit goto statements are not allowed in Java source.9 One must use abrupt state-
ments instead. However, the goto exists in bytecode. It is possible to insert an explicit
goto in bytecode. While reversible using control flow graph analysis, some simple
decompilers will still struggle with this.

Our obfuscation randomly splits a method into two sequential parts: The first, con-
taining the start of the method, P1 and a second, containing the end of the method, P2.
It then reorders these two parts and inserts two goto instructions. One is made the first
instruction in the method and points to the start of P1. The other is appended to P1 and
targets P2. The new layout is now: { goto P1, P2, P1, goto P2}. A try block is then
created, spaning from the end of P2 to the beginning of P1, thereby “gluing” the two
together. This makes it difficult to shuffle them back to their original order.

6.8 The Impact of Exploiting the Semantic Gap on Decompilers

All of the decompilers have difficulty with the obfuscations from this section. Table 3
shows that both Jad and SourceAgain fail all tests and Dava is only successful once. Jad
generates source with much bytecode left in it, making it difficult to identify anything
specific as the cause. SourceAgain was unable to analyze the scope of local variables.
It would declare a local within a nested block even when the parent block used that lo-
cal. Both SourceAgain and Dava had difficulties marking methods which might throw
exceptions. They also could not recognize the super constructor method calls in DCC

9 Studies have shown this to be a good design decision [3].
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Table 3. Measuring Decompiler Success against Semantic Gap Obfuscations

Obfuscation Jad SourceAgain Dava
Converting Branches to jsr Instructions Fail Fail Crash
Reordering loads Above if Instructions Fail Fail Pass
Disobeying Constructor Conventions Fail Fail Crash
Partially Trapping Switch Statements Fail Fail Fail
Combining Try Blocks with their Catch Blocks Fail Fail Fail
Indirecting if Instructions Fail Fail Fail
Goto Instruction Augmentation Fail Fail Fail

either, leaving the bytecode name <init> which is not legal. Dava crashed on DCC
due to its inability to handle explicitly null exceptions.10

7 Empirical Evaluation

An important aspect of our work is the evaluation of the impact of obfuscations on per-
formance. To test this we have gathered a set of computation-extensive benchmarks.
They represent a wide array of programs each with their own unique coding style, re-
source usage, and ultimate task. Below is a list of brief descriptions of the programs.

Asac: compares the performance of the Bubble Sort, Selection Sort, and Quick Sort
algorithms. It creates a thread for each algorithm.

Chromo: runs a genetic algorithm; a technique using randomization instead of a de-
terministic search strategy. It instantiates many chromosome objects and performs
many 64-bit array comparisions for each generation it simulates.

Decode: implements Shamir’s Secret Sharing algorithm for decoding encrypted mes-
sages.

FFT: performs fast fourier transformations on double precision data.
Fractal: generates a fractal image. It performs many trigonometric functions and is

deeply recursive.
LU: implements Lower/Upper Triangular Decomposition for matrix factorization.
Matrix: performs the inversion function on matrices.
Probe: uses the Poisson distribution to compute a theoretical approximation of pi.
Triphase: contains three programs: (1) a Linpack linear system solver performing

heavy floating-point math; (2) a multithreaded matrix multiplier; and (3) a mul-
tithreaded Sieve prime-finder algorithm.

7.1 Impact of Obfuscations on Performance

Figure 1(a) summarizes the ratio of the execution times of the obfuscated benchmark
to the original benchmark.11 A ratio of 1 indicates no effect on performance, a ratio of

10 Soot is unable to read in classfiles that include jsr instructions with no matching ret. This
is not a limitation of Dava itself but we marked it as having crashed on the CB2JI obfuscation
because of this.

11 To time the original benchmark, we first processed it via Soot with no obfuscations turned on.
This is to factor out any differences due to Soot processing.
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(a) (b)

Fig. 1. Comparing obfuscated programs to their original forms: (a) Performance Ratio — (av-
erage execution time of obfuscated program)/(average execution time of original program); (b)
Complexity Ratio — (sum of edges and nodes in obfuscated CFG)/(sum of edges and nodes in
original CFG)

less than 1 indicates that the obfuscated benchmark was faster, and a ratio greater than
1 indicates that it was slower.12 Each bar corresponds to one obfuscation, the diamond
on the bar indicates the average over all the benchmarks. The bars show the range of
ratios with the bottom of the bar indicating the benchmark with the lowest ratio and the
top of the bar corresponds to the benchmarks with the highest ratio.

All experiments were run on an AMD AthlonTM64 X2 3800+ machine with 4GB
of RAM running Ubuntu 6.06 Linux. Sun Microsystem’s Java HotSpotTM64-Bit Server
VM (build 1.5.0 06 b05) was used with the initial and maximum Java heap sizes set to
128MB and 1024MB, respectively.

As shown by recent empirical studies by Gu et al. [9, 10], small variations in code
layout can lead to relatively large performance differences in Java (on the order of 5-
10%). Thus, we can expect some performance differences between the original and ob-
fuscated code just because the obfuscated code leads to different code layouts. Notable
performance differences are those less than .95 or greater than 1.05.

Average performance of the obfuscated code is very reasonable and quite a few are,
in fact, faster. The most expensive is CB2JI, which converts branches to jsr instructions,
with an average slowdown of 1.16 and a maximum slowdown of almost 1.6.13 Only 6
obfuscations lead to a maximum slowdown > 1.2. These should be used carefully,
avoiding hot methods if possible.

In some cases the obfuscations actually seem to slightly improve peformance. The
RLAII obfuscation that moves loads above ifs is one such case.14

12 The execution time is computed by timing 10 runs, dropping the slowest and fastest and aver-
aging the remaining 8. The largest standard error we saw was 2.6% and most measurements
were well below that.

13 The maximum slowdown was in the LU benchmark and we found th entire slowdown was
caused by one deeply nested loop which had very complex control flow after obfuscation. The
JIT compiler struggled to analyze this, causing a 5-fold slowdown in compilation time.

14 This makes sense since it is moving a load that is known to be needed on both branches earlier
in the computation.
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7.2 Impact of Obfuscations on Control-Flow Complexity

Figure 1(b) shows the increase in code complexity due to obfuscations (the pain). We
have opted for a simple measure of complexity based on the total number of nodes and
edges in the control flow graphs of the program. Each node is a basic block and each
edge is a control flow edge. Obfuscations which change the structure of the code may
introduce new edges and/or redirect existing edges to split basic blocks. Figure 1(b)
displays the ratio of the sum of nodes and edges of the obfuscated code over the sum of
the original. This count captures the impact of control flow obfuscations well.15

Some structure obfuscations show a signficant increase in complexity.16

As we have shown in Table 3, the third group of obfuscations are those that are
most effective in breaking decompilers. Some of these also show significant increases
in complexity. Based on our experiences with Dava, which can partially handle many
of these cases, we expect that a complete decompilation will lead to source code with a
lot of code duplication and heavy use of labeled blocks.

8 Conclusions and Future Work

Fourteen obfuscations have been presented. The intent was to hinder reverse engineer-
ing while maintaining performance. The operator-level techniques are intended to make
the code less readable. We didn’t expect these to break decompilers, yet several de-
compilers failed to properly type the obfuscated code. The structure obfuscations were
meant to confuse control flow and object-oriented design. The decompilers also had
trouble with some of these techniques, although they should in principle be decompil-
able. These failures were mostly due to obfuscations creating unstructured control flow
which is more difficult to handle than structured control flow. The gap obfuscations
were new techniques and were aimed at exploiting the differences between bytecode
and Java source. These were very successful in increasing the complexity of the code
and breaking the decompilers.

The effect on performance varied. The average performance ratio of obfuscated/
original ranged from .96 to 1.16. The maximum ratio reached almost 1.6 but only 6
of 14 obfuscations were over 1.2. These 6 should not be used heavily in hot methods of
a program. More detailed analysis of specific instances showed that performance slow-
downs were often due to the increased time needed by the JIT compilers to analyze the
complex control flow created by our modifications. Hence the obfuscations are not just
more difficult for reverse engineers to understand, they also cause problems for tools
like compilers and decompilers.

We presented obfuscations we developed and this paper has shown how they work in-
dividually. The next step is to develop techniques to automatically determine optimized
obfuscation sites and how to best select a combination of obfuscations so that the best

15 As expected, the operation-level obfuscations have no impact on control flow complexity.
Complexity for these obfuscations is better demonstrated by an increase in the number of
operations. We have collected these kinds of metrics, which do demonstrate an increase.

16 The two obfuscations that confuse the object-oriented design, BAPIBM and BLBC, do not
increase complexity, but would affect other metrics which measure coupling.
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overall protection is acheived. We have also started to develop metrics to quantify the
effect of obfuscators and decompilers.
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