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With the emergence of software delivery platforms, code compression has become an important
system component that strongly affects performance. This paper presents PPMexe, a compression
mechanism for program binaries that analyzes their syntax and semantics to achieve superior
compression ratios. We use the generic paradigm of prediction by partial matching (PPM) as the
foundation of our compression codec. PPMexe combines PPM with two pre-processing steps: (i)
instruction rescheduling to improve prediction rates and (ii) heuristic partitioning of a program
binary into streams with high auto-correlation. We improve the traditional PPM algorithm by (iii)
using an additional alphabet of frequent variable-length super-symbols extracted from the input
stream of fixed-length symbols. In addition, PPMexe features (iv) a low-overhead mechanism
that enables decompression starting from an arbitrary instruction of the executable, a property
pivotal for run-time software delivery. We implemented PPMexe for x86 binaries and tested it
on several large applications. Binaries compressed using PPMexe were 18-24% smaller than files
created using off-the-shelf PPMD, one of the best available compressors.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Software Distribution; D.3.4
[Programming Languages]: Optimization for Compression; E.4 [Coding and Information
Theory]: Data Compaction and Compression

General Terms: Algorithms, Performance

Additional Key Words and Phrases: instruction scheduling, prediction by partial matching, ran-
dom access compression, software compression, software distribution.

1. INTRODUCTION

Compression ratio1 of program binaries is a parameter that directly impacts sev-
eral applications with restricted bandwidth and storage resources. Relatively high
cost of improving the bandwidth of the “last-mile”2 of the global net, points to
compression of program binaries as effective means to improving performance of
software delivery platforms [Mohney 2003]. These platforms depend significantly
on compression of binaries for two reasons. First, client performance is largely gov-
erned by the delay and bandwidth of the communication channel that links to the
delivery server. Second and more important, the workload on the server is highly

1We define compression ratio as a ratio of the compressed file size and the original file size.
2The “last mile” typically refers to the link that connects households to the global communication
framework.
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impacted with the number of service requests. Both performance parameters are
improved with decreased compression ratio of the communicated data: the pro-
gram binaries. Efficient code compression also benefits applications with restricted
memory resources. Wireless systems that extensively use mobile code have energy
savings directly proportional to the decrease of the compression ratio as power con-
sumption due to device’s transceiver activity, commonly dominates the energy bill
of wireless devices [Truman et al. 1998].

In this paper we present compression mechanisms for program binaries that an-
alyze their syntax and semantics to achieve superior compression ratios. Although
the techniques presented in this paper relate to the x86 instruction set, they can
be applied to any other instruction set (Java byte code, MSIL, MIPS, ARM, etc.).
Nevertheless, by targeting the x86 instruction set, we aim at compressing binaries
for the most prolific computing platform today. While software delivery platforms
typically provide programming environments centered around virtual machines,
most large applications are still distributed in native code for:

—performance - instruction interpretation introduces non-trivial execution over-
head [Romer et al. 1996], and

—protection of intellectual property - most virtual machines have been created
without the constraint that byte-code disassembly should be made a difficult task
[Baker and Manber 1998] - historically, the x86 instruction set has been attributed
with difficult disassembly.

In this work we focus our attention to the following questions that are crucial
for creating an efficient compression scheme. We address these questions in more
detail in Section 2.

Q1. For a given binary format, which data fields have high correlations? Program
binaries are heterogeneous data collections. A number of data streams (e.g.,
instruction opcodes, displacements, immediate data fields, and data) is inter-
laced in a complex manner. Capturing the correlations among these streams can
significantly improve compression.

Q2. Which code transformations improve the compression ratio of program bina-
ries? Program binaries can have a large number of functionally equivalent repre-
sentations. We investigate a set of code transformations whose target is to enable
better compression rates.

Q3. How can a basic PPM engine be modified to benefit from the knowledge that
it is compressing a particular program binary format? Modifying a compression
scheme toward a specific data set can further enhance quality of compression.

We chose an effective general purpose compression scheme, prediction by partial
matching (PPM) [Cleary and Witten 1984], as a fundament of our algorithm. We
combined this powerful compression paradigm with several pre-processing steps in
order to address the posed questions:

(i) Instruction Rescheduling. We developed three heuristics that reschedule
instructions while preserving their dependencies with an aim to maximize the
correct predictions of a PPM predictor. The three algorithms explore global vs.
local heuristic objectives that reflect on solution quality vs. algorithm complexity.
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(ii) Split2-Stream. We have developed an algorithm that initially partitions a
program into a large number of sub-streams with high auto-correlation and then,
heuristically merges certain sub-streams to: (a) achieve the benefits provided by
classical split-stream [Fraser et al. 1984] and (b) reduce the increase in compres-
sion ratio which typically occurs when a PPM-like algorithm compresses small
amounts of data.

In addition, we have improved the traditional PPM algorithm using a:

(iii) Dual Alphabet PPM. Our version of PPM operates with two alphabets:
(a) the original alphabet of fixed-length (8-bit) input symbols and (b) an alpha-
bet of common variable-length super-symbols (multi-byte). The latter alphabet
is extracted from the binary and represents a list of most frequent unique in-
structions in the program.

Minimized compression ratio is not the only requirement for a code compression
technology aiming at efficient software delivery. Namely, the computation system
may decompress a program in two ways: entirely before execution and partially,
caching the most frequently used program pages at run-time [Kirovski et al. 1997].
To address the latter case, we introduce three different PPM variants for:

(iv) Random Access Decompression. The variants are: model copying, model
undoing, and model stopping. They all enable decompression starting from an
arbitrary instruction of the executable, a feature pivotal for run-time software
delivery. However, they respond differently to the decompression speed vs. com-
pression ratio trade-off.

We implemented the proposed compression algorithm for x86 binaries and tested
its performance on a benchmark that encompassed several large applications ex-
tracted from Microsoft’s suite of programs. Binaries compressed using our algo-
rithm (i -iii), were 18-24% smaller than files created using off-the-shelf PPMD, one
of the best available compressors [Gilchrist 2000; Witten et al. 1999]. Using tech-
niques described in (iv), we were able to facilitate random access decompression at
a negligible increase in file-size.

1.1 Software Delivery Objectives

The developed compression algorithm targets software delivery systems. In a typ-
ical software delivery environment, a client is linked to a server via a relatively
low-bandwidth Internet connection (e.g., modem or DSL). To run a program, the
client originally downloads a small subset of all the functionalities offered in the
application. For example, the initial code should be sufficient to run the kernel of
the application. Then, as the client invokes functions not yet downloaded, service
requests are sent to the software delivery server. A service request is typically an
address offset within the binary. The server replies with a block of data containing
the target address. The distributed blocks may represent procedures or groups of
procedures (i.e., funclets3). Upon reception, the client stores the funclet and ex-
ecutes the invoked procedure. Such a system enables richer software pricing and

3In the remainder of the paper, we assume that funclets of variable size are distributed via the
software delivery link.
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metering models, greatly facilitates software updates and bug fixes, and improves
software integrity and availability. Performance evaluation of such a framework
is beyond the scope of this paper. Thus, we assume that the amount of trans-
ferred data over the software delivery link significantly limits both server and client
performance.

We review the typical requirements for a compression algorithm through the
prism of software delivery:

A. Encoding speed. Commonly, there are no time-lines for program compression in
a software delivery framework. An exception is the case of individualized soft-
ware. An example of a such type of software is the Microsoft Windows Media
Player whose individualized Digital Rights Management component is uniquely
obfuscated for each instance of the binary. In such an event, the software dis-
tributor needs to either use a fast compression algorithm or maintain a reserve
of compressed unique program copies or use a technology that creates unique
compressed program copies from multiple versions of compressed funclets.

B. Decoding speed. This is one of the ultimate requirements for a code compression
algorithm that targets software delivery. Since decompression can be pipelined
with the actual download of the funclet, minimum decompression throughput
equals the highest downlink bandwidth a software delivery system may encounter.
We have set a target decompression speed of 1MB/s on a 2.8GHz Pentium IV,
performance achievable by an off-the-shelf PPMD [Howard and Vitter 1993].

C. Compression ratio. This parameter is the key to improving system performance.
For different compression paradigms, it ranges within the following neighbor-
hoods: 0.75 for Huffman codes [Huffman 1952], 0.65 for LZ techniques [Ziv and
Lempel 1978], 0.55 for BWT-based compressors [Burrows and Wheeler 1994], and
0.5 for PPM variants [Howard and Vitter 1993]. As the desired decoding speed
can be easily reached on many computing platforms for most PPM algorithms,
this parameter may be traded off only with:

D. Decompressor memory size. Although irrelevant for PC platforms, memory size
plays an important role for embedded systems. There are two main memory con-
sumers for PPM-based compressors: decompression software and the statistical
model built during compression. It is important to identify the trade-off between
memory consumption of a given PPM-based algorithm and its compression ratio.

2. WHY GENERAL PURPOSE COMPRESSION SCHEMES DO NOT PERFORM
WELL FOR PROGRAM BINARIES?

The most successful general purpose compression schemes are adaptive. They build
a model of processed data, predict unprocessed data, and efficiently encode differ-
ences between actual data and predictions [Witten et al. 1999]. When compressing
program binaries, these algorithms do not take into account the type of data being
processed. They are unable to capture the intricacies of the heterogeneous structure
of program binaries and complex correlations of different data streams within bi-
naries. In this section, we discuss several key observations used as guidelines while
creating an effective compression scheme for program binaries. We focus our at-
tention to PPM and its variants, which yields the best compression ratio [Gilchrist
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2000]. We present more details about PPM paradigm in Appendix A. In this sec-
tion, we elaborate the key questions related to the performance of PPM algorithms
for program binaries.

Q1. For a given program binary format, which data-fields in the stream
have high correlations? A PPM model is aware only of sequential local corre-
lations among input symbols. Since most PPM compressors operate with 8-bit
symbols (e.g., text characters), a PPM model can observe only the correlations
that happen sequentially at byte boundaries. However, the x86 code4 has a sig-
nificantly richer structure than text. Instructions in the x86 instruction set have
variable length from 1 to 16 bytes. An instruction may contain the following fields:
an optional instruction prefix, an opcode, a displacement (if required), and imme-
diate data (if required). Certain opcodes include bits that specify the addressing
mode and/or the scale index base. Details of the x86 instruction set can be found
in [Intel Corp. 1999b].

Program Compressed Experiment A Experiment B
name [bytes] % %

Compiler CC1 416 218 +22.76 -2.79
MsAccess 1 919 666 +8.74 -3.07

WinwordXP 3 919 572 +7.34 -2.72
ExcelXP 3 807 300 +6.60 -2.82

PowerpntXP 2 140 822 +7.65 -3.96
Winword2000 3 225 381 +7.25 -2.71

VisualFoxPro6L 1 976 977 +7.32 -3.29
VisualFoxPro7 2 101 326 +7.32 -3.17

Table I. Two experiments that demonstrate horizontal and vertical correlation
among instruction fields. Column 2 presents program size after compression using
PPMD and columns 3 and 4 show the relative change in file size after compress-
ing separately register and register addressing fields and the program remainder
(experiment A) and compressing separately the displacement of CALL instructions
and the program remainder (experiment B).

An improvement to the compression ratio can be made by making PPM aware
of correlations that exist within the input. We recognize two types of correlations
that occur in a program binary: horizontal and vertical. Horizontal correlations
occur among fields of the same instruction. Vertical correlations occur among the
same field type and across all instructions. We demonstrate how vertical and hor-
izontal correlation affect the compression ratio of PPMD using two experiments.
We extract the register and register addressing (RAR) fields from all instructions
(experiment A) and all 4 byte displacements of CALL instructions (experiment B)
and compress separately the two resulting files (the extraction and the remainder).
Although both strategies A and B seem viable for compression improvement, one

4With no loss of generality, we restrict our work in this paper to x86 code. All techniques presented
can be applied to different instruction sets in a straightforward manner.
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actually results in decreased compression performance. From the results presented
in Table I, we observe that A results in an increase in the compression ratio in-
dicating that horizontal correlation of the RAR field is stronger than the vertical.
Similarly, the improved compression ratio in B demonstrates slightly higher verti-
cal correlation of extracted displacements. Modeling such correlations is especially
difficult for architectures with variable-length instructions. Any technique that ex-
plores vertical correlations for such binaries must disassemble programs with respect
to instruction length and fields.

While building its model, PPM observes and addresses only horizontal corre-
lations among neighboring fields. In Subsection 3.1, we present Split2-Stream,
a technique that explores the trade-offs between considering both horizontal and
vertical correlations while compressing code.

Q2. Which code transformations improve the compression ratio of
program binaries? Prior to compression, a program binary can be transformed
almost arbitrarily5 using a functionally isomorphic set of transformations. In gen-
eral, all transformations that reduce the resources used by a program at little or no
expense to code size, benefit compression as fewer symbols for resources (i.e., their
encodings according to the instruction set) are referenced in the binary. An example
of such a transformation is an optimization for register assignment and allocation -
where the reduction of the number of used registers directly lowers program entropy.
In this work, we assume that the compiler already performs a number of optimiza-
tions that improve code compression as a side effect: register allocation, reducing
the number of computationally expensive instructions, etc. However, particularly
for PPM, we have developed three algorithms that reschedule instructions in order
to improve the prediction rate of the PPM model. The new schedule preserves the
original dependencies among instructions. Details of the algorithms are presented
in Subsection 3.2.

Assembly: mov byte ptr[ebp-1Ch],0CCh

Binary code: C6 45 E4 CC ← Immediate data
↑ ↑

Core-I Displacement

Figure 1. An example of a x86 instruction and its components: its core-I, an 8-bit
displacement, and 8-bit immediate data.

Q3. How can a basic PPM engine be modified to benefit from the
knowledge that it is compressing a particular program binary format?
An all-purpose PPM implementation commonly processes an input stream using
fixed-size symbols (typically 8-bit). However, correlations in a program happen at
the field level. Fields may be longer or shorter than 8-bits. Consider a stream of
core instructions (i.e., core-I), where a core-I is an instruction with removed con-
stants (immediate operands) and short and long control-flow displacements (fields

5Applications rarely limit the usage of transformations, e.g., code obfuscation may limit certain
transformations to reduce exposure of program functionality.
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of instructions used to calculate the next value of the program counter). An exam-
ple of a core-I is shown in Figure 1. Core-Is are usually between 1 and 4 bytes long
in the x86 instruction set.
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Figure 2. Percentage of all Core-Is of a program (y-axis) covered with a set of
x-axis most frequent unique core-Is in the program.

We make the following observation for x86 core-Is in relatively large programs6:
regardless of the number of unique core-Is in a program, more than 85% of all
the core-Is of the program belong to a set of top 256 most frequent unique core-
Is. Figure 2 illustrates how the coverage (y-axis) of program’s core-Is increases as
the most frequent unique core-Is (x-axis) are considered. For a suite of functionally
different applications such as Microsoft Office and a compiler, the observation holds
as true. Note that different versions of applications (Winword2000 and WinwordXP,
VisualFoxPro6L and VisualFoxPro7) as well as CC1 are compiled with different
compilers. This validates our observation across different compilers on x86 platform.

We explore this observation in the following way. We use two alphabets: B -
with variable-length symbols that represent the L1 = |B| (typically L1=256) most
frequent unique core-Is, and A - which is the standard alphabet of all L2 = 256 8-bit
symbols. By giving higher preference to the B alphabet when processing the input
stream, we reduce the number of predictions the PPM model makes and improve
the modeling of correlations among data-fields.

Consider the example shown in Figure 3. An identical byte (39 Hex) appears in
two different unique core-Is. Although there is a significant semantic difference be-
tween the two occurrences, traditional PPM treats them as equivalent events while
updating its statistical model. However, in the dual alphabet PPM model, under
the assumption that symbols 39 46 Hex and 89 39 Hex belong to B, two separate
corresponding entries in the PPM model are updated yielding a qualitatively more

6Programs larger than 104 instructions.
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accurate model. Details on how the two alphabets are used to create a PPM model
are given in Subsection 3.3.

Binary code Assembly code

39 46 04 cmp dword ptr [esi+4], eax

89 39 mov dword ptr [ecx], edi

Figure 3. An example of two instructions with different unique core-Is (framed)
that have been selected as symbols in B.

3. CODE COMPRESSION USING PPM

In this section, we describe the technical details behind our algorithm for code
compression. The algorithm has two pre-processing steps: Split2-Stream and
instruction rescheduling; followed by a PPM-like compression process.

3.1 Split2-Stream

The initial step in the compression process is to split the program binary into
separate sub-streams that have strong auto-correlation. The procedure for isolat-
ing sub-streams balances the horizontal and vertical correlation among instruction
fields. Each sub-stream is compressed individually. The length of a sub-stream
is governed by the number of sub-streams as funclet size has little variance in a
software delivery system. This results in a fundamental trade-off: the higher the
number of sub-streams versus the compression ratio of PPMD. The higher the
number of sub-streams results in the stronger the auto-correlation of sub-streams.
U nfortunately, the compression ratio for PPMD increases as the amount of com-
pressed data decreases as presented in this example in Table II.

Average Program Name
Compr- Win- Win- Power- Visual Visual
ession Compiler Word Word Excel Point MS Fox- Fox-
Ratio CC1 2000 XP XP XP Access Pro6L Pro7

10K 0.4600 0.5423 0.5416 0.5502 0.4587 0.4927 0.4974 0.5022

100K 0.4086 0.4875 0.4862 0.4928 0.3980 0.4292 0.4502 0.4549

1M N/A 0.4464 0.4434 0.4496 0.3650 0.3858 0.4145 0.4221

Table II. An example of PPMD compression ratio decline with increase in input
size. One MB of code and data extracted from an application is compressed as
one hundred 10KB and 10 100KB files and as the original file. Compression ratio
averages are reported.

To address all of these issues we have developed an algorithm for sub-stream
isolation: Split2-Stream. We demonstrate its features on x86 code. In x86 code,
instruction’s prefix and opcode uniquely determine instruction’s length as well as
size of its fields. Thus, separating certain sub-streams that correspond to fields is
an easy task that needs no additional information in the compressed file to perform
the assembly. After splitting into streams PPM captures vertical correlations in its
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model. Because of that, we adopt the following separation policy: a sub-stream
that corresponds to a certain field is separated from the program if its vertical
correlation is stronger than its horizontal correlation.

Before we present the Split2-Stream algorithm, we introduce certain definitions
related to the program stream (p-stream) to be compressed. An atomic-stream (a-
stream) of a p-stream is defined as a sequence of field values for all instructions in
the p-stream for a field that corresponds to a single operand and instruction type.
An a-stream cannot be partitioned any further. A molecular-stream (m-stream) of
a p-stream is defined as a sequence of field values for all instructions in the p-stream
for fields that correspond to a set of operand and instruction types. M-streams can
be partitioned into a-streams or other m-streams. A union of n > 1 a- or m-streams
is an m-stream that encompasses field values for all field and operation types that
correspond to the argument m-streams. Figure 4 illustrates an example p-stream
with two a-streams created by: isolation of 1-byte indexing constants (a-stream a)
and 1 byte constants from arithmetic operations (a-stream b); and an m-stream
created as a ∪ b. Note that the order of bytes in the union corresponds to the byte
sequence in the containing p-stream.

C1 FD 10 sar ebp, 10h

39 70 04 cmp dword  ptr[eax + 4]

83 C4 08 add esp, esp, 8

8B 46 08 mov eax, dword ptr [esi+8]

83 C7 10 add edi, 10h

Binary code Assembly instruction

a-stream a = 04 08 a-stream b = 10 08 10

m-stream a U b = 10 04 08 08 10

Figure 4. An example of two a-streams that can be merged into a single m-stream.

We introduce two functions: split(·) and merge(·). Function split(a, s) deter-
mines whether vertical correlation of an m-stream a is greater than its horizontal
correlation with respect to its containing m-stream s, a ⊂ s. It is defined as:

split(a, s) =
%(s− a) + %(a)

%(s)
, (1)

where s − a is an m-stream that represents an exclusion of a from s with respect
to their containing p-stream, and %(x) is a function that returns the size of the
PPM-compressed argument stream x. Function merge(a, b) on two m-streams a
and b contained by the same p-stream, evaluates the effect of their merger on the
resulting compression ratio. It is defined as:

merge(a, b) =
%(a ∪ b)

%(a) + %(b)
. (2)
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Both split(·) and merge(·) functions can be greater or smaller than 1. We decide
to split or to merge two streams if the result of the functions is smaller than 1, i.e.,
the compression ratio is improved. Both functions assume that when either splitting
or merging, the order of operands in any molecular stream is preserved, i.e., when
the decompressor is assembling the binary, the result is functionally correct.

The input to the Split2-Stream algorithm is a p-stream p and a set of a-streams
A extracted from p such that:

A = {ai | split(ai, p) < 1}. (3)

Based on p and A, the algorithm initially creates program’s core-stream (c-
stream) as: c = p − ⋃|A|

1 ai.7 The set of operand- and instruction-type fields
that identify the set A is determined experimentally for a target instruction set.
In general, set A is created by: first, considering the set of all a-streams extracted
for each type of a constant and a control-flow displacement field that appears in
instructions of a particular type, and then, filtering this set using Eqn. 3. An
example that shows the two types of a-streams, RAR fields (filtered) and CALL
displacements (preserved), is presented in Table I.

The goal of the algorithm is to create a partitioning B of the starting set of
streams A′ = {A, c} into M non-empty sets bi, i = 1 . . . M , such that:

∑M
i=1 %(bi)

is minimized. Function %(bi) returns the file-size of the compressed union of all
m-streams from A′ in bi. The number of all possible ways to partition A′ into M
streams, S(M, |A| + 1), can be computed using the Stirling number of the second
kind:

S(m,M) =
1
m!

m−1∑

i=0

(−1)i

(
m
M

)
(m− i)M , (4)

where m = |A|+1. For commonly considered |A| = 25 and 5 < M < 10, exhaustive
search is computationally too expensive, hence, we opt to use the following greedy
heuristic.

B = {a1, a2, . . . , a|A|, c}
while |B| > M

Replace a ∈ B and b ∈ B with (a ∪ b) ∈ B where
(a, b) = arg minc,d∈B merge(c, d)

end

Figure 5. Pseudo-code of the Split2-Stream procedure.

Initially, we set B = A′. The heuristic iteratively performs the following step
until |B| = M . It finds a pair of m-streams a, b ⊂ B with minimal merge(a, b).
Then, we merge a and b into a single stream f and replace m-streams a, b with f
in B. Pseudo-code for the Split2-Stream algorithm is given in Figure 5.

7Commonly, the c-stream corresponds to a stream of core-Is.
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Figure 6. Relative size of the resulting sub-streams created using Split2-Stream
with M = 7. Legend specifies the most dominating a-stream in the respective final
m-stream. Results are averaged over our benchmark suite from Table I.

Figure 6 illustrates the average relative size of m-streams in B for M = 7 gen-
erated over our benchmark of applications (see Table I). Streams dominated with
constants and control-flow displacements, are commonly compressed at low ratios.
However, the m-stream dominated with core-Is, is the performance bottleneck: it
accounts for more than half the total data to be compressed and it is compressed at
a ratio significantly higher than the overall compression ratio. Hence, in the next
two subsections we present three techniques that aim at reducing the compression
ratio of the c-stream. Note that the partitioning of a-streams can be pre-computed
and fixed at compression time. In the generated experimental results in Section 5,
we use fixed a-stream partitioning B presented in Figure 6.

We applied the Split2-Stream algorithm to the programs listed in Table I
resulting in the sub-stream choices listed in Figure 6. We have determined values
for split(·) and merge(·) functions using the compression engine that is used later
on for actual compression and decompression. While this approach enables high
fidelity of quantified correlations, it requires a significant amount of computation
and has to be recalculated for each potential sub-stream, thus significantly affecting
compression speed. A similar approach was presented by [Fraser 1999] where the
quantification of correlations is approximated with zero order frequency count of
symbols.

3.2 Instruction Rescheduling

In this section, we present three algorithms for instruction rescheduling (IR) that
improve the prediction rate of PPM. The essence of our approach is to alter the order
of instructions such that: dependencies among instructions are preserved and PPM
is predicting more accurately while using its model. To the best of our knowledge,
code optimizations aimed at the improvement of instruction correlations such that
modeling of a compression algorithm is enhanced, have not been developed to date.
We have restricted our attention to IR within a basic block to attenuate the effect
of this post-compilation optimization on execution speed of super-scalar processors.
We determine basic block boundaries by using the Vulcan framework [Srivastava
and Vo 2001]. Information about basic block boundaries is needed only during
compression phase when IR is performed. Finally, it is important to stress that
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IR has negligible performance effect on program execution because most modern
processors are capable of executing instructions out of order.

IR is performed after the binary is split into m-streams using Split2-Stream.
Decisions to reorder are based only on the c-stream. Changes in the order of
instructions in the c-stream must be propagated to other m-streams for structure
consistency. There are three algorithms that we propose. All three algorithms first
identify the set of unique core-Is along with their frequencies8. This set represents
the symbol alphabet A for the input stream to PPM. We denote the cardinality of
A with |A|. The input to PPM is a vector of N symbols x ∈ AN .

Definition 1. A dependency set D(B) of a binary B is a set of instruction
pairs, where a dependency pair d(xi, xj) ∈ D(B) denotes that instructions xi and
xj can be scheduled such that xi immediately precedes xj and the result of execution
of the binary is not changed for all values of input data when xi precedes xj.

A dependency set is formed based on three standard instruction dependency cat-
egories: “Read-After-Write”, “Write-After-Write”, and “Write-After-Write” [Hen-
nessy and Patterson 1995]. It provides a set of constraints that limits IR such that
the functionality of a binary B is preserved.

The goal of IR is to create a permutation of instructions in a binary B, π(B)
such that:

(a) all instruction pairs xaxb ∈ π(B) are also found in D(B), i.e., the functionality
of basic block B is not changed by the instruction rescheduling, and

(b) a PPM prediction engine of order K emits minimal number of escape symbols
while compressing π(B) according to its model presented in Appendix A.

Condition (a) enforces that the rescheduled representation of a binary has the
same functionality. Note that condition (a) does not imply that the instruction
xa immediately precedes xb. Other instructions can be scheduled between xa and
xb, but xa is always scheduled before xb. Condition (b) states the heuristic goal
of instruction rescheduling algorithms presented in this section. In terms of PPM
modeling, condition (b) aims to minimize the overhead incurred by emitting escape
symbols, and consequently improving the final compression ratio.

3.2.1 Algorithm A1. This algorithm aims at building a solution that improves
PPM’s context matching at the global level by maximizing the number of most
frequent two symbol context occurrences throughout the entire binary. For the
set of all contexts considered by PPM, by skewing their count distribution we
heuristically aim at encoding of the input stream with fewer bits. The pseudo-
code for this algorithm is shown in Figure 8. A1 performs iteratively the following
two steps. In the first step, the algorithm computes the connectivity matrix of
the target c-stream. The connectivity matrix M of a stream x = x1, x2, . . . xN is
the |A| × |A| matrix of non-negative integers Mi,j , each denoting the number of
occurrences of aiaj in π(x). A sample of a connectivity matrix is given in Figure 7.
It illustrates how our algorithm enhances correlation for the majority of the most
frequent core-Is. For example, the frequency count of the pair of core-Is E8 -
83 C4 increases by more than 25% (from 9501 to 11882).

8For the x86 instruction set, the c-stream consists of core-Is only.
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Figure 7. An example of the connectivity matrixM for the top 6×16 most frequent
unique core-Is in the benchmark program CC1. Shaded and white cells specify the
frequency of occurrence of a aiaj sequence of symbols in the binary before and after
applying the algorithm A1.

Compute connectivity matrix M
while max(M) ≥ 2

Find (i, j) such that Mi,j = max(M)
Reorder instructions to increase occurrence of pairs xkxk+1

such that d(xk, xk+1) ∈ D(B) and xk = ai and xk+1 = aj

Tag xkxk+1 inseparable
Update M and D(B)
Set Mi,j = 0

end

Figure 8. Pseudo-code for the instruction rescheduling algorithm A1. The algo-
rithm increases the count of the most frequent instruction pairs in an attempt to
reduce the count of escape symbols in the compressed stream.

In the next step, A1 finds the largest element Mi,j . Next, A1 reorders instruc-
tions such that the count of all concatenated symbols xkxk+1 with values xk = ai

and xk+1 = aj , is maximized throughout the entire stream.9 Then, element Mi,j is
permanently set to 0. All symbols throughout the reordered stream, that are con-
catenated as xkxk+1, xk = ai, xk+1 = aj , are tagged such that subsequent iterations
of A1 cannot insert any other core-I between them. In the subsequent iteration, the
tags are considered when recomputing M by updating the dependency set D(B)
correspondingly. The two steps of A1 are repeated until all elements of M are
smaller than 2. An example of how the number of sequential occurrences of the
most frequent core-Is in CC1 changes after several steps of A1, is illustrated in
Figure 7.

A1 increases globally the probability that certain symbols appear after a given
symbol. Actually, it is straightforward to prove that A1 is optimal by construction
for a PPM model of order 1. For higher orders, A1 is a greedy heuristic that
performs well. The heuristic goal that A1 aims to achieve for higher order PPM

9Indices of ai and aj correspond to the selected Mi,j .
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models is sequencing of core-Is into common contexts. The hope is that if common
contexts exist in the program binary, A1 enforces their appearance.

Instruction Possible position
1 2 3 4 5 6 7

1 mov esi, [eax+8] ⊗ × × ∗
2 mov ecx, [esp+1Ch] × ⊗ × × ∗
3 mov edx, [eax+4] × × ⊗ × ∗
4 or esi, 100h × × ⊗ ×
5 cmp ecx, edx ∗ × ⊗ ×
6 mov [eax+8], esi ∗ ∗ × ⊗
7 je LOOP ⊗

Figure 9. An example of IR within a basic block. Possible position of each core-I
is illustrated as ⊗ for current position; × for possible position; and ∗ for possible
position if at least one other core-I is moved as well.

3.2.2 Algorithm A2. Algorithm A1 has a strong deficiency; it is rather slow
and memory-consuming for large binaries. The complexity of algorithm A1 is
O(|A|2N), which may be unacceptable for certain applications. To address this
issue, we have developed algorithm A2 that aims at finding local core-I schedules
that improve the prediction of the PPM model according to its current state. Fig-
ure 10 illustrates the pseudo-code of algorithm A2. The advantage of A2 over A1
is that it is significantly faster and that it adapts the instruction schedule to fit the
current PPM model regardless of PPM’s order. The disadvantage is that it fails to
recognize the global correlation of instruction sequences.

mark x1 as “scheduled” and x2, . . . , xN as “not scheduled”
for i = 1, . . . , N − 1

repeat until xixi+1 are not “scheduled”
let S be a set of symbols succeeding C(xi,K) in the current PPM model
let F be a set of instructions that can succeed xi

if F ∩ S 6= ∅
xj = arg maxxk∈F∩S(PC(xk))
schedule xixj (xi+1 = xj) and mark xj as “scheduled”

else K = K − 1
end
update PPM model

end

Figure 10. Pseudo-code for instruction rescheduling algorithm A2. The algorithm
searches for the instruction that corresponds to the best match in the current PPM
context in order to concatenate it to the current instruction. The repeat loop
terminates always since the next instruction in the binary can be found at least in
context of order-(-1).



PPMexe: Program Compression · 15

A2 reschedules non-control-flow core-Is only within their basic block. For each
basic block, A2 reschedules the core-Is with an aim to reduce the number of emitted
escape symbols and to maximize the prediction accuracy of the PPM engine. The
complexity of this problem is governed by the fact that the number of different
schedules in a basic block may potentially grow exponentially with respect to the
number of encompassed instructions. An example how core-Is can be rescheduled
within a basic block is illustrated in Figure 9. IR freedom for our benchmark suite
of programs is presented in Figure 11.
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Figure 11. Percentage of instructions that can be moved up (positive x-axis) and
down in a basic block for our benchmark suite.

A2 processes the input binary B one instruction at a time. Initially, it marks the
first instruction in the binary x1 as “scheduled” and all others as “not scheduled”.
Then, for the current instruction xi, which is x1 in the first iteration, it finds the
set F = {xj | d(xi, xj) ∈ D(B) ∧ xj “not scheduled”} of unscheduled instructions,
which can succeed xi according to D(B). In the next step, for the current context
length K, the preceding context C(xi,K), and the set S of succeeding symbols
after C(xi,K), A2 selects the instruction xj from F ∩ S which has the highest
likelihood of occurrence after C(xi,K). If F ∩ S = ∅, an escape symbol must be
emitted. Hence, A2 decrements K and repeats the previous step. This action is
iterated until instruction xj which results in the best possible prediction accuracy
is identified. Ultimately, best fit must be found in the context of order-(-1). Once
the earliest best fit xj is found, A2 schedules xj immediately after xi, marks xj as
“scheduled”, and continues to the next iteration.

In general, the results that A2 obtains are comparative to the results of A1
within 0.5% difference in the final compression ratio at a computational complexity
of O(N). Due to this favorable encoding speed vs. compression ratio balance, the
experimental results that we report in Section 5, are obtained using A2.
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3.2.3 Algorithm A3. Algorithm A3 is a step further from A1 and A2 in sig-
nificantly speeding up compression at the expense of slightly increased compression
ratios with respect to A1 and A2, while still exploring IR as an optimization for
software compression. Due to its conceptual simplicity, A3 achieves an encoding
speed that is comparable to the corresponding performance of an off-the-shelf PPM
algorithm. Figure 12 outlines the main steps of A3 in a pseudo-code format.

Given a block β = {xixi+1 . . . xj} of j − i + 1 instructions
Mark all instructions in β as “not scheduled”
for k = i, . . . j − 1

βk = {xl | xl is “not scheduled” ∧ d(xk−1, xl) ∈ D(B)}
find xl such that (∀xm ∈ β, l 6= m) xl = f(xm, xl)
schedule xl after xk−1 and mark xl as “scheduled”

end
schedule the one remaining instruction in β

Figure 12. Pseudo-code for the instruction rescheduling algorithm A3 at the posi-
tion of scheduling an instruction at the position xk+1 after xk is scheduled. The
ordering function of two instructions xa and xb is denoted as f(xa, xb).

A3 aims at sorting instructions within a basic block such that interdependen-
cies among instructions are preserved while improving heuristically PPM’s context
matching on both global and local levels. For example, if sorting is performed in
an ascending order of instructions’ opcodes, then starting from the beginning of a
basic block, PPM is more likely to encounter instructions that have a higher binary
code. Sorting also enforces more structured instruction sequences on the global
level. Since a particular policy for ordering instructions (e.g., ascending order) is
permanent throughout the entire binary, the entropy of a symbol appearing after
a certain context PC(xi) is likely to decrease as the likelihood of instructions with
opcodes higher and closer to the opcode of xi is higher than in the original binary.

A single basic block β = {xixi+1 . . . xj} of j − i + 1 instructions is sorted in the
following way. Initially, all instructions in β are tagged as “not scheduled”. Starting
from the instruction xi−1 that precedes xi, we identify a pool βi of “not scheduled”
instructions from β that can succeed xi−1 with preserved instruction dependencies,
i.e., (∀xk ∈ βi) d(xi−1, xk) ∈ D(B). The fundamental component of the sorting
procedure is a comparison function f(xa, xb) ∈ {xa, xb} that determines the order
between instructions xa and xb. A3 sorts instructions in the increasing order of the
binary codes of their core-Is. A3 concatenates to xi−1 the one instruction xk from
βi such that (∀xl ∈ βi, l 6= k) xk = f(xk, xl). Next, xk is tagged as “scheduled” and
the concatenation procedure is repeated for xk as the last scheduled instruction.
After j − i iterations of this step, all instructions within β are scheduled, thus A3
proceeds to the next basic block.

Consider the example shown in Figure 13. The first two instructions do not
have dependencies, hence, depending on the ordering policy, A3 can switch their
positions. For example, if the ordering is ascending, at the binary level all pairs
of core-Is 8B 50 - 8B 4C 24 are switched as 8B 4C 24 - 8B 50 . As a
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Binary Code Assembly Binary Code Assembly
1 8B 50 04 mov edx, [eax+4] 8B 4C 24 1C mov ecx, [esp+1Ch]
2 8B 4C 24 1C mov ecx, [esp+1Ch] 8B 50 04 mov edx, [eax+4]
3 8B F3 mov esi, ebx 3B CA cmp ecx, edx
4 3B CA cmp ecx, edx 8B F3 mov esi, ebx
5 89 70 08 mov [eax+8], esi 89 70 08 mov [eax+8], esi
7 74 14 je LOOP 74 14 je LOOP

a) Schedule before ordering b) Schedule after ordering

Figure 13. An example of IR within a basic block. Instructions are sorted by their
core-Is (bold) under the constraint of dependencies among instructions.

consequence, the PPM model cannot have the 8B 4C 24 symbol in the context
that is ending with the instruction 8B 50 . This implies that fewer instructions
appear in the context that ends with the instruction 8B 50 , and they are predicted
with higher probability, i.e., with fewer bits.

In our experiments, A3 has demonstrated superior compression speed compared
to A1 and A2; A3 was only about 30% slower in encoding than off-the-shelf PPMD.
At the same time, the produced gain in compression ratio was approximately one
half of the improvement achieved with A2 (see Table VI).

3.3 Dual Alphabet PPM

We introduce a dual alphabet PPM as a technique to improve the traditional PPM
model while processing a program binary. The key idea is to identify the most
frequent core-Is and use them as symbols in the PPM model. Thus, there are two
alphabets used to build the model:

— B - symbol set of L1 most frequent core-Is, where a core-I is a variable-length
symbol typically 1 to 4 bytes long. From Figure 2, we conclude L1 > 256.

— A - symbol set of all L2 = 256 8-bit values.

In order to use the two alphabets, the compression codec uses a disassembler to
parse the input stream into symbols. Initially, the disassembler extracts the next
core-I from the program. If this core-I is found in B, then it is fed to the PPM model
as the next incoming symbol. Otherwise, the extracted m-byte core-I is split into m
8-bit symbols, where each of these symbols is individually fed to the PPM model. It
is important to stress that there are core-Is that are 8-bits long. The disassembler
must separate the two cases (core-I or 8-bit generic symbol) before feeding the
appropriate symbol to the PPM model. Due to such a separation, our model has a
significantly better potential to describe correlations among instructions and isolate
them from the remainder of the stream which is unrelated. An example of such
separation is presented in Figure 14 where symbol 5D Hex in the third core-I is
found in B and core-I DD 5D Hex is not found as a symbol in B. Hence, it is fed
as two A-symbols DD Hex and 5D Hex to the PPM model.

An additional advantage of the dual alphabet PPM model is that it reduces the
number of symbols processed. The improvements in the compression ratio with
respect to traditional PPM, presented in Table III, come at the expense of ap-
proximately doubling the size of the PPM model (empirically determined). The
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8B  44  24  10

fstp qword ptr [ebp-0Ch]DD  5D  F4

5D pop ebp

mov eax, dword ptr[esp+10h]

Core-I

Generic

Binary code Assembly

c-
st

re
am

Symbols fed to the PPM model:
�

[8B 44 24] �[DD] �[5D] 
�

[5D]

Figure 14. An example of how a disassembler parses the input c-stream.

advantage achieved by using a dual- as opposed to a single-alphabet compressor is
established even for relatively small input streams. As an example, Figure 15 illus-
trates the accumulated compression ratio for two compression algorithm variants
of equal parameters (K = 4, L1 = L2 = 256, memory size 20MB) that use a single-
and dual-alphabet respectively. The compressors are applied to the 1.35·106 instruc-
tions of the VisualFoxPro7 binary. One can observe that after only 103 processed
instructions the improvement achieved due to a dual-alphabet parsing of the input
is relatively constant throughout the remainder of the compression time-line.

Program Name
PPMD Win- Win- Power- Visual Visual
{bytes} Compiler Word Word Excel Point MS Fox- Fox-

CC1 2000 XP XP XP Access Pro6L Pro7

{A} 196819 421675 1717025 1654522 859140 818017 876435 918302

{B,A} 187935 402661 1627633 1579008 780306 758873 830610 877922

Imp.[%] 4.514 4.509 5.206 4.564 9.176 7.230 5.229 4.397

Table III. Compression ratio comparison of a traditional PPMD with a single al-
phabet and a dual alphabet PPMD. Columns 2 and 3 quantify the size of the
compressed c-stream of a particular benchmark respectively. “Imp.” denotes im-
provement.

4. RANDOM ACCESS COMPRESSION

The key feature of a compression algorithm for run-time decompression is random
access: program execution must be diverted to any instruction from any control-
flow operation in the binary without decompressing the entire program. This is a
feature that straightforward PPM as well as many other decompression formats do
not offer by default. Modifying PPM to enable this feature is even more difficult
because besides a pointer to the compressed file, a PPM decompressor also needs
the state of the PPM model, a message that consumes vast amount of information.

An important feature of a software delivery platform is that it partitions func-
tions into funclets to distribute them to clients. A funclet is a minimal amount of
information exchanged between a server and its clients. We recognize that most
large applications need a certain code-base (kernel) to run almost any functionality.
The size of the base (assumed to be 256KB) is usually much larger than a funclet.
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Figure 15. An example of the progress of compression ratio while compressing
VisualFoxPro7 using two compression algorithms with equal parameters: K =
4, L1 = L2 = 256, and memory size 20MB, and with and without the Dual
Alphabet technique.

A client initially downloads the code-base and then starts running the program. For
each missing function, the client sends a service request to the server. The server
sends the funclet containing the desired function. Finally, the client decompresses
the funclet and maps its content to the corresponding memory location.
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Figure 16. Funclet compression for random access.

To address the decompression requirements of a software delivery platform, we
propose three different modifications to the original PPM paradigm that have the
same goal. For all three techniques, we assume that the code-base is compressed
first and that each funclet is compressed starting from the PPM model built after
compressing the code-base. Figure 16 illustrates the process of (de)compression for
random access. Any of the F funclets in the program can be decompressed using
only the knowledge of the starting PPM model.

—Copy model (CM). This technique compresses each funclet from the starting
PPM model and continues building the model while compressing. However, since
every funclet is compressed using the starting model, it needs to be copied prior
to funclet decompression and deleted afterwards.

—Undo model (UM). This technique slightly (5-10%) improves upon the speed
of the previous technique as the compressor does not copy the model but rather
maintains a log of all changes encountered while compressing the funclet. After
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Code-base CM/UM SM
size 8KB 16KB 32KB

64KB 6.13% 5.08% 3.95% 11.9%
128KB 2.41% 2.68% 1.62% 8.51%
256KB 0.85% 0.34% -0.45% 4.21%

Table IV. Change in compression ratio for different random access enabling methods
(CM - CM/UM and SM) for variable funclet and code-base size. Results obtained
using the c-stream of the CC1 compiler and averaged over all funclets.

the funclet has been fully decompressed, the log is used to undo the changes
induced to the starting PPM model. As funclet size becomes larger, the speed of
UM becomes closer to the CM variant.

—Stopped model (SM). SM has strong gains in decompression speed with respect
to the previous two techniques as it does not update the starting PPM model
during compression and decompression. Statistically, if the program binary is a
homogenous stream of symbols with respect to the PPM model, SM should have
little effect on the compression ratio under the assumption that the model has
been statistically saturated to a level which enables near-maximum performance.

Experimental data presented in Table IV quantifies the impact of CM/UM10 and
SM on compression ratio as code-base and funclet size vary. The compressed data
is the c-stream of the CC1 compiler. Note, that for the CM/UM method, code-base
and funclet size of only 256KB and 32KB respectively, yields a compression ratio
that is within the variance of the compression ratio of a classical PPM model with
no random access capability. Actually, in our experiment, we have obtained even
a slight improvement. Thus, the random access mechanisms that we propose are
effective because PPM models of binaries saturate quickly due to the homogeneity
of the target content. In addition, results in Table IV demonstrate that saturation
of the PPM model is a factor far more important than funclet size as compression
ratio slightly varies with this parameter.

We assume that the random access decompression is performed in the background
and processes of copying and undoing of the model do not affect final decompression
speed. This effect is dependent of several system parameters including the rate of
fetching new code from the server and funclet pre-fetching algorithms. The overall
system analysis and possible pre-fetching strategies are beyond the scope of this
paper. In cases when the decompression speed is of ultimate importance, SM can
be used since its decompression speed shows even a slight improvement over the
same compressor that does not enable random access decompression at the cost of
3 to 8% increase in compression ratio.

5. EXPERIMENTAL RESULTS

A lower bound on the compression ratio for program binaries is an undecidable
problem [Chaitin 1966; 1969; Kolmogorov 1965]. Even subproblems related to the

10CM and UM have equivalent compression ratios, but different decompression run-times.
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minimization of program binary size such as eliminating functionally unreachable
statements or finding a sequence of program transformation that minimizes program
size are NP-hard problems [Hopcroft and Ullman 1979; Hong et al. 1997]. Program
binaries have complex intra-correlations that are hard to extract and analyze. In
particular, this analysis is computationally expensive.

We tested the effectiveness of our code compression technology on a representa-
tive benchmark of large applications that consisted of Microsoft’s OfficeXP suite,
Microsoft Word 2000, and a C compiler. We used the powerful Vulcan framework
to manipulate x86 binaries [Srivastava and Vo 2001]. For the benchmark, we used
pre-computed and fixed sub-stream separation presented in Subsection 3.1. We re-
moved from each program the gluing data blocks that exist in x86 binaries. These
blocks can be compressed with ratios significantly lower than the remainder of the
data in the executable.

5.1 Compression Ratio

The experimental results for the compression ratio achieved by our compression
algorithm, named PPMexe are presented in Table V. It is important to stress
that x86 instruction set is designed in such a way that it reduces the size of code.
This is accomplished via variable instruction length where the most frequently used
instructions are encoded with the shortest code. Size of uncompressed programs
excludes the data blocks. We compared our technology with the two most compet-
itive general-purpose compression technologies today: bzip2 [Burrows and Wheeler
1994], which uses the Burrows-Wheeler transform and PPMD [Howard 1993]. All
compression mechanisms used 10MB of operating memory. PPMexe demonstrated
superb performance with respect to bzip2 and PPMD, outperforming them on the
average for 26.3% and 20.4% respectively. Split2-Stream, Dual Alphabet,
and Instruction Rescheduling contributed to the improvement with an ap-
proximately 2:1:1 ratio.

Program Uncompressed bzip2 PPMD PPMexe Improvement [%]
Name File Size C. Ratio C. Ratio C. Ratio PPMD bzip2

Compiler CC1 872588 0.5126 0.4770 0.3917 17.9 23.6
Winword2000 6137358 0.5669 0.5255 0.4273 18.7 24.6
WinwordXP 7535800 0.5614 0.5201 0.4206 19.1 25.1
ExcelXP 7303411 0.5624 0.5213 0.4215 19.1 25.0
PowerPointXP 4449093 0.5212 0.4812 0.3660 23.9 29.8
MSAccess 3942060 0.5275 0.4870 0.3887 20.8 26.3
VisualFoxPro6L 3769781 0.5662 0.5244 0.4061 22.6 28.3
VisualFoxPro7 3941408 0.5752 0.5334 0.4167 21.9 27.6
Average Improvement 20.5 26.3

Table V. Compression ratio comparison for a benchmark of large applications: bzip2
vs. PPMD vs. our technology PPMexe. File size is reported in bytes. Reported
numbers for PPMexe refer to the A2 algorithm, M = 7 m-streams, and PPM model
of order K = 4 with L1 = L2 = 256 symbols for each alphabet. Label “C. Ratio”
refers to compression ratio.

Impact of Split2-Stream, Dual Alphabet and Instruction Rescheduling
on the compression ratios is presented in Table VI. The effects of Split2-Stream
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and Instruction Rescheduling on compression ratio are not orthogonal. In-
struction rescheduling without splitting them into streams has a limited effect on
compression ratio because horizontal and vertical correlations are opaque to the
compression algorithm. However, when instructions are split, horizontal and verti-
cal correlations of streams are exposed. Even on an architecture with typically small
basic block size (such as x86), instruction rescheduling improves exposed correla-
tions and thus, the compression ratio. The effect of Instruction Rescheduling
without Split2-Stream and Dual Alphabet is not commeasurable with its full
effect when all techniques are applied, thus, it is not shown separately.

Program Name PPMD S2-S S2-S + DA PPMexe Random Access

Compiler CC1 0.4770 0.4311 0.4173 0.3917 0.4022

Winword2000 0.5255 0.4759 0.4522 0.4273 0.4375

WinwordXP 0.5201 0.4724 0.4647 0.4206 0.4306

ExcelXP 0.5213 0.4697 0.4630 0.4215 0.4367

PowerPointXP 0.4812 0.4172 0.3941 0.3660 0.3782

MSAccess 0.4870 0.4143 0.4018 0.3887 0.4017

VisualFoxPro6L 0.5244 0.4552 0.4349 0.4061 0.4178

VisualFoxPro7 0.5334 0.4766 0.4395 0.4167 0.4266

Table VI. Comparison of compression ratios of techniques applied in the PPMexe
technology. The columns represent compression ratio without any techniques ap-
plied (PPMD), with Split2-Stream (S2-S), with S2-S and Dual Alphabet (S2-
S + DA), with S2-S, Dual Alphabet, and Instruction Rescheduling (PP-
Mexe), and with all techniques with random access decompression for CM/UM
with 128KB code-base size and 16KB funclet size. We used the same maximum
size of PPM models across all experiments.

5.2 Compression Ratio vs. Operating Memory

Compression ratio is significantly influenced by the available operating memory used
to build the PPM model. This dependency is particularly important for embedded
systems, as they commonly use resources that are more restricted than general
purpose computing platforms. Figure 17 illustrates the variation in compression
ratio as the operating memory available to PPMexe increases from 256KB to 16MB
for the set of benchmark applications considered in this manuscript.

5.3 Decompression Throughput

Our decompression software reported minimum 1.2MB/s throughput on a 2.8GHz
Pentium IV, i.e., several times larger than the bandwidth of a generous DSL link
between a server and a client. The detailed decompression throughput numbers
and decompression times are shown in Table VII. The reduction in decompression
throughput for CM/UM without any part being executed as a background process
ranges from 1080 KB/s for ExcelXP with 256 KB code base size (larger model
to copy/undo) and 8 KB of funclet size, to 1270 KB/s for CC1 with 64KB code
base size (smaller model to copy/undo) and 32 KB funclet size. On the average,
using CM/UM to enable random access decompression produced a 15% reduction,
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Figure 17. Variation in the compression ratio as operating memory available to
PPMexe for building its data models increases from 256KB to 16MB for our set of
benchmark applications.

while using SM for the same purpose produced a 10% increase in decompression
throughput compared to the case when random access decompression was not en-
abled (see Table VII). All experiments were performed with 10MB of available
operating memory for the PPM model.

PPM as a compression paradigm is inherently inferior with respect to its com-
pression/decompression speed to bzip2. The bzip2 decompression algorithm yielded
higher decompression throughput of about 2MB/s on our benchmark suite. Hence,
the total download and decompression time favors PPMexe (assuming a 1.2MB/s
decompression throughput of PPMexe) for all download links with bandwidth
smaller than 3.5Mb/s.

PPM builds the exact same model during both compression and decompression.
This results in approximately equivalent run times during both procedures. How-
ever, during compression PPMexe uses the Vulcan platform [Srivastava and Vo
2001] to provide pointers to code, data, and other sections of the program binary.
The duration of this step depends on the size of the binary. Typically, as a result,
PPMexe compression is approximately three times slower than decompression. The
importance of this characteristic is minor in most applications as binaries are com-
pressed only once, while decompression occurs on many clients.

Win- Win- Power- Visual Visual
Program Compiler Word Word Excel Point MS Fox- Fox-
Name CC1 2000 XP XP XP Access Pro6L Pro7

T-put[KB/s] 1547.7 1332.3 1329.0 1272.3 1471.6 1508.5 1227.9 1250.8

Time[sec] 0.7 4.8 5.6 5.5 3.1 2.6 3.1 3.2

Table VII. Decompression throughput and decompression times for PPMexe on a
2.8GHz Pentium IV platform.
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5.4 Impact of Instruction Rescheduling on Performance

Advanced architectures provide an execution environment in which Instruction
Rescheduling affects the execution speed only negligibly. For example, the Pen-
tium III architecture utilizes an advanced dataflow analysis which creates an op-
timized, reordered schedule of instructions by analyzing data dependencies [Intel
Corp. 1999a]. Similarly, the Pentium 4 Advanced Dynamic Execution mecha-
nism analyzes 126 instructions simultaneously in order to enable deep out-of-order
speculative execution [Intel Corp. 2000]. For such architectures, Instruction
Rescheduling minimally affects the execution speed of programs since the pre-
sented algorithms are restricted within basic blocks that are typically smaller than
the number of instructions a processor considers at the same time. Other archi-
tectures such as statically scheduled pipelined processors, can be strongly affected
by Instruction Rescheduling. In these cases, the algorithm for rescheduling
must take into account the scheduling constraints imposed by the optimization for
performance.

In order to further demonstrate our claim that the effect of IR on program runtime
is negligible, we use Figure 18 to illustrate the histogram of run-times for the gzip
binary from the SPEC2000 benchmark suite [Weaver 2000]. In our experiment, we
executed 40 runs of the original optimized binary using the data-set provided by
SPEC, and three runs for each of the 39 different randomly rescheduled versions
of the same binary and one version obtained by our Instruction Rescheduling
algorithm. During the process of random rescheduling, we considered each pair of
instructions that can be rescheduled and randomly decided if instructions should
exchange their positions. For each of the randomly rescheduled binaries, we consid-
ered the average processor run-time based on the three runs for each version of the
binary. We observed that the mean and standard deviation for the two sets of runs
did not have any significant statistical difference. The mean and variance for the
executions of the original binary were µ1 = 238 and σ1 = 4.42 seconds respectively,
and correspondingly µ2 = 237 and σ1 = 3.10 seconds for the rescheduled binaries.
This data suggests that the effect of Instruction Rescheduling on program
run-time is negligible.

6. RELATED WORK

We trace the related work along two directions: program binary compression and
generic PPM compression variants. Code compression has been around in the
research community for more than forty years [Korolev 1958]. Research directions
can be categorized as: static program compression, compression of intermediate
representations, techniques for reducing uncompressed program size, and techniques
for system issues involved in running compressed code.

Code compression has been addressed by computing a dictionary using set-
covering algorithms [Liao et al. 1995] and expression trees [Araujo et al. 2000].
Lucco proposed a split-stream format for JIT interpretation of compressed code
that halves program-size [Lucco 2000]. However, due to program interpretation
the program performance decreases by 6.6% given unconstrained memory and by
27% given a JIT translation buffer of one third of the binary code size. Random
access decompression has been enabled by resetting the statistical model used for
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Figure 18. Impact of Instruction Rescheduling on execution time of the gzip
binary from the SPEC2000 benchmark suite.

compression for each block of data [Lekatsas and Wolf 1999].
Compression of program’s intermediate representation has resulted in impressive

compression ratios [Pugh 1999]. However, software publishers are hesitant to de-
liver code in this format due to concerns about reverse engineering [Systa et al.
2001]. Techniques have been developed for machine independent compressed code
with adaptive compression of syntax trees [Franz and Kistler 1997] and a “wire-
code” compression format that can be interpreted on-the-fly without decompression
[Ernst et al. 1997]. Fraser explored the bounds on the compression ratio for the
intermediate representation of binaries by using machine learning techniques to au-
tomatically infer a decision tree that separates intermediate representation code
into streams that compress better than the undifferentiated code [Fraser 1999].

Techniques for reducing code size include procedural abstraction and general-
ization of cross-jumps [Fraser et al. 1984] and common instruction merger into
super-operators [Proebsting 1995]. Lau et al. introduced a technique for embedded
systems that replaces code segments that are repeated throughout a binary with
parameterized echo instructions [Lau et al. 2003]. A good survey of transformations
for reduced code size is outlined in [Debray et al. 2000].

Architectures for minimized code size have been explored using instruction se-
lection [Liao et al. 1995] and binding operand identifiers [Hoevel and Flynn 1977].
Operating system and processor support for execution of compressed code on ex-
isting or modified architectures has been detailed in [Wolfe and Chanin 1992] and
[Kirovski et al. 1997]. Storage management in systems with compressed binaries
has been addressed in [Murtagh 1991], [Liao 1996], and [Rao and Pande 1999].
Compression of program execution traces involves techniques for both compress-
ing executed code as well as data associated with the execution [Burtscher et al. ;
Zhang and Gupta 2005].

The PPM compression paradigm introduced by Cleary and Witten [Cleary and
Witten 1984], has set the bar on compression ratio performance that no other algo-
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rithm has been able to reach to date. Moffat’s improvement, PPMC [Moffat 1990],
set the benchmark for over a decade, until recently, when Howards’ variant, PPMD
[Howard 1993], with improved computation of escape symbols was recognized as
one of the best overall compression schemes [Gilchrist 2000].
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7. CONCLUSION

Systems such as software delivery platforms, embedded systems, and mobile code
have imposed strong requirements for low compression ratios of binaries. In this
work, we have explored compression algorithms that focus exclusively on program
binaries. We have adopted as a foundation of our algorithm, prediction by partial
matching (PPM) - a compression paradigm that demonstrates superior performance
with respect to other compression techniques: Lempel-Ziv, Burrows-Wheeler trans-
form, and Huffman coding. In this paper, we have proposed a compression mecha-
nism that uses several pre-processing steps to PPM as well as several modifications
to the generic PPM technology that significantly improve the achieved compression
ratio. The pre-processing steps include: rescheduling of instructions to improve
prediction rates and heuristic partitioning of a binary into highly correlated sub-
streams. We improve the traditional PPM algorithm by extracting a common
alphabet of variable-length super-symbols from the input stream of fixed-length
symbols. The key mechanism for enabling dynamic decompression of program bi-
naries is random-access. We introduce several techniques that enable this feature
with different effects on the decompression speed vs. compression ratio trade-off.

The developed techniques are generic in the sense that our implementation can
be slightly modified to compress binaries for other instruction sets, programs rep-
resented using intermediate formats, or software patches. We demonstrated the
effectiveness of the developed techniques by building a compression codec for x86
binaries. The tool was tested on a benchmark consisting of several large appli-
cations. PPMexe yielded compression rates over the benchmark suite that were
18-24% better than rates achieved by off-the-shelf PPMD, one of the best available
compression tools [Gilchrist 2000; Witten et al. 1999].
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A. PPM OVERVIEW

In this section, we detail the generic PPM engine as a backbone for our code
compression algorithm presented in Section 3. Let’s denote the input data-stream
to be compressed as x ∈ AN , where x is a sequence of N symbols from an alphabet
A. A context of order K is defined as a sequence of K consecutive symbols of x. For
a current symbol xi, its context of order K, C(xi, K), is the sequence of symbols
C(xi,K) = xi−K , . . . , xi−1. We denote as PC(s), the probability that symbol s ∈ A
follows context C.

While both compressing and decompressing, PPM builds a model of the input
that aims at estimating the probability that a certain symbol occurs after a certain
context. The PPM model consists of sets of frequency counts for each symbol that
appears for each previously seen context in the input data stream. The maximal
length of recorded contexts is typically set to a constant value. PPM estimates the
amount of information for the symbol being processed based on the frequency count
of that symbol in the encountered context [Cleary and Witten 1984]. It has been
shown that increasing the maximum order beyond five improves the compression
ratio only negligibly [Bunton 1997]. A PPM model has entries for all limited-length
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contexts that have occurred in the processed data-stream. The model counts the
symbols that occur after each recorded context. The counts are used for calculation
of symbol occurrence probabilities. For each context, there is a special escape
symbol ε, used to resolve the case when a new symbol occurs.

While encoding a symbol, PPM initially considers its longest context. If the
symbol is not found in the longest context, ε is emitted and the order of the current
context is decremented. Since the decoder maintains the same model, the ε symbol
signals to the decoder that it should switch to a shorter context. A special context
of order −1 contains all symbols from the used alphabet. For this context, the
probability of occurrence is uniform for all symbols s ∈ A: P−1(s) = 1

|A| . After the
first occurrence of a symbol in the input data-stream, PPM switches back to the
order-(−1) model and encodes the symbol accordingly.

����

�

���

��	

���

��
�

�

���

��	

���

�
��



���

��	

���

����

�

���

��	

���

����

�

���

��	

���

��
�

�

���

��	

���

���

�

���

��	

���

���

�

���

��	

���

�
�

�

���

��	

���

���



���

��	

���

���

�

���

��	

���

���

�

���

��	

���

�������� ��

�

����

�

����

�

����

�

����



����

��	

����

�

����

�

���� �  !"#$#%&%'(

)(*#"&

+,--+,--

+,-- +,-- +,-- +,-- +,-- +,--

+,-- +,-- +,-- +,-- +,-- +,--

Figure 19. A PPM model with maximum order of two after processing the string
“shareware”.

An example of a PPM model with a maximal order of two after processing the
string “shareware” is illustrated in Figure 19. The model records the occurrence
of each symbol in its order-0 context. For each new symbol, the ε counter of the
order-0 model is incremented. Central to a PPM implementation is the digital
search tree or trie [Witten et al. 1999]. A new node (i.e., context) is added to the
trie upon encountering a new symbol after a certain context. Each new node is
initialized with two entries: one, for the new symbol that created this context, and
another, for the ε symbol.

A.1 Arithmetic coding

PPM uses arithmetic coding to encode predicted and escape symbols according to
the probability of their occurrence after a certain context. An arithmetic coder (AC)
converts an input stream of arbitrary length into a single rational number within
[0, 1). Details of the arithmetic coding codec can be found in [Rissanen 1978]. The
principal strength of arithmetic coding is that it can compress arbitrarily close to
the entropy [Shannon 1951; Rissanen 1978].

Arithmetic coding is commonly described through examples [Witten et al. 1999].
We show how a new symbol “s”, concatenated to “shareware”, is encoded assuming:
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Figure 20. An arithmetic coding example based on the PPM model for the input
shareware and an upcoming symbol s.

· previous symbols have already been encoded,

· the range of the AC has been reset to [0, 1), and

· the PPM model is in a state as presented in Figure 19.

The example is illustrated in Figure 20. The longest, order-2, context for “s”
is “re”. According to the current PPM model, P“re”(w) = P“re”(ε) = 1/2. Thus,
the AC divides its range into two subranges [0, 0.5) and [0.5, 1), each representing
“w” and ε respectively. Since “s” has not been previously recorded after “re”,
current context is switched to order-1 context “e” and an ε symbol is emitted
by limiting the AC range to [0.5, 1). Since P“e”(w) = P“e”(ε) = 1/2, the AC
subdivides further its range to [0.5, 0.75) and [0.75, 1) for “w” and ε respectively.
Symbol “s” has never occurred after “e”, thus, the current context is switched to
order-0 context “” and another ε is emitted by shrinking the AC range to [0.75, 1).
The order-0 context model contains 7 symbols, including “s”. Thus, the current
AC range is further subdivided into 7 subranges for each symbol. The length of
each subrange corresponds to the probability of occurrence for the corresponding
symbol. To encode “s”, the AC reduces its range to [0.75, 0.7667). If “s” were the
last symbol to be encoded, the AC would output as a result of the compression any
number within [0.75, 0.7667). Given the starting PPM model, any number within
[0.75, 0.7667) uniquely identifies the symbol “s” at the decoder. After processing a
single symbol, the PPM model is updated.

The AC iteratively reduces its operating range until the leading digits of the
high and low bound are equal. Then, the leading digit can be transmitted. In the
example above where AC range equals [0.75, 0.7667), digit 7 can be transmitted
and the updated AC range becomes [0.5, 0.6667). This process, called renormal-
ization, enables compression of files of any length on limited precision arithmetic
units. Performance improvements of classic AC focus on: precomputed approx-
imations of arithmetic calculations [Howard and Vitter 1993] and replacing divi-
sion/multiplication with shifting/addition [Rissanen and Mohiuddin 1989].
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A.2 PPM Improvements

A number of PPM variants have been developed as an improvement to the original
algorithm [Cleary and Witten 1984]. The main difference between variants of PPM
is how the escape probabilities are calculated. For example, the original, variant A
of PPM, has fixed the count of escape symbols to 1; variant D halves the weights
assigned to escape as oppose to the other, already recorded, symbols [Howard and
Vitter 1993]. Other methods include the calculation of escape probabilities using
heuristics that account for the number of symbols that occurred in a particular
context. A standard improvement of PPM, exclusion, assumes that only the context
where the symbol is found as well as higher order contexts are updated in the PPM
model [Witten et al. 1999].


