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SUMMARY

The structure of a decompiler is presented, along with a thorough description of the different modules that
form part of a decompiler, and the type of analyses that are performed on the machine code to regenerate
high-level language code. The phases of the decompiler have been grouped into three main modules:
front-end, universal decompiling machine, and back-end. The front-end is a machine-dependent module
that performs the loading, parsing and semantic analysis of the input program, as well as generating
an intermediate representation of the program. The universal decompiling machine is a machine- and
language-independent module that performs data and control flow analysis of the program based on the
intermediate representation, and the program’s control flow graph. The back-end is a language-dependent
module that deals with the details of the target high-level language.

In order to increase the readability of the generated programs, a decompiling system has been imple-
mented which integrates a decompiler,dcc, and an automatic signature generator,dccSign. Signatures
for libraries and compilers are stored in a database that is read by the decompiler; thus, the generated
programs can make use of known library names, such asWriteLn() and printf().

dcc is a decompiler for the Intel 80286 architecture and the DOS operating system.dcc takes as input
binary programs from a DOS environment and generates C programs as output. Sample code produced
by this decompiler is given.
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INTRODUCTION

A decompiler, or reverse compiler, is a program that attempts to perform the inverse process
of the compiler: given an executable program compiled in any high-level language, the aim is
to produce a high-level language program that performs the same function as the executable
program. Thus, the input is machine dependent, and the output is language dependent.

Several practical problems are faced when writing a decompiler. The main problem
derives from the representation of data and instructions in the Von Neumann architecture:
they are indistinguishable. Thus, data can be located in between instructions, such as many
implementations of indexed jump (case) tables. This representation and self-modifying
code practices makes it hard to decompile a binary program.

Another problem is the great number of subroutines introduced by the compiler and the
linker. The compiler will always include start-up subroutines that set up its environment,
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and runtime support routines whenever required. These routines are normally written in
assembler and in most cases are untranslatable into a higher-level representation. Also,
most operating systems do not provide a mechanism to share libraries; consequently, binary
programs are self-contained and library routines are bound into each binary image. Library
routines are either written in the language the compiler was written in, or in assembler. This
means that a binary program contains not only the routines written by the programmer, but
a great number of other routines linked in by the linker. As an example of the amount of
extra subroutines available in a binary program, a ‘hello world’ program compiled in C
generates 23 different procedures. The same program compiled in Pascal generates more
than 40 procedures. All we are really interested in is the one procedure,main.

Despite the above-mentioned limitations, there are several uses for a decompiler, including
two major software areas: maintenance of code and software security. From a maintenance
point of view, a decompiler is an aid in the recovery of lost source code, the migration
of applications to a new hardware platform, the translation of code written in an obsolete
language into a newer language, the structuring of old code written in an unstructured way
(e.g. ‘spaghetti’ code), and a debugger tool that helps in finding and correcting bugs in an
existing binary program. From a security point of view, a binary program can be checked
for the existence of malicious code (e.g. viruses) before it is run for the first time on a
computer, in safety-critical systems where the compiler is not trusted, the binary program
is validated to do exactly what the original high-level language program intended to do,
and thus, the output of the compiler can be verified in this way.

Different attempts at writing decompilers have been made in the last 20 years. Due to the
amount of information lost in the compilation process, to be able to regenerate high-level
language (HLL) code, all of these experimental decompilers have limitations in one way
or another, including decompilation of assembly files1,2,3,4,5 or object files with or without
symbolic debugging information,6,7 simplified high-level language,1 and the requirement
of the compiler’s specification.8,9 Assembly programs have helpful data information in the
form of symbolic text, such as data segments, data and type declarations, subroutine names,
subroutine entry point, and subroutine exit statement. All this information can be collected in
a symbol table and the decompiler would not need to address the problem of separating data
from instructions, or the naming of variables and subroutines. Object files with debugging
information contain the program’s symbol table as constructed by the compiler. Given the
symbol table, it is easy to determine which memory locations are instructions, as there is a
certainty on which memory locations represent data. In general, object files contain more
information than binary files. Finally, the requirement to have access to the compiler’s
specifications is impractical, as these specifications are not normally disclosed by compiler
manufacturers, or do not even exist.

Our decompiler,dcc, differs from previous decompilation projects in several ways; it
analyses binary programs rather than assembler or object files, performs idiom∗ analysis to
capture the essence of a sequence of instructions with a special meaning, performs data flow
analysis on registers and condition codes to eliminate them, and structures the program’s
control flow graph into a generic set of high-level structures that can be accommodated
into different high-level languages, eliminating as much as possible the use of thegoto
statement.

The rest of this paper is structured in the following way: a thorough description of
the structure of a decompiler, followed by the description of our implementation of an
∗ An idiom is a sequence of instruction that forms a logical entity and has a meaning that cannot be derived by considering

the primary meanings of the individual instructions
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Figure 1. Decompiler modules

automatic decompiling system, and conclusions. The paper is followed by the definitions
of graph theoretical concepts used throughout the paper (Appendix I), and sample output
from different phases of the decompilation of a program (Appendix II).

THE DECOMPILER STRUCTURE

A decompiler can be structured in a similar way to a compiler, that is, a series of modules
that deal with machine- or language-dependent features. Three main modules are required: a
machine-dependent module that reads in the program, loads it into virtual memory and parses
it (the front-end), a machine- and language-independent module that analyses the program
in memory (the universal decompiling machine), and a language-dependent module that
writes formatted output for the target language (the back-end) (see Figure1). This modular
representation makes it easier to write decompilers for different machine/target language
pairs, by writing different front-ends for different machines, and different back-ends for
different target languages. This result is true in theory, but in practical applications is
always limited by the generality of the intermediate language used.

The front-end

The front-end module deals with machine-dependent features and produces a machine-
independent representation. It takes as input a binary program for a specific machine, loads
it into virtual memory, parses it, and produces an intermediate representation of the program,
as well as the program’s control flow graph (see Figure2).

Theparser disassembles code starting at the entry point given by theloader, and follows
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the instructions sequentially until a change in flow of control is met. Flow of control is
changed due to a conditional, unconditional or indexed branch, or a procedure call; in
which case the target branch label(s) start new instruction paths to be disassembled. A
path is finished by a return instruction or program termination. All instruction paths are
followed in a recursive manner. Problems are introduced by machine instructions that use
indexed or indirect addressing modes. To handle these, heuristic methods are implemented.
For example, while disassembling code, the parser must check for sequences of instructions
that represent a multiway branch (e.g. aswitch statement), normally implemented as an
index jump in a jump table.10,11 Finally, the intermediate code is generated and the control
flow graph is built.

Two levels of intermediate code are required; a low-level representation that resembles
the assembler from the machine, and a higher-level representation that resembles statements
from a high-level language. The initial level, orlow-level intermediate code, is a simplem :
1 mapping of machine instructions to assembler mnemonics. Compound instructions (such
asrep movs) are represented by a unique low-level intermediate intruction (e.g.rep_movs).
The second level, orhigh-level intermediate code, is generated by the interprocedural data
flow analysis, explained later, and mapsn : 1 low-level to high-level instructions. The
front-end generates a low-level representation.

The semantic analysisphase performs idiom analysis and type propagation. Idioms are
replaced by an appropriate functionally equivalent intermediate instruction. For example,
Figure 3 illustrates two different idioms: the one on the left-hand side is a negation of a
long variable, represented in this case by registersdx:ax. The idiom on the right-hand side
is the prologue code of a high-level language procedure. In this case, space for 6 bytes
is being reserved on the stack for local variables. There are a number of different idioms
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neg dx push bp

neg ax mov bp, sp

sbb dx, 0 sub bp, 6

⇓

neg dx:ax enter 6,0

Figure 3. Sample idioms and their transformation

widely known in the compiler community, and the decompiler must code them in order to
generate clearer high-level code.

Type information is propagated after the idioms have been recognized. For example, if a
long local variable is found at stack offsets -1 to -4, all references to[bp-2] and[bp-4]
must be merged into references to such a long variable, e.g.[bp-2]:[bp-4]. Other type
information can be propagated in the same way, such as fields (offsets) of a record.

An optimization phase is performed on the control flow graph as well. Due to the nature
of machine code instructions, the compiler might need to introduce intermediate branches
in an executable program, because there is no machine instruction capable of branching
more than a certain maximum distance in bytes (architecture dependent). An optimization
pass over the control flow graph removes this redundancy, by replacing the target branch
location of all conditional or unconditional jumps that branch to an unconditional jump (and
any recursive branches in this format) with the final target basic block. While performing
this process, some basic blocks are not going to be referenced any more, as they were used
only for intermediate branches. These nodes must be eliminated from the graph as well.

The universal decompiling machine

The universal decompiling machine (UDM) is an intermediate module that is totally ma-
chine and language independent. It deals with flow graphs and the intermediate representa-
tion of the program and performs all the flow analysis the input program needs (see Figure4).

Data flow analysis

The aim of thedata flow analysisphase is to transform the low-level intermediate repre-
sentation into a higher-level representation that resembles a HLL statement. It is therefore
necessary to eliminate the concept of condition codes (or flags) and registers, as these con-
cepts do not exist in high-level languages, and to introduce the concept of expressions,
as these can be used in any HLL program. For this purpose, the technology of compiler
optimization has been appropriated.

The first analysis is concerned with condition codes. Some condition codes are used
only by hand-crafted assembly code instructions, and thus are not translatable to a high-
level representation. Therefore, condition codes are classified in two groups: HLCC which
is the set of condition codes that are likely to have been generated by a compiler (e.g.
overflow, carry), and NHLCC which is the set of condition codes that are likely to have
been generated by assembly code (e.g. trap, interrupt). The HLCC set is the one that can
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be analysed further. Instructions that use condition codes in the NHLCC set mean that the
subroutine is most likely non high-level, and is therefore flagged as being so; assembler is
all that can be generated for these subroutines.

A use/definition, or reaching definition, analysis is performed on condition codes. In
this way, for a given use of a condition codec at instructionj, the use/definition chain
(ud-cc()) determines which instruction(s) defined this condition. In practical cases, there
is always only one instruction that defined the condition(s) used in the instruction atj; (i.e.
ud-cc(x) = {i}). This set can be computed by a forward-flow any-path algorithm.12,13 Once
the set of defined/used instructions is known (i.e. (i, j)), these low-level instructions can
be replaced by a unique conditional high-level instruction that is semantically equivalent to
the given instructions. Let us consider the example in Figure5, which illustrates this point.
Instruction 2 uses the sign (SF) and zero (ZF) condition codes. These flags were previously
defined by instruction 1, which also defines the carry flag (CF). Given that this instruction
defines all flags used by the conditional jump, they can be merged into one high-level
instruction that compares the registers for the greater condition; i.e.JCOND (ax > bx).

The second analysis is concerned with registers. The elimination of temporary registers
leads to the elimination of intermediate instructions by replacing several low-level instruc-
tions by one high-level instruction that does not make use of the intermediate register. As
with condition codes, some machine instructions are hand-crafted by assembler program-
mers, and are untranslatable to a higher representation. We therefore classify the low-level
instructions into two sets: HLI which is the set of instructions that are representable in a
high-level language (e.g.mov, add), and NHLI which is the set of instructions that are likely
to be generated only by assembly code (e.g.cli, ins). This analysis is concerned only
with instructions from the HLI set. Instructions from the NHLI set belong to subroutines
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1 cmp ax, bx ; def: SF,ZF,CF

2 jg labZ ; use: SF,ZF ; ud-cc(SF,ZF) = {1}

⇓

JCOND (ax > bx)

Figure 5. Condition code example

that are likely to have been written in assembler, or are untranslatable, and therefore are
flagged as being so, and assembler is generated for them.

Two preliminary analyses are required for the elimination of registers. A definition/use
analysis on registers is needed to determine how many uses there are for a definition of a
register. Note that register variables are not eliminated by this analysis, as they represent
local variables and thus are required in the final output program. This analysis can be solved
in a backward-flow any-path problem.12,13 Also, an interprocedural live register analysis is
required, to ascertain which registers are live on entrance and on exit from a basic block.
This analysis is also solved by known algorithms.12,13

The method to eliminate registers has been namedforward substitutionas, by performing
a forward substitution of the symbolic contents of a defined register that is only used once
on the instruction that uses it, the temporary register is eliminated, the temporary instruction
that defined the register is also eliminated, and the final instruction that used the register
is now defined in terms of an expression. Let us consider a modulo 10 example, described
in Figure6. The registerssi anddi are register variables in this example. Registertmp is
a virtual register introduced by the parser whenever aDIV instruction is found, asDIV is
equivalent to two low-level instructions; a division and a modulus. Because they use the
same registers as operands, and they redefine these registers, atmp register is introduced

.. ... ; other code here

28 MOV ax, di ; ASGN ax, di ; du(ax) = {30}

29 MOV bx, 0Ah ; ASGN bx, 0Ah ; du(bx) = {32,33}

30 CWD ; ASGN dx:ax, ax ; du(ax) = {31}, du(dx) = {31}

31 MOV tmp, dx:ax ; ASGN tmp, dx:ax ; du(tmp) = {32,33}

32 DIV bx ; ASGN ax, tmp / bx ; du(ax) = {}

33 MOD bx ; ASGN dx, tmp % bx ; du(dx) = {34}

34 MOV si, dx ; ASGN si, dx

.. ... ; other code here, no use of ax

⇓

ASGN si, di % 0Ah

Figure 6. Simple expression example
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to hold the initial value ofdx:ax. The substitution up to instruction 32 is illustrated in the
following code:

28 MOV ax, di ; ASGN ax, di

29 MOV bx, 0Ah ; ASGN bx, 0Ah

30 CWD ; ASGN dx:ax, di (substitute 28->30)

31 MOV tmp, dx:ax ; ASGN tmp, di (substitute 30->31)

32 DIV bx ; ASGN ax,tmp / bx (eliminate instruction)

Instruction 32 defines a register that is not going to be used; therefore this instruction
is redundant and must be eliminated. Any uses of the registers in the right-hand side of
the instruction that is redundant need to be backpatched to reflect the non-existence of the
instruction. After this step, the code would look like this:

29 MOV bx, 0Ah ; ASGN bx, 0Ah ; du(bx) = {33}

31 MOV tmp, dx:ax ; ASGN tmp, di

33 MOD bx ; ASGN dx, tmp % bx

34 MOV si, dx ; ASGN si, dx

and the final substitutions would give the final result in instruction 34:

29 MOV bx,0Ah ; ASGN bx, 0Ah

31 MOV tmp,dx:ax ; ASGN tmp, di

33 MOD bx ; ASGN dx, di % 0Ah (substitute 31->33)

(substitute 29->33)

34 MOV si, dx ; ASGN si, di % 0Ah (substitute 33->34)

A complete algorithm that describes this data flow analysis can be found in References 14
and 15.

Control flow analysis

Thecontrol flow analyserstructures the control flow graph into generic high-level control
structures that are available in most languages. These are conditional (if..then[..else]),
multiway branch (case), and different types of loops (while(), repeat..until(), and
endlessloop). Different methods have been specified in the literature to structure graphs,
most of them dealing with the elimination ofgoto statements from the graph, by the
introduction of new variables16,17, code replication18,19,20 or the use of multilevelexit21,22.
Both the introduction of new variables and code replication modify the apparent semantics
of the program, and is therefore not desirable when decompiling binary programs, given
that we want to decompile the code ‘as is’. The use of multilevelexit statements is
not supported by commonly used languages (e.g. Pascal, C), and thus cannot be part of
the generic set of high-level control constructs that can be generated. We developed an
algorithm that structures the graph into the set of generic high-level control structures, and,
whenever it determines that a particular subgraph is not one of the generic constructs, it
uses agoto. Note that the minimum number ofgotos is always used. This algorithm is
described in Reference 23.
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jcond ((si * 5) == 50)

jcond (di< si)

printf() other

.....

jcond (((si * 5) != 50) or (di< si))

printf() other

Figure 7. Short-circuit evaluation graph

A second structuring phase can be implemented to check for short circuit evaluation
graphs. These graphs can be transformed into simpler graphs that hold two or more com-
pound conditions on the one basic block, rather than requiring to generate high-level code
that uses two or more nestedif..then statements. Figure7 illustrates an example of a
compoundor condition. The top basic block checks for the equality of(si * 5) and50.
If this is false, aprintf() node is reached. On the other hand, if the equality is true, a
second condition is checked;di < si. If this condition is true, the sameprintf() basic
block is reached, otherwise some other code is reached. Rather than generating C code for
these conditions that require agoto (as these conditions are not properly nested), they can
be merged into a compoundor that negates the first condition, as theprintf() node is
reached whenever the first condition is false, and leaves the second condition as it is, given
that this condition also reachesprintf() when it is true. The intermediate basic block
and edges are removed from the graph. The complete structuring algorithm is described in
References 15 and 24.

The back-end

The back-end module is language dependent, as it deals with the target high-level language.
This module, optionally restructures the graph into control constructs available only in the
particular target language, and then generates code for this language (see Figure8).

The restructuring phase is optional and aims at structuring the graph even further, so
that control structures available in the target language but not present in the generic set
of control structures of the structuring algorithm, previously described, are utilized. For
instance, if the target language is Ada, multilevel exits are allowed. After the graph has
been structured, multilevel exits look like a loop with abnormalgoto exits. The restructuring
phase can check the target destination of eachgoto, and determine if anexit(i) statement
is suitable instead. Another example is thefor loop; such a loop is equivalent to awhile()
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loop that makes use of an induction variable. In this case, the induction variable needs to
be found.

The final phase is theHLL code generationwhich generates code for the target HLL
based on the control flow graph and the associated high-level intermediate code. This phase
defines global variables, and emits code for each procedure/function following a depth first
traversal of the call graph of the program. Each procedure has comments on information
that was collected during the analysis of such procedure, such as whether the procedure
is likely to be low-level (in which case assembler is produced for the procedure), whether
there were register arguments used, which registers returned a function return value, and
so on. While generating code, if agoto instruction is required, a unique label identifier is
created and placed before the instruction that takes the label. Variables and procedures are
given names of the formloc1, proc2, as there is no information concerning their initial
high-level name. A user interface can be built to allow the user to name these variables and
procedures with more significant names.

THE DECOMPILING SYSTEM

As mentioned in the introduction, the compiler start-up code is linked into the executable
program, as well as any library routines invoked by the program. Start-up code and li-
brary routines are often written in assembler, and therefore may contain low-level machine
instructions, making these routines untranslatable or difficult to translate into a HLL repre-
sentation. In order to get as much information as possible on the program to be decompiled,
we have developed a decompiling system that integrates a decompiler,dcc, and an automatic
signature generator,dccSign, as illustrated in Figure9.

A signature generator is a front-end module that generates signatures for compilers and
library functions of those compilers. Such signatures are stored in a database, and are
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JĴ AAU ������?

-
��

��*

�
-

?

?

?
user

asm program

HLL program

decompiler

binary program

libraries

Generate signatures

signatures

Figure 9. Decompiling system

accessed bydcc to check whether a subroutine is a library function or not, in which case,
the function is not analysed bydcc, but replaced by its library name (e.g.printf()). This
module is completely automatic, and takes as input library functions25. A library signature
is a unique series of instructions that identifies a library function for a particular compiler.
Correspondently, a compiler signature is a unique series of instructions that identifies a
particular version of a compiler. In practice, different compiler signatures are required for
different memory models (in the Intel architecture). Determining compiler signatures helps
the decompiler determine where the real entry to the program is, i.e. themain(), and
knowing the names of libraries functions makes the final program more readable.

At present,dccSignhas been tested with Borland Turbo C, versions 2.1 and 3.0, Microsoft
C, versions 5.0 and 8.0, and Borland Turbo Pascal version 4.0 and 5.0. The start-up code
for these compilers is different enough to easily differentiate them. Borland and Microsoft
provide the source code for their start-up code as part of their compiler distribution, there-
fore, it is a matter of finding the instruction that invokesmain() to determine the entry
point to the original high-level program. This process eliminates the need to analyse about
ten procedures that set up the environment for the particular compiler, and depend heavily
on low-level machine instructions.

dcc is an experimental decompiler for the DOS operating system and the Intel i80286
architecture. As input,dcc reads.com and.exe files, and produces C programs as output
(see Figure10 for the structure of this decompiler). A disassembler is also part ofdcc, so
the user has the option of generating assembler files, C files, or both. As seen in Figure10,
dcc does not implement the restructuring phase of the back-end. This is due to the choice
of target language, C in this instance, for whichdcc generates good enough code without
the need for restructuring of control structures.

A signature checker module is inbuilt indcc. This module determines if a known compiler
is used, and therefore returns themain() to that program. It also scans at each procedure
entry the firstn bytes of instructions with a pattern-matching algorithm to see if the instruc-
tions correspond to any of the library routines of the compiler used. If a correspondence
exists, the rest of the procedure is disregarded for further HLL analysis and code generation,
its name and offset are placed in the symbol table, and any references to this procedure are
replaced with the procedure’s name. The decompilation of a sample program is given in
Appendix II. The intermediate representation and final program are given.
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SUMMARY AND CONCLUSIONS

This paper presents a methodology for decompilation of binary programs, and describes
the current development state ofdcc, a decompiler for the Intel 80286 architecture. The
decompiler structure resembles that of a compiler; three main modules are distinguished: the
front-end which is machine-dependent, the universal decompiling machine (UDM) which
is machine- and language-independent, and the back-end which is language-dependent.

The front-end deals with the loading of the binary program, parsing it, and producing
an intermediate representation of the program, and the program’s control flow graph. The
UDM performs data flow analysis in order to eliminate non high-level language concepts,
such as condition codes and registers, from the intermediate representation, and to introduce
the concept of expressions. The UDM also structures the control flow graph by determin-
ing which high-level structures are used in the program. Finally, the back-end optionally
performs the restructuring needed to accommodate the structures found in the program into
structures available in the target high-level language, and generates high-level code for each
procedure.

The introduction of a module for compiler and library signature detection,dccSign, has
reduced the number of routines to be decompiled, making the decompilation process faster,
and providing better documentation of the output C programs. Binary programs that do
not match against any of the compiler signatures ofdcc are decompiled entirely, i.e. all
compiler start-up code, runtime support routines, and library subroutines are decompiled
and analysed.
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55 8B EC 83 EC 04 56 57 1E B8 94 00 50 9A
0E 00 3C 17 59 59 16 8D 46 FC 50 1E B8 B1 00 50
9A 07 00 F0 17 83 C4 08 BE 01 00 EB 3B 1E B8 B4
00 50 9A 0E 00 3C 17 59 59 16 8D 46 FE 50 1E B8
C3 00 50 9A 07 00 F0 17 83 C4 08 FF 76 FE 9A 7C
00 3B 16 59 8B F8 57 FF 76 FE 1E B8 C6 00 50 9A
0E 00 3C 17 83 C4 08 46 3B 76 FC 7E C0 33 C0 50
9A 0A 00 49 16 59 5F 5E 8B E5 5D CB 55 8B EC 56
8B 76 06 83 FE 02 7E 1E 8B C6 48 50 0E E8 EC FF
59 50 8B C6 05 FE FF 50 0E E8 E0 FF 59 8B D0 58
03 C2 EB 07 EB 05 B8 01 00 EB 00 5E 5D CB

Figure 11. Machine code (hexadecimal format)

This project has proven the feasibility of writing a decompiler for a contemporary machine
architecture. Many uses are envisaged for this decompiler, including software maintenance
and security.
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APPENDIX: I. GRAPH THEORETICAL DEFINITIONS

A basic block is a sequence of instructions that has a single entry point and a single
exit point. These requirements give the basic block the property that, if one instruction is
executed, then all other instructions are executed as well.

A control flow graph G is a tuple (N,E, h), where N is the set of nodes,E is

File type is EXE
Signature = 4D5A
File size % 512 = 0176
File size / 512 = 0018 pages
# relocation items = 006A
Offset to load image = 0020 paras
Minimum allocation = 0000 paras
Maximum allocation = FFFF paras
Load image size = 2D76
Initial SS:SP = 02D9:00E6
Initial CS:IP = 0010:0000

Figure 12. Information provided by the loader
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proc_1 PROC FAR

000 00053C 55 PUSH bp

001 00053D 8BEC MOV bp, sp

002 00053F 56 PUSH si

003 000540 8B7606 MOV si, [bp+6]

004 000543 83FE02 CMP si, 2

005 000546 7E1E JLE L1

006 000548 8BC6 MOV ax, si

007 00054A 48 DEC ax

008 00054B 50 PUSH ax

009 00054C 0E PUSH cs

010 00054D E8ECFF CALL near ptr proc_1

011 000550 59 POP cx

012 000551 50 PUSH ax

013 000552 8BC6 MOV ax, si

014 000554 05FEFF ADD ax, 0FFFEh

015 000557 50 PUSH ax

016 000558 0E PUSH cs

017 000559 E8E0FF CALL near ptr proc_1

018 00055C 59 POP cx

019 00055D 8BD0 MOV dx, ax

020 00055F 58 POP ax

021 000560 03C2 ADD ax, dx

023 00056B 5E L2: POP si

024 00056C 5D POP bp

025 00056D CB RETF

026 000566 B80100 L1: MOV ax, 1

027 000569 EB00 JMP L2

proc_1 ENDP

main PROC FAR

000 0004C2 55 PUSH bp

001 0004C3 8BEC MOV bp, sp

002 0004C5 83EC04 SUB sp, 4

003 0004C8 56 PUSH si

004 0004C9 57 PUSH di

005 0004CA 1E PUSH ds

006 0004CB B89400 MOV ax, 94h

007 0004CE 50 PUSH ax

008 0004CF 9A0E004D01 CALL far ptr printf

009 0004D4 59 POP cx

010 0004D5 59 POP cx

011 0004D6 16 PUSH ss

012 0004D7 8D46FC LEA ax, [bp-4]

013 0004DA 50 PUSH ax

014 0004DB 1E PUSH ds

Figure 13. Low-level intermediate code
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015 0004DC B8B100 MOV ax, 0B1h

016 0004DF 50 PUSH ax

017 0004E0 9A07000102 CALL far ptr scanf

018 0004E5 83C408 ADD sp, 8

019 0004E8 BE0100 MOV si, 1

021 000528 3B76FC L3: CMP si, [bp-4]

022 00052B 7EC0 JLE L4

023 00052D 33C0 XOR ax, ax

024 00052F 50 PUSH ax

025 000530 9A0A005A00 CALL far ptr exit

026 000535 59 POP cx

027 000536 5F POP di

028 000537 5E POP si

029 000538 8BE5 MOV sp, bp

030 00053A 5D POP bp

031 00053B CB RETF

032 0004ED 1E L4: PUSH ds

033 0004EE B8B400 MOV ax, 0B4h

034 0004F1 50 PUSH ax

035 0004F2 9A0E004D01 CALL far ptr printf

036 0004F7 59 POP cx

037 0004F8 59 POP cx

038 0004F9 16 PUSH ss

039 0004FA 8D46FE LEA ax, [bp-2]

040 0004FD 50 PUSH ax

041 0004FE 1E PUSH ds

042 0004FF B8C300 MOV ax, 0C3h

043 000502 50 PUSH ax

044 000503 9A07000102 CALL far ptr scanf

045 000508 83C408 ADD sp, 8

046 00050B FF76FE PUSH word ptr [bp-2]

047 00050E 9A7C004C00 CALL far ptr proc_1

048 000513 59 POP cx

049 000514 8BF8 MOV di, ax

050 000516 57 PUSH di

051 000517 FF76FE PUSH word ptr [bp-2]

052 00051A 1E PUSH ds

053 00051B B8C600 MOV ax, 0C6h

054 00051E 50 PUSH ax

055 00051F 9A0E004D01 CALL far ptr printf

056 000524 83C408 ADD sp, 8

057 000527 46 INC si

058 JMP L3 ;Synthetic inst

main ENDP

Figure 14. Low-level intermediate code – cont
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/* Input file : fibo.exe

* File type : EXE

*/

int proc_1 (int arg0)

/* Takes 2 bytes of parameters.

* High-level language prologue code.

* C calling convention.

*/

{

int loc1;

int loc2; /* ax */

loc1 = arg0;

if (loc1 > 2) {

loc2 = (proc_1 ((loc1 - 1)) + proc_1 ((loc1 + -2)));

}

else {

loc2 = 1;

}

return (loc2);

}

void main ()

/* Takes no parameters.

* High-level language prologue code.

*/

{

int loc1;

int loc2;

int loc3;

int loc4;

printf ("Input number of iterations: ");

scanf ("%d", &loc1);

loc3 = 1;

while ((loc3 <= loc1)) {

printf ("Input number: ");

scanf ("%d", &loc2);

loc4 = proc_1 (loc2);

printf ("fibonacci(%d) = %u\n", loc2, loc4);

loc3 = (loc3 + 1);

} /* end of while */

exit (0);

}

Figure 15. Final C program
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#include <stdio.h>

int main()

{ int i, numtimes, number;

unsigned value, fib();

printf("Input number of iterations: ");

scanf ("%d", &numtimes);

for (i = 1; i <= numtimes; i++)

{

printf ("Input number: ");

scanf ("%d", &number);

value = fib(number);

printf("fibonacci(%d) = %u\n", number, value);

}

exit(0);

}

unsigned fib(x) /* compute fibonacci number recursively */

int x;

{

if (x > 2)

return (fib(x - 1) + fib(x - 2));

else

return (1);

}

Figure 16. Initial C program

the set of directed edges, andh is the root of the graph. A noden ∈ N represents
a basic block. Apath from n1 to nm, representedn1 → nm, is a sequence of edges
(n1, n2), (n2, n3), . . . , (nm−1, nm).

Let P= {p1, p2, . . .} be the finite set of procedures of a program. Acall graph C is a
tuple (N,E, h), whereN is the set of procedures andni ∈ N represents one and only one
pi ∈ P, E is the set of edges and(ni, nj) ∈ E represents one or more references ofpi to
pj , andh is the main procedure.

A du-chain for registerx at statementi is the set of statementsj wherex could be used,
given thatx is defined at statementi.

A ud-chain for registerx at statementj is the set of statementsi wherex was defined.

APPENDIX: 2. AN EXAMPLE OF THE DECOMPILATION OF A SIMPLE C
PROGRAM

The sample program (see Figure16) calculates the fibonacci number of a given input
number. Figure11 illustrates the relevant machine code of this binary. No library and
compiler start up code is included. Figure12 shows the information gathered by the loader.
Figures13 and 14 are the disassembly of the binary program. All calls to library routines
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were detected bydccSign, and thus not included in the analysis. Figure15 is the final output
from dcc. This C program can be compared with the original C program in Figure16.
The decompiled program is functionally equivalent to the original C program, although
some differences are noticed. First of all, the recursive procedureproc_1() uses two local
variables: one to copy a parameter, and another to hold the final result of the function.
The use of the first local could have been avoided if data flow analysis was done across
basic blocks. The second local cannot be deleted as this is the way the compiler compiled
the C program. Second, there is no unsigned use of the identifiers inproc_1() to be able
to know that the result is an unsigned integer rather than a signed integer. Finally, the
main() procedure makes use of awhile() rather than afor. In this program, 85 low-
level instructions were converted into 16 high-level instructions; a reduction in the number
of instructions of 81.78 per cent.
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