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This paper describes algorithms for inserting monitoring code to profile and trace programs. These algorithms greatly
reduce the cost of measuring programs with respect to the commonly-used technique of placing code in each basic
block. Program profiling counts the number of times each basic block in a program executes. Instruction tracing
records the sequence of basic blocks traversed in a program execution. The algorithms optimize the placement of
counting/tracing code with respect to the expected or measured frequency of each block or edge in a program’s
control-flow graph. We have implemented the algorithms in a profiling/tracing tool and they substantially reduce the
overhead of profiling and tracing.

We also define and study the hierarchy of profiling problems. These problems have two dimensions: what is profiled
(i.e., vertices (basic blocks) or edges in a control-flow graph) and where the instrumentation code is placed (in blocks or
along edges). We compare the optimal solutions to the profiling problems and describe a new profiling problem: basic
block profiling with edge counters. This problem is important because an optimal solution to any other profiling prob-
lem (for a given control-flow graph) is never better than an optimal solution to this problem. Unfortunately, finding an
optimal placement of edge counters for vertex profiling appears to be a hard problem in general. However, our work
shows that edge profiling with edge counters works well in practice because it is simple and efficient and finds optimal
counter placements in most cases. Furthermore, it yields more information than a vertex profile. Tracing also benefits
from placing instrumentation code along edges rather on vertices.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement Techniques; D.2.2 [Software
Engineering]: Tools and Techniques—programmer workbench; D.2.5 [Software Engineering]: Testing and
Debugging—diagnostics, tracing

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Profiling, instruction tracing, instrumentation, control-flow graph
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1. INTRODUCTION

A well-known technique for recording program behavior and measuring program performance is to insert

code into a program and execute the modified program. This paper discusses how to insert monitoring

code to either profile or trace programs. Program profiling counts the number of times that each basic

block or control-flow edge in a program executes. It is widely used to measure instruction set utilization,

identify program bottlenecks, and estimate program execution times for code optimization [5, 7, 12, 21-

23, 29]. Instruction tracing records the sequence of basic blocks traversed in a program execution. It is the

basis for trace-driven architectural simulation and analysis and is also used in trace-driven debug-

ging [4, 17, 30]. Both techniques have been implemented in a wide variety of systems.
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In this paper, we describe algorithms for placing profiling and tracing code that greatly reduce the cost of

measuring programs, compared to previously implemented approaches. The algorithms reduce measure-

ment overhead in two ways: by inserting less instrumentation code and by placing the code where it is less

likely to be executed. The algorithms have been implemented in a widely-distributed profiling/tracing tool

called qpt [18], which instruments executable files, and performs very well in practice.

As described in Section 7, there has been considerable work on efficiently profiling and tracing pro-

grams. Three factors significantly distinguish our work from previous work. First, we consider the

theoretic and algorithmic underpinnings of program profiling and tracing. Second, unlike most previous

work, we implemented the algorithms and experimented with different instrumentation strategies on a col-

lection of real programs. This experience exposed deficiencies in previous algorithms and led to extensions

that make these algorithms robust enough for practical use. Third, we implemented and compared several

strategies for profiling and tracing. These approaches can be categorized as to whether they measure basic

block or control-flow edge frequency, and whether they place instrumentation code in basic blocks or along

control-flow edges. This categorization helps to relate the efficiency of various approaches. Through this

categorization, we identified a new problem that has not been previously considered: basic block profiling

with edge counters. This paper characterizes this new problem and compares it to existing approaches.

The algorithms in this paper produce an exact basic block profile or trace, contrasted with a statistical

tool such as the UnixTM prof command, which samples the program counter during program execution.

The algorithms consist of a pre-execution phase and a post-execution phase. The first phase selects points

in a program at which to insert profiling or tracing code. Instrumentation code is inserted at these points,

producing an instrumented version of the program. The algorithms for inserting instrumentation for

profiling and tracing are nearly identical. Both compute a spanning tree of the program’s control-flow

graph and place the instrumentation code on control-flow graph edges not in the spanning tree. In

profiling, the instrumentation code increments a counter that records how many times an edge executes. In

tracing, the instrumentation code writes a unique token (witness) to a trace file. Placement of instrumenta-

tion code can be optimized with respect to a weighting that assigns frequencies to edges or vertices.

Weightings can be obtained either by empirical measurement (profiling) or by estimation. After the instru-

mented program executes, the second phase uses the results collected during execution and the program’s

control-flow graph to derive a complete profile or trace.

The major contributions of this paper are:
� We enumerate the space of profiling problems based on what is profiled and where profiling code is

placed. A vertex profile counts the number of executions of each vertex (basic block) in a control-

flow graph. An edge profile counts the number of times each control-flow edge executes. An edge

profile determines a vertex profile, but the converse does not always hold. Knuth has published

efficient algorithms for finding the minimum number of vertex counters necessary and sufficient for

vertex profiling [16], denoted by Vprof (Vcnt), and the minimum number of edge counters for edge

profiling [15], denoted by Eprof (Ecnt). We consider the new problem of finding a set of edge

counters for vertex profiling, Vprof (Ecnt), and characterize when a set of instrumented edges is

necessary and sufficient for vertex profiling.
� We relate the optimal solutions to three profiling problems, Vprof (Vcnt), Eprof (Ecnt), and

Vprof (Ecnt), and compare their run-time overhead in practice. We show that for a given CFG and

weighting, an optimal solution to Vprof (Vcnt) or Eprof (Ecnt) is never better than an optimal
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solution to Vprof (Ecnt). Unfortunately, finding an optimal solution to Vprof (Ecnt) seems to be a

hard problem in general. We believe the problem is NP-complete but do not have a proof as of yet.

However, we show that for a large class of structured control-flow graphs, an optimal solution to

Eprof (Ecnt) is an optimal solution to Vprof (Ecnt). Furthermore, we show that Eprof (Ecnt) has

lower overhead than Vprof (Vcnt) in practice.
� We show that for both profiling and tracing, placing instrumentation code on edges is better than

placing it on vertices. Intuitively this is because there are more edges than vertices in the control-

flow graph. Instrumenting edges provides more opportunities to place instrumentation code in areas

of low execution frequency.
� We give a simple heuristic for estimating execution frequencies (based on analysis of the control-

flow graph) that accurately predicts areas of low execution frequency at which to place instrumenta-

tion code.
� We show that any solution to a profiling problem is sufficient to solve the tracing problem. How-

ever, such a solution is not necessarily optimal. Ramamoorthy, Kim, and Chen have given a neces-

sary and sufficient condition for when a set of edges solves the tracing problem for single procedure

programs [26]. However, this condition does not work for multi-procedure programs. We reformu-

late this condition in a more intuitive manner and show how it can be extended to apply to multi-

procedure programs.

Our work shows that Knuth’s algorithm for Eprof (Ecnt) profiling is the algorithm of choice for profiling:

It is simple and efficient, finds optimal counter placements in most cases, and yields more information than

a vertex profile (by measuring edge frequency as well as vertex frequency). We show how to extend this

algorithm to handle early procedure termination caused by exceptions.

We emphasize that the algorithms presented here are based solely on control-flow information. They are

applicable to any control-flow graph. The graphs need not be reducible or have other properties that would

preclude the analysis of some programs. The algorithms do not make use of other semantic information

that could be derived from the program text (e.g., via constant propagation or induction variable analysis).

Such information could be used to further reduce the amount of instrumentation code needed to profile or

trace a program.

The remainder of this paper is organized as follows. Section 2 provides background material on

control-flow graphs, weightings, and spanning trees. Section 3 shows how to profile programs efficiently

and Section 4 describes how to trace programs efficiently. Section 5 presents our heuristic weighting algo-

rithm. Section 6 presents performance results. Section 7 reviews related work on profiling, tracing, and

heuristics for minimizing instrumentation overhead and estimating execution frequency. Section 8 con-

cludes the paper.

2. BACKGROUND

This paper presents algorithms for instrumenting programs to record information about their execution-

time behavior. These algorithms use the intraprocedural control-flow structure of programs in order to

determine where to place instrumentation code. The programs under consideration are assumed to have

been written in an imperative language with procedures, in which control-flow within a procedure is stati-

cally determinable. Interprocedural control-flow occurs mainly by procedure call and procedure return,

although we will show how the algorithms can be extended to handle exceptions and interprocedural

jumps. Whether or not procedures are first-class objects does not affect the instrumentation algorithms.
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The algorithms require only that a control-flow graph can be constructed for each procedure in the pro-

gram. It is not necessary to know which procedure is called at a particular call site.

We now review some graph terminology. A directed graph G = (V, E) consists of a set of vertices V

and set of edges E, where an edge e is an ordered pair of vertices, denoted by v→w (note that parallel

edges between vertices are allowed; the notation v→w is an abbreviation). Vertex v is the source of edge

e, denoted by src (e), and vertex w is the target of edge e, denoted by tgt (e). Edge v →w is an incoming

edge of vertex w and an outgoing edge of vertex v. If v →w, then vertex v is a predecessor of vertex w and

vertex w is a successor of vertex v. A path in a directed graph is a sequence of n vertices and n −1 edges of

the form (v 1, e 1, v 2, ..., en −1, vn), where for each edge ei , either ei = vi→vi +1 or ei = vi +1→vi . A cycle is

a path such that v 1 = vn. A path or cycle is directed if for every edge ei , ei = vi→vi +1. Finally, a simple

cycle is a cycle in which {v 1,...,vn −1} are distinct. If a cycle is simple then the edges in the cycle are dis-

tinct, but the converse is not true.

We use the terms path and cycle to denote undirected paths and cycles. When edge direction is impor-

tant we explicitly state that a path or cycle is directed.

A control-flow graph (CFG) is a rooted directed graph G = (V, E) that corresponds to a procedure in a

program in the following way: each vertex in V represents a basic block of instructions (a straight-line

sequence of instructions) and each edge in E represents the transfer of control from one basic block to

another. In addition, the CFG includes a special vertex EXIT that corresponds to procedure exit (return).

The root vertex is the first basic block in the procedure. There is a directed path from the root to every ver-

tex and a directed path from every vertex to EXIT. Finally, for the profiling algorithm, it is convenient to

insert an edge EXIT →root to make the CFG strongly connected. This edge does not correspond to an

actual flow of control and is not instrumented. The EXIT vertex has no successors other than the root ver-

tex.

A vertex p is a predicate if there are distinct vertices a and b such that p→a and p→b.

A weighting W of CFG G assigns a non-negative value (integer or real) to every edge subject to

Kirchoff’s flow law: for each vertex v, the sum of the weights of the incoming edges of v must equal the

sum of the weights of the outgoing edges of v. The weight of a vertex is the sum of the weights of its

incoming (outgoing) edges. The cost of a set of edges and/or vertices is the sum of the weights of the

edges and/or vertices in the set.

An execution of a procedure is represented by a directed path EX through its CFG that begins at the root

vertex (procedure entry) and ends at EXIT (procedure return). The frequency of a vertex v or edge e in an

execution EX is the number of times that v or e appears in EX. If a vertex or edge does not appear in EX,

its frequency is zero, except that for any execution, the frequency of the edge EXIT→root is defined to be

the number of times that EXIT appears in the execution. The edge frequencies for any execution of a CFG

constitute a weighting of the CFG.

A spanning tree of a directed graph G= (V, E) is a subgraph H= (V, T), where T ⊆ E, such that every

pair of vertices in V is connected by a unique path (i.e., H connects all vertices in V and there are no cycles

in H). A maximum spanning tree of a weighted graph is one such that the cost of the tree edges is maximal.

The maximum spanning tree for a graph can be computed efficiently by a variety of algorithms [32].

Figure 1 illustrates these definitions. The first graph is the CFG of the program shown in the figure. This

graph has been given a weighting. The second graph is a maximum spanning tree of the first graph. Note

that any vertex in a spanning tree can serve as a root and that the direction of the edges in the tree is
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program

    while P do
       if Q  then 
               A
       else
               B 
       fi
       if R  then  break  fi
       C
   od

end

P

Q

A B

R C

EXIT

1

10

10

0.5

0.5

10.5

5.25 5.25

5.25 5.25
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Figure 1. A program, its CFG with a weighting, and a maximum spanning tree. The edge EXIT→P is needed so that
the flow equations for the root vertex (P) and EXIT are consistent. This edge does not correspond to an actual flow of
control and is not instrumented.
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Pipeless Cycle Diamond

Piped Cycles

Directed Cycle Other
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Figure 2. Classification of cycles.

unimportant. For example, vertices C and EXIT are connected in the spanning tree by the path

C→P←EXIT.

An underlying concept in the instrumentation problems we consider is that certain cycles in a CFG must

contain instrumentation code (i.e., the instrumentation code must break certain cycles). We classify cycles

based on the direction of their edges. Let u,v and w be three consecutive vertices in a cycle. There is a

fork at v if u←v→w, a join if u→v←w, and a pipe otherwise (u→v→w or u←v←w). A cycle is pipeless

if it contains no pipes (i.e, the direction of edges strictly alternate around the cycle). A cycle is piped if it

contains at least one pipe. Piped cycles are further classified: a directed cycle contains only pipes (all

edges are in the same direction); a diamond is a cycle with more than two distinct edges that has exactly

one fork and one join (there are two changes of direction in the cycle); other cycles are all other piped

cycles. Figure 2 gives examples of these cycles.
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3. PROGRAM PROFILING

In order to determine how many times each basic block in a program executes, the program can be instru-

mented with counting code. The simplest approach places a counter at every basic block (pixie and other

instrumentation tools use this method [31]). There are two drawbacks to such an approach: (1) too many

counters are used and (2) the total number of increments during an execution is larger than necessary.

The vertex profiling problem, denoted by Vprof (cnt), is to determine a placement of counters cnt (a set

of edges and/or vertices) in CFG G such that the frequency of each vertex in any execution of G can be

deduced solely from the CFG G and the measured frequencies of edges and vertices in cnt. Furthermore,

to reduce the cost of profiling, the set cnt should minimize cost for a weighting W.

A similar problem is the edge profiling problem, denoted by Eprof (cnt): determine a placement of

counters cnt in CFG G such that the frequency of each edge in any execution of G can be deduced solely

from the CFG G and the measured frequencies of edges and vertices in cnt. A solution to the edge fre-

quency problem obviously yields a solution to the vertex frequency problem by summing the frequencies

of incoming or outgoing edges of each vertex.

Given that we can place counters on vertices or edges, a counter placement can take one of three forms:

a set of edges (Ecnt); a set of vertices (Vcnt); a mixture of edges and vertices (Mcnt). Combined with the

two profiling problems, this yields six possibilities. We do not consider Eprof (Vcnt), since there are CFGs

for which there are no solutions to this problem [25]. That is, it is not always possible to determine edge

frequencies from vertex frequencies. Mixed placements are of interest because placing counters on ver-

tices rather than edges eliminates the need to insert unconditional jumps.1 On the other hand, a vertex is

executed more frequently than any of its outgoing edges, implying that it might be worthwhile to instru-

ment some outgoing edges rather than the vertex. The usefulness of mixed placements depends on the cost

of an unconditional jump relative to the cost of incrementing a counter in memory. On RISC machines (for

which we constructed a profiling tool) the code sequence for incrementing a counter or generating a tracing

token ranges from 5 to 11 instructions (cycles). The cost of an unconditional branch is quite small in com-

parison (usually 1 cycle, as the delay slot of an unconditional branch can almost always be filled with a

useful instruction). In this case, there is questionable benefit from mixed placements. In fact, Samples has

shown that mixed placements provide little benefit over edge placements on a machine in which the incre-

ment and branch costs were comparable, and were worse in some cases [28]. Furthermore, as shown in

Section 6.1, for all the benchmarks we examined, less than half of the instrumented edges (which is about

one quarter of the total number of control-flow edges) required unconditional jumps when profiling with

edge counters. For these reasons, we do not consider mixed counter placements.

We focus on the remaining three profiling problems: Vprof (Vcnt), Eprof (Ecnt), and Vprof (Ecnt). This

section presents four results:

(1) A comparison of the optimal solutions to Vprof (Vcnt), Eprof (Ecnt), and Vprof (Ecnt). Figure 3(a)

summarizes the relationship between these three problems for general CFGs. X ≤ Y means that for
���������������������������������������������������������������

1Placing instrumentation code along edges of the CFG essentially creates new basic blocks, which may require the
insertion of unconditional jumps (assuming that the linearization of the original basic blocks is the same in the instru-
mented program as in the original program). On the other hand, placing instrumentation code in vertices simply ex-
pands the extent of the original basic blocks, and does not require insertion of jumps. It is possible to rearrange the
placement of basic blocks to minimize the number of unconditional jumps needed, as discussed by Ramanath and Solo-
mon [27]. However, our algorithms do not perform such an optimization, as they respect the original linearization.
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any given CFG and weighting, an optimal solution to problem X has cost less than or equal to the

cost of an optimal solution to problem Y. In general, for any weighted CFG, an optimal solution to

Vprof (Ecnt) is always at least as cheap as Eprof (Ecnt) or Vprof (Vcnt).

(2) A characterization of when a set of edges Ecnt is necessary and sufficient for Eprof (Ecnt), and an

algorithm to solve Eprof (Ecnt) optimally. We also describe the problem introduced by early pro-

cedure termination and a simple solution.

(3) A characterization of when a set of edges Ecnt is necessary and sufficient for Vprof (Ecnt). How-

ever, it appears difficult to efficiently find a minimal size or cost set of such edges. We show that an

optimal solution to Eprof (Ecnt) is also an optimal solution to Vprof (Ecnt) for a large class of struc-

tured CFGs and present a heuristic for solving Vprof (Ecnt) using the Eprof (Ecnt) algorithm as a

subcomponent.

(4) A discussion of the time complexity of the profiling and tracing problems, based on their characteri-

zation as cycle breaking problems.

3.1. Comparing the Three Profiling Problems

This section examines the relationships between the optimal solutions to Vprof (Vcnt), Eprof (Ecnt), and

Vprof (Ecnt) for general CFGs, as summarized in Figure 3(a).

The three CFGs in Figure 4 illustrate optimal solutions to Vprof (Vcnt), Eprof (Ecnt), and Vprof (Ecnt)

(for the weighting given in the first CFG). The black dots represent counters. The costs of the three

counter placements are 124, 62 and 59, respectively. In each case, every counter is necessary to uniquely

determine a profile and no lower cost placements will suffice. For example, if the counter on vertex b in

case (a) were eliminated, it would be impossible to determine how many times b or e executed. In case (a),

the counts for vertices a, e, f, and EXIT are not directly measured, but can be deduced from the measured

vertices as follows: e = b; a = f = EXIT = g +h. In case (b), the count for each unmeasured edge is

uniquely determined by the counts for the measured edges by Kirchoff’s flow law (e.g.,

a→f = f→g + f→h − e→f ). In case (c), the count for each unmeasured edge except those in the set

{a→b, e→b, e→f, a→f} is uniquely determined by the measured edges. This yields enough information

to deduce the count for each vertex.

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Vprof(Ecnt) Vprof(Vcnt)Eprof(Ecnt)

Vprof(Ecnt)

Vprof(Vcnt)Eprof(Ecnt)(a)

(b)

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3. (a) The relationship between the costs of the optimal solutions of the three frequency problems for general
CFGs. (b) The relationship when the CFGs are constructed from while loops, if-then-else conditionals, and begin-end
blocks.
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(a) (b) (c)

cost = 53 + 43 + 22 + 2*3
     = 124

cost = 22 + 21 + 10 + 3*3
     = 62

cost = 22 + 21 + 10 + 2*3
     = 59
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f

g h

EXIT

a

b

c

d

e

f

g h
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Vprof(Vcnt) Vprof(Ecnt)Eprof(Ecnt)
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b
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3 3

3
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3 3
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3
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Figure 4. Optimal solutions for (a) vertex profiling with vertex counters, (b) edge profiling with edge counters and (c)
vertex profiling with edge counters.

For any CFG and weighting, an optimal solution to Vprof (Vcnt) never has lower cost than an optimal

solution to Vprof (Ecnt) (for every vertex v in Vcnt, v’s counter can be “pushed” off v onto each outgoing

edge of v, resulting in counter placement Ecnt, which clearly solves the vertex profiling problem with cost

equal to Vcnt). Figure 4 shows an example where Vprof (Ecnt) has lower cost than Vprof (Vcnt). The

counter placement in case (c) solves Vprof (Ecnt) and has lower cost than the counter placement in case (a)

that solves Vprof (Vcnt).

Since any solution to Eprof (Ecnt) must also solve Vprof (Ecnt), an optimal solution to Eprof (Ecnt) can

never have lower cost than an optimal solution to Vprof (Ecnt), for a given CFG and weighting. The

counter placement in case (c) solves Vprof (Ecnt) and has lower cost than the counter placement in case (b)

that solves Eprof (Ecnt). In comparing Eprof (Ecnt) and Vprof (Vcnt), there are examples in which one

has lower cost than the other and vice versa. Cases (b) and (a) of Figure 4 show an example where

Eprof (Ecnt) has lower cost than Vprof (Vcnt). Figure 4(c) can be easily modified to show an example

where Vprof (Vcnt) has lower cost than Eprof (Ecnt). Consider each black dot as a vertex in its own right

and split the dotted edge into two edges. The dots constitute the set Vcnt and solve Vprof (Vcnt) with cost

59. The optimal solution to Eprof (Ecnt) for this graph still has cost 62.
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3.2. Edge Profiling with Edge Counters

Eprof (Ecnt) can be solved by placing a counter on the outgoing edges of each predicate vertex. However,

this placement uses more counters than necessary. Knuth describes how it follows from Kirchoff’s law

that an edge-counter placement Ecnt solves Eprof (Ecnt) for CFG G = (V,E) iff (E − Ecnt) contains no

(undirected) cycle [15]. Since a spanning tree of a CFG represents a maximum subset of edges without a

cycle, it follows that Ecnt is a minimum size solution to Eprof (Ecnt) iff (E − Ecnt) is a spanning tree of G.

Thus, the minimum number of counters necessary to solve Eprof (Ecnt) is | E | − ( | V | −1).

To see how such a placement solves the edge frequency problem, consider a CFG G and a set Ecnt such

that E − Ecnt is a spanning tree of G. Let each edge e in Ecnt have an associated counter that is initially set

to 0 and is incremented once each time e executes. If vertex v is a leaf in the spanning tree (i.e., only one

tree edge is incident to v), then all remaining edges incident to v are in Ecnt. Since the edge frequencies for

an execution satisfy Kirchoff’s law, the unmeasured edge’s frequency is uniquely determined by the flow

equation for v and the known frequencies of the other incoming and outgoing edges of v. The remaining

edges with unknown frequency still form a tree, so this process can be repeated until the frequencies of all

edges in E − Ecnt are uniquely determined. If E − Ecnt contains no cycles but is not a spanning tree, then

E − Ecnt is a forest of trees. The above approach can be applied to each tree separately to determine the

frequencies for the edges in E − Ecnt.

Any of the well-known maximum spanning tree algorithms described by Tarjan [32] will efficiently find

a maximum spanning tree of a CFG with respect to a weighting. The edges that are not in the spanning tree

solve Eprof (Ecnt) and minimize the cost of Ecnt. As a result, counters are placed in areas of lower execu-

tion frequency in the CFG. To ensure that a counter is never placed on EXIT→root, the maximum span-

ning tree algorithm can be seeded with the edge EXIT→root. In fact, for any CFG and weighting, there is

always a maximum spanning tree that includes the edge EXIT→root. The derived count for the edge

EXIT→root represents the number of times the procedure associated with the CFG executed.

Figure 5(a) illustrates how the frequencies of edges in E − Ecnt can be derived from the frequencies of

edges in Ecnt. Black dots identify edges in Ecnt. The other edges are in E − Ecnt and form a spanning tree

of the CFG. The edge frequencies are those for the execution shown. However, we emphasize that the

only edges for which frequencies will be recorded are the edges with black dots. Let vertex P be the root

of the spanning tree. Vertex Q is a leaf in the spanning tree and has flow equation (P →Q = Q →A +
Q →B). Since the frequencies for P →Q and Q →A are known, we can substitute them into this equation

and derive the frequency for Q →B. Once the frequency for Q →B is known, the frequency for B →R can

be derived from the flow equation for B, and so on. For the weighting given in Figure 1, the counter place-

ment in Figure 5(a) has cost 16.75. However, Figure 5(b) shows a counter placement induced by the max-

imum spanning tree with resultant cost of 11.5.

The propagation algorithm in Figure 6 performs a post-order traversal of the spanning tree E − Ecnt to

propagate the frequencies of edges in Ecnt to the unprofiled edges in the spanning tree. The procedure

DFS calculates the frequency of a spanning tree edge. Since the calculation is carried out post-order, once

the last line in DFS(G, Ecnt, v, e) is reached, the counts of all edges incident to vertex v except e have

been calculated. The flow equation for v states that the sum of v’s incoming edges is equal to the sum of v’s

outgoing edges. One of these sums includes the count from edge e, which has been initially set to 0. The

count for e is found by subtracting the minimum of the two sums from the maximum.
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Figure 5. Solving Eprof (Ecnt) using the spanning tree. For the weighting given in Figure 1, the counter
placement in case (a) is not optimal (of minimal cost) but the counter placement in case (b) is optimal.

Although profiling has been described in terms of a single CFG, the algorithm requires few changes to

deal with multi-procedure programs. The pre-execution spanning tree algorithm and post-execution propa-

gation of edge frequencies can be applied to each procedure’s CFG separately. This simple extension for

multi-procedure profiling will determine the correct frequencies whenever interprocedural control-flow

occurs only via procedure call and return and each call eventually has a corresponding return.2 Statically-

determinable interprocedural jumps (other than procedure call and return) can be handled by adding edges

corresponding to the interprocedural jumps and instrumenting these edges. Determining whether or not

such an interprocedural edge needs to be instrumented would require interprocedural analysis that we do

not perform.

A problem arises with dynamically computed interprocedural jumps such as setjmp/longjmp in the

C language [14], or early program termination, as may be caused by a system call or an error condition. In

these cases, one or more procedures terminate before reaching the EXIT vertex, breaking Kirchoff’s law.

For example, suppose that the CFG in Figure 7(a) executes the path shown at the top of the figure. Further-

more, suppose that the execution terminates early at vertex A because of a divide by zero error. As a result,

control enters vertex A once via the edge Q→A once but never exits via A→R. However, because the pro-

pagation algorithm (see Figure 6) assumes that Kirchoff’s law holds at each vertex, edge A→R will receive

a count of 1, as shown in Figure 7(a). In this example, the count is off by one. However, in general, if

multiple procedures on the activation stack are exited early and early exiting is a common occurrence, the

counts may diverge greatly.
���������������������������������������������������������������

2For the purposes of determining the frequencies of intraprocedural control-flow edges, it does not matter whether pro-
cedures and functions are first class objects. For programs with a fixed call graph structure, the intraprocedural frequen-
cy information is sufficient to determine the frequency of edges in the call graph. For programs with procedure or
function parameters, a tool must record the callee at call sites at which the callee is determined at run-time.
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global
G: control-flow graph
E: edges of G
cnt: array[edge] of integer /* for each edge e in Ecnt, cnt[e] = frequency of e in execution */

procedure propagate_counts(Ecnt: set of edges)
begin

for each e ∈ E − Ecnt do cnt[e] := 0 od
DFS(Ecnt, root-vertex(G), NULL)

end

procedure DFS(Ecnt: set of edges; v: vertex; e: edge)
let IN (v) = { e ′ | e ′ ∈ E and v = tgt (e ′) } and OUT (v) = { e ′ | e ′ ∈ E and v = src (e ′) } in

in_sum := 0
for each e ′ ∈ IN (v) do

if (e ′ ≠ e) and e ′ ∈ E − Ecnt then DFS(Ecnt, src (e ′), e ′) fi
in_sum := in_sum + cnt[e ′]

od
out_sum := 0
for each e ′ ∈ OUT (v) do

if (e ′ ≠ e) and e ′ ∈ E − Ecnt then DFS(Ecnt, tgt (e ′), e ′) fi
out_sum := out_sum + cnt[e ′]

od
if e ≠ NULL then cnt[e] := max(in_sum, out_sum) − min(in_sum, out_sum) fi

ni
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 6. Edge propagation algorithm determines the frequencies of edges in the spanning tree E-Ecnt given the fre-
quencies of edges in Ecnt. The algorithm uses a post-order traversal of the spanning tree.
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Figure 7. (a) Early termination at vertex A yields incorrect counts, (b) which are corrected by the addition of edge
A→EXIT.
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In this case, information available on the activation stack is sufficient to correct the count error. Concep-

tually, for each procedure X on the activation stack that exits early an edge v→EXIT with a count of 1 is

added to procedure X’s CFG, where v is the vertex from which procedure X called the next procedure.

This edge models early termination of procedure X at vertex v. In practice, the edge v→EXIT is

represented by an “exit” counter that is associated with the vertex v. This counter is incremented once for

each time procedure X exits early when at vertex v. For early termination caused by a conditional excep-

tion (such as divide by zero) the increment code must be placed in the exception handler rather than at ver-

tex v, since the code should only be invoked only when v raises the exception. For early termination

caused by longjump, the increment code must also be in the handler since longjump may pop many

activation frames off the stack, each of which requires incrementing the associated exit counter.

Figure 7(b) illustrates how the early exit problem is solved. Because the procedure terminates early at

vertex A, the edge A→EXIT is added to the CFG and given a count of 1. This additional edge correctly

siphons off the incoming flow to vertex A so that the propagation algorithm yields correct counts. As

shown in case(b), edge A→R correctly receives a count of 0.

3.3. Vertex Profiling with Edge Counters

This section addresses the problem of vertex profiling with edge counters. Section 3.3.1 characterizes when

a set of edges Ecnt solves Vprof (Ecnt) and gives an algorithm for propagating edge frequencies through

the CFG in order to determine vertex frequencies. As discussed later in Section 3.4, it appears difficult to

solve Vprof (Ecnt) efficiently while minimizing the size or cost of Ecnt. However, as discussed in Section

3.3.2, there are certain classes of CFGs for which an optimal solution to Eprof (Ecnt) is also an optimal

solution to Vprof (Ecnt). For this class of CFGs, the counter placements induced by the maximum span-

ning tree are optimal. Finally, Section 3.3.3 presents a heuristic for finding an Ecnt placement to solve

Vprof (Ecnt) that improves on the spanning tree approach in certain situations.

3.3.1. Characterization and algorithm

Edge profiling with edge counters requires that every (undirected) cycle in the CFG contain a counter.

Since an edge profile determines a vertex profile, vertex profiling requires no more edge counters than does

edge profiling. However, as illustrated by the example in Figure 4(c), there are cases in which fewer edge

counters are needed for vertex profiling than for edge profiling. In this example, there is a cycle of

counter-free edges, yet there is enough information recorded to determine the frequency of every vertex.

This section formalizes this observation. That is, certain types of counter-free cycles are allowed when

using edge counters for vertex profiling, as captured by the following theorem:

THEOREM. A set of edges Ecnt solves Vprof (Ecnt) for CFG G = (V,E) iff each simple cycle in E − Ecnt is

pipeless (i.e., edges in any simple cycle in E − Ecnt alternate directions).

Pipeless cycles are allowed in E − Ecnt as well as non-simple piped cycles, as long as the simple cycles

that compose them are pipeless. In Figure 4(c), the counter-free cycle represented by the set of edges

{ a→b, e→b, e→f, a→f } is pipeless. In Figure 9(a), the counter-free edges contain a piped cycle; how-

ever, the cycle is not simple. Both simple counter-free cycles in this example are pipeless.

Let freq be the function mapping edges in a CFG to their frequency in an execution. We give an algo-

rithm that (given the frequencies of edges in Ecnt in the execution and the assumption that E − Ecnt con-

tains no simple piped cycle) will find a function freq ′ from edges to frequencies that is vertex-frequency
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equivalent to freq. That is, for any vertex v the sum of the frequencies of v’s incoming (outgoing) edges

under freq′ is the same as under freq. We first explain the algorithm and show how it operates on an exam-

ple. We then prove the correctness of the algorithm, showing that if E − Ecnt contains no simple piped

cycle then Ecnt solves Vprof (Ecnt). Finally, we show that if E − Ecnt contains a simple piped cycle then it

is not possible for Ecnt to solve Vprof (Ecnt).

Figure 8 presents the propagation algorithm. The frequencies for edges in Ecnt have been determined by

an execution EX. The algorithm operates as follows: while there is a (simple) cycle C in the set of edges

E −(Ecnt ∪ Break), an edge e from cycle C is added to the set Break and the frequency of edge e is initial-

ized to zero. Once E −(Ecnt ∪ Break) is acyclic, it follows that the frequencies of edges in Ecnt ∪ Break

uniquely determine the frequencies of the other edges (by the spanning tree propagation algorithm, as

given in Figure 6). As we will show, the vertex frequencies determined by these edge frequencies are the

true vertex frequencies in the execution EX.

Figure 9 presents an example of how this algorithm works. The CFG in Figure 9(a) contains two simple

cycles in E −Ecnt. As usual, edges in Ecnt are marked with black dots. Each of the counter-free simple

cycles is clearly pipeless. These two simple cycles combine into a non-simple cycle containing a pipe,

which is allowed under the structural characterization of Vprof (Ecnt). The edges in the CFG are num-

bered with their frequencies from some execution. The frequencies of the checked edges can be derived

easily from the frequencies of the edges in Ecnt. From these frequencies, the count of every vertex except

the grey vertex can clearly be determined. How do we derive counts for the edges in the two simple pipe-

less cycles in order to determine the frequency of the grey vertex? Suppose the algorithm chooses to break

the two simple cycles in E −Ecnt by putting the dashed edges (see Figure 9(b)) into the set Break, giving

both frequency 0, as shown in case (b). Spanning tree propagation of edge frequencies in the set

Ecnt ∪ Break to edges in E −(Ecnt ∪ Break) will assign unique frequencies to the other edges in the simple

pipeless cycles, as shown in case (b). The sum of the frequencies of the incoming (outgoing) edges to the

grey vertex is 2, which is the correct frequency (even though the frequencies of edges in the pipeless cycle

are not the same as in the execution).

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

/* Assumption: E − Ecnt contains no simple piped cycle */
/* for each edge e in Ecnt, cnt[e] = frequency of e in execution */

Break := ∅
while there is a simple cycle C in E −(Ecnt ∪ Break) do

let e be an edge in C in
Break := Break ∪ { e }
cnt[e] := 0

ni
od

propagate_counts(Ecnt ∪ Break) /* from Figure 6 */
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 8. Algorithm for propagating edge counts to determine vertex counts.



-14-

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

4 2

6

53

4 3 6

0
2

2

2

0−1

4 2
6

12

5
3

4

1
1 1

3

2
0 1

5

(a) (b)

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 9. (a) An example CFG in which E-Ecnt contains two simple pipeless cycles. (b) If the dashed edges are as-
signed frequency 0, spanning tree propagation will assign the remaining edges in the simple pipeless cycles the fre-
quencies shown. This yields a count of two for the grey vertex, which is its correct frequency.

We now prove the correctness of the algorithm. Let freq be the function mapping edges in a CFG to

their frequency in an execution, and let freq ′ be the function from edges to frequencies created by the

algorithm of Figure 8. We show that freq ′ is vertex-frequency equivalent to freq by induction on the size

of Break (as determined by the algorithm).

Base case: | Break | = 0. In this case, E −Ecnt contains no cycles. Therefore, Ecnt solves Eprof (Ecnt), so

freq ′ = freq. It follows directly that freq ′ is vertex-frequency equivalent to freq.

Induction Hypothesis: If | Break | ≤ n then freq′ is vertex-frequency equivalent to freq.

Induction Step: Suppose that | Break | = n +1. Consider taking an edge e from Break and putting it in Ecnt,

resulting in sets Breakn and Ecntn. By the Induction Hypothesis, the function freqn (defined by Breakn

and Ecntn) is vertex-frequency equivalent to freq. We show that function freq′ is vertex-frequency

equivalent to freqn, completing the proof. Let T = E−(Ecnt ∪ Break). The addition of edge e to T creates a

simple pipeless cycle C in T. We define a function g, based on function freqn, edge e, and cycle C, as

shown below. We show that function g has three properties:

(1) Function g is vertex-frequency equivalent to freqn;

(2) Function g satisfies Kirchoff’s flow law at every vertex;

(3) For each edge f ∈ Ecnt ∪ Break, g (f ) = freq ′(f ).

Points (2) and (3) imply that g and freq′ are identical functions (because the values of edges in

Ecnt ∪ Break uniquely determine the values of all other edges by Kirchoff’s flow law). Therefore, point (1)

implies that freq′ is vertex-frequency equivalent to freqn. The function g is defined as follows:
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g(f ) =

��
� �
� freqn(f ) + freqn(e)

freqn(f ) − freqn(e)

freqn(f )

otherwise

if edge f is in cycle C, in the same direction as edge e

if edge f is not in cycle C

We first show that Kirchoff’s flow law holds at every vertex under g and that g is vertex-frequency

equivalent to freqn. This is obvious for vertices that are not in C (since the frequency of any edge incident

to such a vertex is the same under g and freqn). Because every vertex v in C either appears in a fork or join

in the cycle, one of the edges incident to v will have freqn(e) subtracted from its frequency and the other

will have freqn(e) added to its frequency, thus preserving the flow law and vertex frequency at v.

We now prove point (3). It is clear that g (e) = 0 = freq′(e). We must show that for each edge

f ∈ Ecnt ∪ Breakn, g (f ) = freq ′(f ). By definition, for each edge f ∈/ C, g (f ) = freqn(f ). Cycle C con-

tains no edges from Ecnt ∪ Breakn. Since freq′(f ) = freqn(f ) for all edges in Ecnt ∪ Breakn, it follows that

for each such edge f, g (f ) = freq ′(f ).�

If E −Ecnt contains a simple piped cycle, then there are two executions of G with different frequencies

for some vertex but for which the frequencies of edges in Ecnt are the same. This is clear if E −Ecnt con-

tains a directed cycle, or two edge-disjoint directed paths between a pair of vertices (i.e., a diamond). Fig-

ure 10 gives an example of a CFG in which E −Ecnt contains a piped cycle (the pipe is at vertex B) that is

neither a directed cycle nor a diamond and shows two different execution paths. Both execution paths

traverse each instrumented edge (x,y,z) exactly once. However, EX 1 contains vertex B while EX 2 does not.

Another way to look at this is that the edge frequencies in a cycle in E −Ecnt are unconstrained. Let

freqn be a function mapping edges to values that satisfies Kirchoff’s flow law at every vertex. Applying

the function transformation defined in the above proof to freqn based on a piped cycle in E −Ecnt results in

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 10. An example of instrumentation that is not sufficient for vertex profiling. The dashed edges in the CFG con-
stitute a simple cycle of uninstrumented edges with a pipe (at vertex B). Executions EX 1 and EX 2 traverse each in-
strumented edge the same number of times but EX 1 contains B and EX 2 does not.



-16-

function g such that Kirchoff’s flow law holds at every vertex. While the frequency of each vertex in a

fork or join in the cycle remains the same (as shown above), the frequency of the vertex in the pipe will

have changed.

3.3.2. Cases for which Eprof (Ecnt) = Vprof (Ecnt)

This section examines a class of CFGs for which an optimal solution to Vprof (Ecnt) can be found

efficiently, namely those for which an optimal solution to Eprof (Ecnt) is also an optimal solution to

Vprof (Ecnt). Let G * represent all CFGs in which every cycle contains a pipe. For any CFG G in G * with

weighting W, the following statements are equivalent:

(1) Ecnt is a minimal cost set of edges such that E − Ecnt contains no simple piped cycle;

(2) E − Ecnt is a maximum spanning tree of G.

It follows directly from these two observations that for any CFG in G *, an optimal solution to Eprof (Ecnt)

is also an optimal solution to Vprof (Ecnt). The class of graphs G * contains CFGs with multiple exit loops

(such as in Figure 1), CFGs that can only be generated using gotos, and even some irreducible graphs. The

class G * contains those structured CFGs generated by while loops, if-then-else conditionals, and begin-

end blocks (because every simple cycle in these CFGs is either a directed cycle or a diamond). However,

in general, CFGs of programs with repeat-until loops or breaks are not always members of G *. The CFG

in Figure 4 is an example of such a graph.

3.3.3. Heuristic for Vprof (Ecnt)

Because we believe Vprof (Ecnt) is a hard problem to solve optimally, we developed a heuristic for

Vprof (Ecnt). The heuristic first computes a maximum spanning tree ST (inducing a counter placement on

the edges not in tree) and then checks if any counters can be removed without creating simple piped cycles

in the set of counter-free edges. An algorithm for the heuristic is given in Figure 11.

The heuristic makes use of the following observation: if ST is a spanning tree and edge e is not in ST,

then the addition of e to ST creates precisely one simple cycle Ce in ST. The heuristic examines each such

cycle Ce in turn. To prevent two counter-free pipeless cycles from combining into a simple counter-free

piped cycle, it marks all vertices in the cycle Ce when a counter is removed from e; a counter is removed

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Remove := ∅
unmark all vertices in G
find a maximum spanning tree ST of G
for each edge e ∈/ ST (in decreasing order in weight) do

add e to ST
if (the cycle Ce in ST is pipeless) and (no vertex in Ce is marked) then
mark each vertex in Ce

Remove := Remove ∪ { e }
fi
remove e from ST

od
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 11. A heuristic for Vprof (Ecnt).
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from an edge e only if cycle Ce is pipeless and contains no marked vertices. The heuristic is described in

detail in Figure 11. Upon termination, the set “Remove” contains all edges whose counters can be

removed safely. By considering edges in decreasing order of weight, the algorithm tries to remove

counters with higher cost first.

Consider the application of the heuristic to the CFG in Figure 4. Case (b) shows the counter placement

resulting from the maximum spanning tree algorithm. Removing the counter on edge e→f creates a pipe-

less cycle in the set of counter-free edges. Removing the counter from any other edge creates a piped cycle

in the set of counter-free edges. In this example, the heuristic produces the optimal counter placement in

case (c). However, there are examples for which this heuristic will not find an optimal solution to

Vprof (Ecnt).

3.4. Cycle Breaking Problems

The problems of profiling and tracing programs with edge instrumentation can be described as cycle break-

ing problems, where certain types of cycles in the CFG must contain instrumentation code in order to solve

a profiling or tracing problem. Figure 12 summarizes the classification of cycles presented in Section 2, the

problems they correspond to, and the known time complexity for (optimally) breaking each class of cycle.

Solving Eprof (Ecnt) corresponds to breaking all undirected cycles. Solving Vprof (Ecnt) corresponds to

breaking all simple piped cycles, as we have shown in Section 3.3. Finally, as discussed in Section 4, solv-

ing the tracing problem corresponds to breaking all directed cycles and diamonds.

Of course, we are interested in a minimum cost set of edges that breaks a certain class of cycles. Finding

a minimum size set of edges that breaks all directed cycles is an NP-complete problem (Feedback Arc

Set [9]). Maheshwari showed that finding a minimum size set of edges that breaks diamonds is also NP-
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Figure 12. Hierarchy of cycles, the profiling or tracing problems they correspond to, and time complexity for breaking
all cycles of a given type (P = polynomial; NP = NP-complete; ?? = unknown).
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complete (Uniconnected Subgraph [9, 20]). Minimizing with respect to a weighting (that satisfies

Kirchoff’s flow law) does not make either of these problems easier. Furthermore, it is easy to show that

optimally breaking both directed cycles and diamonds is no easier than either problem in isolation. Solving

the tracing problem so that the cost of the instrumented edges is minimized is an NP-complete problem, as

shown in an unpublished result by S. Pottle [24]. The reduction is similar to that used by Maheshwari but

is complicated by the requirement that a weighting satisfies Kirchoff’s flow law.

We believe that optimally solving Vprof (Ecnt) (minimizing the size or cost of Ecnt) is an NP-complete

problem, but do not have a proof as of yet. We have shown that a related problem, finding a minimum size

set of edges that breaks all pipes, is NP-complete. Breaking all pipes guarantees that all piped cycles will

be broken, but not necessarily optimally (as it is possible to break all piped cycles without breaking all

pipes).

4. PROGRAM TRACING

Just as a program can be instrumented to record basic block execution frequency, it also can be instru-

mented to record the sequence of executed basic blocks. The tracing problem is to record enough informa-

tion about a program’s execution to reproduce the entire execution. A straightforward way to solve this

problem is to instrument each basic block so whenever it executes, it writes a unique token (called a wit-

ness) to a trace file. In this case, the trace file need only be read to regenerate the execution. A more

efficient method is to write a witness only at basic blocks that are targets of predicates [17]. The following

code regenerates the execution from a predicate trace file and the program’s CFG G:

pc := root-vertex(G)
output(pc)
do

if not IsPredicate(pc) then pc := successor(G, pc)
else pc := read(trace) fi
output(pc)

until ( pc = EXIT )

Assuming a standard representation for witnesses (i.e., a byte, half-word, or word per witness), the tracing

problem can be solved with significantly less time and storage overhead than the above solution by writing

witnesses when edges are traversed (not when vertices are executed) and carefully choosing the witnessed

edges. Section 4.1 formalizes the tracing problem for single-procedure programs. Section 4.2 considers

complications introduced by multi-procedure programs.

4.1. Single-Procedure Tracing

In this section, assume basic blocks do not contain calls and that the extra edge EXIT→root is not included

in the CFG. The set of instrumented edges in the CFG is denoted by Ewit. For tracing, whenever an edge

in Ewit is traversed, a “witness” to that edge’s execution is written to a trace file. We assume that no two

edges in Ewit generate the same witness, although this is stronger than necessary as it may be possible to

reuse witnesses in some cases. The statement of the tracing problem relies on the following definitions:

DEFINITION. A path in CFG G is witness-free with respect to a set of edges Ewit iff no edge in the path is

in Ewit.

DEFINITION. Given a CFG G, a set of edges Ewit, and edge p→q where p is a predicate, the witness set (to

vertex q) for predicate p is:
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witness (G, Ewit, p, q) =

{ w | p→q ∈ Ewit (and writes witness w) }

∪ { w | x →y ∈ Ewit (and writes witness w) and ∃ witness-free path p→q→ . . . →x }

∪ { EOF | ∃ witness-free path p→q→ . . . →EXIT }

Figure 13 illustrates these definitions. We use witness (p, q) as an abbreviation for

witness (G, Ewit, p, q).

Let us examine how the execution in Figure 13 can be regenerated from its trace. Re-execution starts at

predicate P, the root vertex. To determine the successor of P, we read witness t from the trace, which is a

member of witness (P,A) but not of witness (P,B). Therefore, A is the next vertex in the execution. Vertex

C follows A in the execution as it is the sole successor of A. Since the edge that produced witness t (P→A)

has been traversed already, we read the next witness. Witness u is a member of witness (C,P) but not

witness (C,EXIT), so vertex P follows C. At vertex P, witness u is still valid (since the edge B →A has not

been traversed yet) and determines B as P’s successor. Continuing in this manner, the original execution

can be reconstructed.

If a witness w is a member of both witness (G, Ewit, p, a) and witness (G, Ewit, p, b), where a ≠ b,

then two different executions of G may generate the same trace, which makes regeneration based solely on

control-flow and trace information impossible. For example, in Figure 13, if the edge P→A did not gen-

erate a witness, then witness (P,A) = { u, v, EOF } and witness (P,B) = { u, v }. The executions

(P, A, C, P, B, C, EXIT) and (P, B, C, EXIT) both generate the trace (v, EOF). This motivates our

definition of the tracing problem:
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{ t }witness(P, A) = 
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{ t, u, v }witness(C, P) =

{ EOF }witness(C, EXIT) =
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Figure 13. Example of a traced function. Vertices P, B, and C are predicates. The witnesses are shown by labeled
dots on edges. For the execution shown, the trace generated is (t, u, v, EOF). The witness EOF is always the last wit-
ness in a trace. The execution can be reconstructed from the trace using the witness sets to guide which branches to
take.
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DEFINITION. A set of edges, Ewit, solves the tracing problem for CFG G, denoted by Trace (Ewit), iff for

each predicate p in G with successors q1, ..., qm, for all pairs (qi , qj) such that i ≠ j,

witness (G, Ewit, p, qi) ∩ witness (G, Ewit, p, qj) = ∅.

It is straightforward to show that Ewit solves Trace (Ewit) for CFG G iff E −Ewit contains no diamonds

or directed cycles. Optimally breaking diamonds and directed cycles is an NP-complete problem, as dis-

cussed in Section 3.4. Note that any solution to Eprof (Ecnt) or Vprof (Ecnt) is also a solution to

Trace (Ewit), as breaking all undirected cycles or all simple piped cycles is guaranteed to break all directed

cycles and diamonds. Edges not in the maximum spanning tree of the CFG comprise Ewit and solve

Trace (Ewit) (but not necessarily optimally). However, for any CFG G in G *, an optimal solution to

Eprof (Ecnt) is also an optimal solution to Trace (Ewit) (because all directed cycles and diamonds are

piped cycles and every cycle in a CFG from G * is piped).

Given a CFG G, a set of edges Ewit that solves Trace (Ewit), and the trace produced by an execution EX,

the algorithm in Figure 14 regenerates the execution EX.

4.2. Multi-Procedure Tracing

Unfortunately, tracing does not extend as easily to multiple procedures as profiling. There are several com-

plications that we illustrate with the CFG in Figure 13. Suppose that basic block B contains a call to pro-

cedure X and execution proceeds from P to B, where procedure X is called. After X returns, suppose that C

executes. This call creates problems for the regeneration process since the witnesses generated by pro-

cedure X and the procedures it invokes, possibly an enormous number of them, precede witness v in the

trace file.
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procedure regenerate(G: CFG; Ewit: set of witnessed edges; trace: file of witnesses )
declare

pc, newpc : vertices
wit : witness

begin
pc := root-vertex(G)
wit := read(trace)
output(pc)
do

if not IsPredicate(pc) then
newpc := successor(G, pc)

else
newpc := q such that wit ∈ witness (G, Ewit, pc, q)

fi
if pc→newpc ∈ Ewit then wit := read(trace) fi
pc := newpc
output(pc)

until ( pc = EXIT )
end
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Figure 14. Algorithm for regenerating an execution from a trace.
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In order to determine which branch of predicate P to take, the witnesses generated by procedure X could

be buffered or witness set information could be propagated across calls and returns (i.e., along call graph

edges as well as control-flow edges). The first solution is impractical since the number of witnesses that

may have to be buffered is unbounded. The second solution is made expensive by the need to propagate

information interprocedurally, and is complicated by multiple calls to the same procedure, calls to

unknown procedures, and recursive calls. Furthermore, if witness numbers are reused in different pro-

cedures, which greatly reduces the amount of storage needed for a witness, then the second approach

becomes even more complicated. (If a separate trace file were maintained for each procedure then all these

problems would disappear and extending tracing to multiple procedures would be quite straightforward.

However, this solution is not practical for anything but toy programs for obvious reasons.)

Our solution places “blocking” witnesses on some edges of the paths from a predicate to a call site, and

from a predicate to the EXIT vertex. This ensures that whenever the regeneration procedure is in CFG G

and reads a witness to determine which branch of a predicate to take, the witness will have been generated

by an edge in G.3

DEFINITION. The set Ewit has the blocking property for CFG G iff there is no predicate p in G such that

there is a witness-free directed path from p to the EXIT vertex or a vertex containing a call.

DEFINITION. The set { Ewit1, ..., Ewitm } solves the tracing problem for a set of CFGs {G 1, ..., Gm} iff,

for all i, Ewiti solves Trace(Ewiti) for Gi and Ewiti has the blocking property for Gi .

The regeneration algorithm in Figure 14 need only be modified to maintain a stack of currently active

procedures. When the algorithm encounters a call vertex, it pushes the current CFG name and pc value

onto the stack and starts executing the callee. When the algorithm encounters an EXIT vertex, it pops the

stack and resumes executing the caller.

An easy way to ensure that Ewit has the blocking property is to include each incoming edge to a call or

EXIT vertex in Ewit. Figure 15 illustrates why this approach is suboptimal. The shaded vertices (B, I, and

H) are call vertices. In the first subgraph, a blocking witness is placed on each incoming edge to a call ver-

tex (black dots). In addition, a witness is needed on edge B→D (white dot). This placement is suboptimal

because the witness on edge H →I is not needed, and because the witnesses on edges B→D and G→I

(with cost = 3) can be replaced by witnesses on edges B→D and B→E (with cost = 2). In the second sub-

graph, blocking witnesses are placed as far from call vertices as possible, resulting in an optimal place-

ment.

Consider a call vertex v and any directed path from a predicate p to v such that no vertex between p and

v in the path is a predicate. For any weighting of G, placing a blocking witness on the outgoing edge of

predicate p in each such path has cost equal to placing a blocking witness on each incoming edge to v

(since no vertex between p and v is a predicate). However, placing blocking witnesses as far away as pos-

sible from v ensures that no blocking witnesses are redundant. Furthermore, placing the blocking witnesses

in this fashion increases the likelihood that they solve Trace (Ewit).
���������������������������������������������������������������

3In some tracing applications, data other than witnesses (such as addresses) are also written to the trace file. Vertices in
the CFG that generate addresses can be blocked with witnesses so that no address is ever mistakenly read as a witness.
It would also be feasible in this situation to break the trace file into two files, one for the witnesses and the other for the
addresses, to avoid placing more blocking witnesses.



-22-

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

4

2 2

1 1

1 1

2 2

4

1

1

1

cost = 9

A

B C

D E F

G H

I

cost = 6

4

2 2

1 1

1 1

2 2

4

1

1

1

A

B C

D E F

G H

I

blockers(I)

blockers(H)

blockers(B)

{ B −> D,  B −> E,
   C −> F,  C −> H }

{ C −> F,  C −> H }

{ A −> B }

=

=

=

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 15. Two placements of blocking witnesses: a suboptimal placement and an optimal placement.

In general, it is not always the case that a blocking witness placement will solve Trace (Ewit). There-

fore, computing Ewit becomes a two step process: (1) place the blocking witnesses; (2) ensure that

Trace (Ewit) is solved by adding edges to Ewit. The details of the algorithm follow:

DEFINITION. Let v be a vertex in CFG G. The blockers of v are defined as follows:

blockers(G, v) = { p→x 0 | there is a path p→x 0→ . . . →xn where p is a predicate,

v = xn, and for 0 ≤ i < n, xi is not a predicate }

First, for each vertex v that is a call or EXIT vertex, all edges in blockers(G, v) are added to Ewit (which

is initially empty). To ensure that Ewit solves Trace (Ewit), we must add additional edges to Ewit so that

E−Ewit contains no diamonds or directed cycles. The maximum spanning tree algorithm can be modified

to add these edges. No edge that is already in Ewit is allowed in the spanning tree.4 Edges that are not in

the spanning tree are added to Ewit, which guarantees that Ewit solves Trace (Ewit). Applying this algo-

rithm to the control-flow fragment in Figure 16(a), the blocking phase adds the black dot edges to Ewit.

The spanning tree phase adds the white dot edge to Ewit.

One might question whether it is better to reverse the above process and first compute an Ewit that solves

Trace (Ewit), using the maximum spanning tree algorithm, and add blocking witnesses as needed after-

wards. Figure 16(b) shows that this approach can yield undesirable results. The black dot edges are placed

by the spanning tree phase and solve Trace (Ewit) but do not satisfy the blocking property. The white dot

edge must be added to satisfy the blocking property and creates a suboptimal Ewit.

���������������������������������������������������������������

4The modified spanning tree algorithm may not actually be able to create a spanning tree of G because of the edges al-
ready in Ewit. In this case the algorithm simply identifies the maximal cost set of edges in E −Ewit that contains no (un-
directed) cycle.
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Figure 16. Ordering of blocking witness placement and spanning tree placement affects optimality.

5. A HEURISTIC WEIGHTING ALGORITHM

In order to profile or trace efficiently, instrumentation code should be placed in areas of low execution fre-

quency. It may appear that to find areas of low execution frequency requires profiling. However, struc-

tural analysis of the CFG can often accurately predict that some portions are less frequently executed than

others. This section presents a simple heuristic for weighting edges, based solely on control-flow informa-

tion. As shown in Section 6, this simple heuristic is quite effective in reducing instrumentation overhead.

The basic idea is to give edges that are more deeply nested in conditional control structures lower weight,

as these areas will be less frequently executed. In general, every path through a loop requires instrumenta-

tion. However, within a loop containing conditionals, we would still like instrumentation to be as deeply

nested as possible. For the CFG in Figure 17, the heuristic will generate the weighting shown in case (a).

Any weighting of a CFG (i.e., edge frequencies satisfying Kirchoff’s flow law) that assigns each edge a

non-zero weight will give edges that are more deeply nested lower weight. As discussed in Section 7, there

are expensive matrix-oriented methods for generating weightings. Our heuristic has the advantage that it

requires only a depth-first search and topological traversal of the CFG.

The heuristic has several steps. First, a depth-first search of the CFG from its root vertex identifies back-

edges in the CFG. The heuristic uses a topological traversal of the backedge-free graph of the CFG to

compute the weighting. The heuristic uses natural loops to identify loops and loop-exit edges [1]. The

natural loop of a backedge x →y is defined as follows:

nat −loop (x →y) = {y} ∪ { w | there is a directed path from w to x that does not include y }

A vertex is a loop-entry if it is the target of one or more backedges. The natural loop of a loop-entry y,

denoted by nat −loop (y), is simply the union of all natural loops nat −loop (x →y), where x →y is a back-

edge. If a and b are different loop-entry vertices, then either nat −loop (a) and nat −loop (b) are disjoint or

one is entirely contained within the other. This nesting property is used to define the loop-exit edges of a

loop with entry y:



-24-

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

if ( P && ( Q || R ))
      X;

R

X

Q

P

EXIT

1

0.5

0.5

0.25 0.25

0.125 0.125

0.375

(a)

R

X

Q

P

EXIT
1

2

3

4

5

5
5

4

4

2

3

3

6

(b)

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 17. A program fragment, (a) its CFG with a weighting satisfying Kirchoff’s flow, and an optimal edge counter
placement (black dots). Case(b) shows a weighting derived using a post-order numbering of vertices (an edge’s value is
the post-order number of its source vertex), and the sub-optimal placement that results from finding a maximum span-
ning tree with respect to this weighting.

loop −exits (y) = { a →b ∈ E | a ∈ nat −loop (y) and b ∈/ nat −loop (y) }

Edge a →b is an loop-exit edge if there exists a loop-entry y such that a →b ∈ loop −exits (y).

The heuristic assumes each loop iterates LOOP_MULTIPLIER times (for our implementation, 10 times)

and that each branch of a predicate is equally likely to be chosen. Loop-exit edges are specially handled, as

described below. The weight of the edge EXIT →root is fixed at 1 and does not change. The edge

EXIT →root is not treated as a backedge even though it is identified as such by depth-first search. The fol-

lowing rules describe how to compute vertex and edge weights:

(1) The weight of a vertex is the sum of the weights of its incoming edges that are not backedges.

(2) If vertex v is a loop-entry with weight W and N = |loop −exits (v)|, then each edge in loop −exits (v)

has weight W/N.

(3) If v is a loop-entry vertex then let W be the weight of vertex v times LOOP_MULTIPLIER, otherwise

let W be the weight of vertex v. If WE is the sum of the weights of the outgoing edges of v that are

loop-exit edges, then each outgoing edge of v that is not a loop-exit edge has weight (W − WE)/N,

where N is the number of outgoing edges of v that are not loop-exit edges.

The rules are applied in a single topological traversal of the backedge-free graph of a CFG. An edge (pos-

sibly a backedge) is assigned a weight by the first rule that applies to it in the traversal, as follows. When

vertex v is first visited during the traversal, the weights of its incoming non-backedges are known. Rule (1)

determines the weight of vertex v. If vertex v is a loop-entry then rule (2) is used to assign a weight to each

edge in loop −exits (v). Finally, rule (3) determines the weight of each outgoing edge of v that is not a

loop-exit edge.
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6. PERFORMANCE RESULTS

This section describes several experiments that demonstrate that the algorithms presented above

significantly reduce the cost of profiling and tracing real programs. Sections 6.1 and 6.2 discuss the perfor-

mance of the profiling and tracing algorithms, respectively. Section 6.3 considers some optimizations that

can further decrease the overhead of profiling and tracing. Section 6.4 examines the effectiveness of the

heuristic weighting algorithm.

6.1. Profiling Performance

We implemented the profiling counter placement algorithm in qpt [18], which is a basic block profiler simi-

lar to MIPS’s pixie [31]. Qpt instruments object code and can either insert counters in every basic block in

a program (redundant mode) or along the subset of edges identified by the spanning tree algorithm (optimal

mode).

We used the SPEC benchmark suite to test qpt [6]. This is a collection of 10 moderately large Fortran

and C programs that is widely used to evaluate computer system performance. The programs were com-

piled at a high level of optimization (either -O2 or -O3, which does interprocedural register allocation).

However, we did not use the MIPS utility cord, which reorganizes blocks to improve cache behavior, or

interprocedural delay slot filling. Both optimizations confuse a program’s structure and greatly complicate

constructing a control-flow graph. Timings were run on a DECstation 5000/200 with local disks and 96MB

of main memory. Times are elapsed times.

Table 1 describes the 10 benchmarks and shows the size of the object files and the time required to insert

profiling code in redundant and optimal mode (keep in mind that qpt has not been tuned because its current

speed is more than adequate for most executables encountered in practice). As can be seen, instrumenting

for optimal profiling is slightly (22-38%) slower than instrumenting for redundant profiling. This is due to

the extra work to find the loops in a CFG and to compute a weighting, to drive the maximum spanning tree

algorithm. In practice, this extra instrumentation overhead is quickly regained from the reduction in

profiling overhead.

Graph 1 shows the (normalized) execution time of the benchmarks without profiling, with qpt redundant

profiling, with pixie profiling (which inserts a counter in each basic block), and with qpt optimal profiling.

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������
SPEC Size Redundant Optimal Increase
Benchmark Description (bytes) (sec.) (sec.) (Opt./Red.)��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
cc1 (C) C compiler 1075840 9.2 12.4 1.35
espresso (C) PLA minimization 298032 2.2 2.9 1.32
xlisp (C) Lisp interpreter 175920 3.8 4.8 1.27
eqntott (C) Boolean eqns. to truth table 94924 1.9 2.5 1.32
spice Circuit simulation 551836 1.1 1.4 1.27
doduc Monte Carlo hydrocode simul. 280940 1.9 2.5 1.32
dnasa7 Floating point kernels 162996 1.1 1.4 1.27
matrix300 Matrix multiply 122440 0.9 1.1 1.22
fpppp Two-electron integral deriv. 254720 1.7 2.1 1.24
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Table 1. SPEC benchmarks. Size of input object files and times for instrumenting programs for Redundant and Op-
timal profiling. The first four programs are C programs. The remainder are FORTRAN programs.
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Pixie rewrites the program to free 3 registers, which enables it to insert a code sequence that is almost half

the size of the one used by qpt (6 instructions vs. 11 instructions). Of course, pixie may have to insert spill

code in order to free registers.

As can be seen from Graph 1, Optimal profiling reduces the overhead of profiling dramatically over

Redundant profiling, from 10-225% to 5-91%. These timings are affected by variations in instruction and

data cache behavior caused by instrumentation. We measured profiling improvement in another way that

factors out these variations. Graph 2 records the reduction in counter increments in going from Redundant

to Optimal profiling (i.e., the number of counter increments in Redundant mode / the number of increments

in Optimal mode ). The graph also records the reduction in number of instrumentation instructions exe-

cuted (assuming 5 instructions for a counter increment and 1 instruction for an unconditional branch for the

edge profiling code). In general, this reduction is less than the reduction in counter increments since edge

profiling may require the insertion of unconditional jumps.

Fortunately, the greatest improvements occurred in programs in which profiling overhead was largest,

since these programs had more conditional branches and more opportunities for optimization. For pro-

grams that frequently executed conditional branches, the improvements were large. For the four C pro-

grams (cc1, espresso, xlisp, and eqntott), the placement algorithm reduced the number of increments by a

factor of 3-4 and the overhead by a factor of 2-3. For the Fortran programs, the improvements varied. In

programs with large basic blocks that execute few conditional branches (where profiling was already inex-

pensive), improved counter placement did not have much of an effect on the number of increments or the
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Graph 1. Normalized profiling execution times. For Redundant profiling, qpt inserts a counter in each basic block
(vertex). For Optimal profiling, qpt inserts a counter along selected edges (Eprof (Ecnt)). Pixie is a MIPS utility that
inserts a counter in each basic block.
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cost of profiling. The FORTRAN program doduc, while it has a dynamic block size of 12.4 instructions,

has “an abundance of short branches” [6] that accounts for its reduction in counter increments. The

decrease in run time overhead for doduc was substantial (38% to 5%). The fpppp benchmark produced an

interesting result. While it showed the largest reduction in counter increments, the overhead for measuring

every basic block was already quite low at 18% and the average dynamic basic block size was 103.5

instructions. This implies that large basic blocks dominated its execution. Thus, even though many basic

blocks of smaller size executed (yielding the dramatic reduction in counter increments), they contributed

little to the running time of the program.

Graph 3 compares the reduction in dynamic instrumentation overhead for the Eprof (Ecnt) algorithm

(optimal profiling), the Vprof (Ecnt) heuristic, and Knuth and Stevenson’s Vprof (Vcnt) algorithm, as com-

pared to redundant profiling (measure at every vertex). All algorithms used the same weighting to compute

a counter placement. Given a counter placement for one of the algorithms, we used the profile information

collected from a previous run to determine how many times each counter would have been incremented

and how many extra jumps would have been needed (Vprof (Vcnt) does not require extra jumps since

counting code is placed on vertices). By doing so, we avoided instrumenting and running the programs for
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Graph 2. Reduction in counter increments and instrumentation instructions due to optimized counter placement, as
guided by the heuristic weighting described in Section 5. Reduction in increments is (number of counter increments for
Redundant profiling / number of counter increments for Optimal profiling). Reduction in instrumentation is (5 *
number of basic blocks) / (5 * increments + number of extra jumps). The average dynamic basic block size (in instruc-
tions) for each program is shown in parenthesis.



-28-

cc1

espresso
xlisp

eqntott
spice

doduc
dnasa7

matrix
300

fpppp
tomcatv

0.0

1.0

2.0

3.0

4.0

Re
du

nd
an

t m
od

e /
 Op

tim
al m

od
e

Eprof(Ecnt)

Vprof(Ecnt)

Vprof(Vcnt)

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Graph 3. Comparison of instrumentation reduction of Eprof (Ecnt), Vprof (Ecnt), and Vprof (Vcnt). The larger a
plot, the better (i.e., the greater the reduction of instrumentation code). Instrumentation reduction = (5 *
basic blocks) / (5 * increments + number of extra jumps).

every algorithm, while still collecting accurate results. For all the benchmarks, Eprof (Ecnt) is superior to

Vprof (Vcnt), producing a greater reduction in instrumentation instructions, as predicted. The heuristic for

Vprof (Ecnt) yields almost no improvement over Eprof (Ecnt), as there are very few cases when a counter

can be eliminated.

Table 2 provides statistics on the number of edges in each program (“Total Edges”), the number of edges

that had counting code placed on them using the spanning tree algorithm (“Profiled Edges”), and the

number of profiled edges that did not require the insertion of an unconditional jump (“No-Jump Edges”).

We make two observations. First, notice that the percentage of all edges that are profiled is in the narrow

range of 39-46%. This is consistent with the facts that most CFGs have almost (but not quite) twice as

many edges as vertices and that the number of edge counters required for edge profiling is |E| − (|V| − 1).

Second, less than half of all profiled edges require the insertion of an unconditional jump.

6.2. Tracing Performance

The witness placement algorithm was implemented in the AE program-tracing system [17], which has

since been incorporated as part of the qpt tool. AE originally recorded the outcome of each conditional

branch and used this record to regenerate a full control-flow trace. One complication is that AE traces both

the instruction and data references so a trace file contains information to reconstruct data addresses as well

as the witnesses. Combining this information in one file requires additional blocking witnesses, as

described in Section 4.2.
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Total Profiled Edges No-Jump Edges���������������������������������������������������������������������������������

Program Edges # % of Total # % of Profiled����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
cc1 48398 20577 43 10533 51
espresso 11059 4540 41 2426 53
xlisp 4813 2207 46 1264 57
eqntott 3095 1296 42 756 58
spice 15145 5888 39 3131 53
doduc 7957 3128 39 1672 53
dnasa7 5517 2274 41 1241 55
matrix300 4744 1969 42 1116 57
fpppp 7042 2887 41 1630 56
tomcatv 4661 1923 41 1099 57�����������������������������������������������������������������������������������������������������������������������
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Table 2. Static statistics on control-flow edges. “Total Edges” shows the total number of control-flow graph edges in
each program. “Profiled Edges” shows the number of edges that had counters placed on them using the spanning tree
algorithm. “No-Jump Edges” shows the number of profiled edges that do not require the insertion of an unconditional
jump.

Table 3 shows the reduction in total file size (“File”), witness trace size (“Trace”), and execution time

that result from switching the original algorithm of recording each conditional (“Old”) to the witness place-

ment described in Section 4 (“New”). As with the profiling results, the programs with regular control-flow,

sgefa and pdp, do not gain much from the tracing algorithm. For the programs with more complex

control-flow, compress and polyd, the tracing algorithm reduced the size of the trace file by factors of 3 and

2.7 times, respectively.

In the discussion of tracing we assumed that a standard representation was used for witnesses (per CFG).

In modern architectures it is convenient for this representation to be a multiple of a byte. Thus, it is often

the case that we record more bits per witness than necessary. We explored another method for tracing,

called bit tracing, which seeks to reduce the size of the trace. With bit tracing, each outgoing edge of a

predicate vertex generates a witness and witness values are reused. For predicates with two successors,

only one bit of information is required to distinguish its witness sets. In general, a predicate with N succes-

sors requires log2N bits. Figure 18 illustrates the tradeoff between the spanning tree approach and bit trac-

ing. In case (a), witnesses are placed according to the spanning tree approach. No pair of distinct

witnesses from the set { a, b, c, d } can be assigned the same value, so two bits per witness are required. In

case (b), only one bit per witness is required. Any iteration of the loop in this CFG will generate three bits

of trace. However, in case (a) the amount of trace generated per iteration can either be two or four bits. In

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Program Old File New File Old/ Old Trace New Trace Old/ Old Run New Run Old/

(bytes) (bytes) New (bytes) (bytes) New (sec.) (sec.) New����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
compress 6,026,198 4,691,816 1.3 2,760,522 926,180 3.0 6.6 5.4 1.2
sgefa 1,717,923 1,550,131 1.1 1,298,882 1,131,091 1.2 4.1 4.5 0.9
polyd 19,509,062 16,033,055 1.2 5,523,958 2,047,951 2.7 19.0 15.5 1.2
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Table 3. Improvement in the AE program-tracing system. Old refers to the original version of AE, which recorded the
outcome of every conditional branch. New refers to the improved version of AE, which uses the witness placement al-
gorithm of Section 4. File refers to the total size of the recorded information, which includes both witness and data
references. Trace refers to the total size of the witness information.
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this example, neither witness placement is a clear winner.

If compared to the spanning tree approach that naively uses a byte (or more, if needed) of storage per

witness, bit tracing is clearly superior. Although more instrumentation code is executed, less trace is gen-

erated, which reduces I/O overhead. This method decreases the size of the trace 3-7 times over the span-

ning tree approach. However, as shown in Figure 18, by using only as many bits as necessary, the span-

ning tree approach can be improved upon. In this example, two bits per witness are needed. In general, if

there are N witnesses for a CFG then at most log2N bits per witness are needed. However, there are situa-

tions where witness values can be reused, possibly decreasing the number of bits needed. This is compli-

cated by the fact that different placements of witnesses may give rise to different opportunities for the reuse

of values. Further investigation in optimizing the spanning tree approach is clearly needed.

Bit tracing avoids the multi-procedure tracing problem discussed in Section 4.2 as there is no witness-

free directed path from a predicate to a call vertex. If an address trace also is generated from the program,

bit tracing requires that two separate files be maintained (for efficiency), one for the instruction trace and

one for the address trace. The cost of bit tracing is the additional implementation complexity required to

manage witnesses at the bit level.

6.3. Optimizations

Several optimizations can further decrease the overhead of profiling and tracing. The first optimization,

register scavenging, is specific to instrumenting object code. For RISC machines, counter increment code

requires two registers, one to hold the counter’s address (because addressing on RISC machines is done by

indirection off of a register) and one to hold the counter’s value. If both registers need to be saved and

restored (to preserve their values), the instrumentation code jumps from 5 to 11 instructions. Register

scavenging notes the unused caller-saved registers in a procedure. These registers can be used by
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Figure 18. Tradeoff between (a) placing witnesses according to the spanning tree approach and (b) placing witnesses
on every outgoing edge of a predicate vertex.
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instrumentation code without preserving their values, since the procedure’s callers expect these registers to

be modified.5 For many of the benchmarks, specifically the FORTRAN programs with large basic blocks

and few unused registers, register scavenging had little effect on execution overhead. For other bench-

marks, the results varied from small reductions of a few percent to larger reductions in the range of 6-21%.

The second optimization can substantially reduce profiling overhead by removing counters from loops.

If the number of iterations of a loop can be determined before the loop executes or from an induction vari-

able whose value is recorded before and after the loop, then a counter can be eliminated from the loop body

(allowing one counter-free path through the loop). Both Sarkar and Goldberg have successfully imple-

mented this approach in profiling tools [10, 29]. For example, Goldberg reports that for eqntott the reduc-

tion in increments (redundant/optimal profiling) increased from 4.3 to 7.7 after adding induction variable

analysis. Some scientific codes benefitted greatly from this analysis (a 33-fold decrease in instrumentation

code executed for matrix300). However, for pointer-chasing programs such as xlisp the benefits of this

analysis were quite small, as few induction variables are present in such programs.

As mentioned before, placing instrumentation code on edges may require the insertion of jumps in order

to avoid executing other instrumentation code. For example, in the control-flow fragment of Figure 19(a)

there are two instrumented incoming edges to a vertex. Because we use the general rule that the instrumen-

tation code associated with an edge is placed just before the code associated with the vertex that is the tar-

get of the edge, this fragment will require at least one unconditional jump (in order to jump over the instru-

mentation code associated with the other edge). However, the grey vertex has only one incoming edge and

only one outgoing edge, so the instrumentation point can be moved from its outgoing edge to its incoming

edge, resulting in the placement in case (b). This placement may require no extra jumps (unless the grey

vertex’s outgoing edge is a fall-through). Jump optimization searches for vertices with one incoming and

one outgoing edge with instrumentation code on the outgoing edge. The instrumentation code is simply

moved to the incoming edge. This simple optimization may reduce (and will never increase) the number of

extra jumps needed. In the case of xlisp, this optimization reduced execution overhead by 10 percent.

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 19. (a) Placement requiring insertion of jump. (b) No jumps required.
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5We discuss the problems of register scavenging and instrumenting object files in greater detail elsewhere [19].
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6.4. Effectiveness of the Heuristic Weighting Algorithm

The effectiveness of the heuristic weighting algorithm was measured in two ways, as presented in Graph 4.

First, we measured the reduction in counter increments (number of increments in Redundant mode /

number of increments in Optimal mode ) using an exact edge weighting from a previous run of the same

program with identical input. This number, “Exact-Max”, represents the best one could hope to do without

semantics-based optimizations (such as induction variable analysis). Second, for both the heuristic and

exact weightings, we also computed what the reduction in increments would be if a minimum spanning tree

were used to place counters. While the maximum spanning tree places counters in less frequently executed

areas of the CFG, a minimum spanning tree places counters in more frequently executed areas. Thus,

“Exact-Min” is the worst possible reduction for the spanning tree algorithm. As the difference between

“Exact-Min” and “Exact-Max” shows, there is great variation in the reduction in counter increments,

depending on which spanning tree is chosen. The heuristic is clearly successful at predicting areas of low

execution frequency, as shown by “Heuristic-Max”. Also, note that “Heuristic-Max” always produced a

greater reduction than “Heuristic-Min”. The difference in reduction between the heuristic and exact

weightings was usually small (ranging from 1% to 34%). Not surprisingly, the heuristic was quite accurate

for the FORTRAN programs with few conditional branchs.

Graph 5 shows the normalized times for the benchmarks run under Optimal profiling for the heuristic

weighting (corresponds to “Heuristic-Max” in Graph 4) and exact weighting (corresponds to “Exact-Max”

in Graph 4). In one case (fpppp), the run time with the exact weighting is greater than the run time with the
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Graph 4. Heuristic weighting vs. exact weighting: reduction in increments (Redundant/Optimal). Reductions in incre-
ments are computed for counter placements from both maximum and minimum spanning trees.
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Graph 5. Normalized profiling times for heuristic and exact weightings.

heuristic weighting. Such an aberration is most likely due to different instruction and data cache behavior

of the instrumented program under the different counter placements, and requires further investigation.

The heuristic weighting algorithm assumes each branch of a predicate is equally likely to be chosen. For

most programs, varying this probability does not have a great effect on instrumentation overhead. How-

ever, weighting schemes that attempt to pick likely branch directions independently may have greater suc-

cess. For example, favoring edges leading to blocks containing loops (which have a high dynamic cost)

reduces instrumentation overhead for a few of the benchmarks.

7. RELATED WORK

7.1.1. Edge Profiling

The spanning tree solution to Eprof (Ecnt) has been known for a long time. In the area of network pro-

gramming, the problem is known as the specialization of the simplex method to the network program [13].

Knuth describes how to use the spanning tree for profiling in [15]. Other authors that have written about

the application of the spanning tree to profiling include Goldberg [10], Samples [28], and Probert [25]. As

far as we know, Goldberg and Samples are the only other researchers that have implemented the spanning

tree approach and performed significant experimentation with real programs. Their work occurred con-

currently with ours.

Goldberg implemented edge profiling by instrumenting executable files [10]. His profiler was built as

part of a system to analyze the memory performance of programs [11]. Goldberg optimized his instrumen-

tation in two ways that we do not consider. First, his tool selected the two statically least-used registers in

the executable and eliminated all uses by inserting loads and stores around existing uses of these registers.
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This allows every counting code sequence to use these registers without saving and restoring them. A

similar approach is used by MIPS’s pixie profiling tool [31]. As a result, the number of instructions needed

to increment a counter in memory can be cut roughly in half. Our tool only looks for free registers to

scavenge and often must save and restore registers in the counter increment code sequence. Second, Gold-

berg identifies simple loop induction variables. This allows a counter to be eliminated from a loop

(because the number of iterations can be inferred from the beginning and ending values of the induction

variable), lowering instrumentation overhead drastically for scientific codes. Our tool does not perform

this optimization.

Samples considers a refinement that takes into account the unconditional jump that may have to be

inserted into the profiled program when placing a counter on an edge. His algorithm places counters on a

mixture of edges and vertices to reduce the number of unconditional jumps as well as the number of

counter increments. His approach is useful for architectures in which the cost of an unconditional jump is

comparable to the cost of incrementing a counter in memory. However, as mentioned before, Samples’

results show that the overhead incurred by mixed placements did not differ much from edge placements.

Probert discusses solving Eprof (Vcnt), which is not always possible in general. Using graph grammars,

he characterizes a set of “well-delimited” programs for which Eprof (Vcnt) can always be solved. This

class of graphs arises by introducing “delimiter” vertices into well-structured programs. Probert discusses

how to find a minimal number of vertex measurement points as opposed to a minimal cost set of measure-

ment points.

Sarkar describes how to choose profiling points using control dependence and has implemented a

profiling tool for the PTRAN system [29]. His algorithm finds a minimum sized solution to Eprof (Ecnt)

based on a variety of rules about control dependence, as opposed to the spanning tree approach. There are

several other major differences between his work and our work: (1) His algorithm only works for a sub-

class of reducible CFGs; (2) His algorithm does not use a weighting to place counters at points of lower

execution frequency. As a result, the algorithm may produce suboptimal solutions; (3) When the bounds of

a DO loop are known before execution of the loop, his algorithm eliminates the loop iteration counter, as

done by Goldberg.

7.1.2. Vertex Profiling

Knuth and Stevenson exactly characterize when a set of vertices Vcnt solves Vprof (Vcnt) and show how to

efficiently compute a minimum size Vcnt that solves Vprof (Vcnt) [16]. The authors note that their algo-

rithm can be modified to compute a minimum cost solution to Vprof (Vcnt) given a set of measured or

estimated vertex frequencies. Our work shows that it is less costly to measure vertex frequency by instru-

menting edges rather than vertices.

7.1.3. Tracing

Ramamoorthy, Kim, and Chen consider how to instrument a single-procedure program with a minimal

number of monitors, so the traversal of any directed path through the program may be ascertained after an

execution [26]. This is equivalent to the tracing problem for single-procedure programs discussed here.

The authors do not give an algorithm for reconstructing an execution from a trace or consider how to trace

multi-procedure programs. Further, they are interested in finding a minimal size solution to the tracing

problem, an NP-complete problem [20]. However, a minimum size solution does not necessarily yield a

minimum cost solution.
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7.1.4. Minimizing instrumentation overhead

A CFG has many spanning trees, each of which induces a counter placement with an associated run-time

overhead cost. Section 5 presented our heuristic for estimating edge frequency in order to drive the max-

imum spanning tree algorithm. This section compares our heuristic to other methods for minimizing instru-

mentation overhead (which may include methods for estimating frequency). We use the CFG in Figure

17(a) as a basis for comparing the various heuristics discussed below. The weighting of this CFG satisfies

the flow law and the edges with black dots are an optimal edge counter placement for profiling (with

respect to this weighting). The other edges form a maximum spanning tree. As mentioned before, our

heuristic generates the weighting in case (a).

Forman discusses the problem of minimizing counter overhead with the spanning tree approach from a

graph theoretic perspective [8]. He defines a partial order on the spanning trees of a CFG such that for any

weighting, if a spanning tree T is not a least element in the partial order then there is some spanning tree

lower in the order that induces a counter placement with lower cost than the one induced by T. Of course,

there may be more than one least element in the partial order. The spanning tree in Figure 17(a) is a least

element. Forman proposes a structural method for computing a least element, but it works only for struc-

tured CFGs. Our heuristic works for any CFG. He also proposes a more general solution that generates a

weighting, given branch probabilities for the predicate vertices in any CFG. A maximum spanning tree

found under a weighting is a least element in Forman’s partial order. To generate the weighting requires

matrix operations on what are essentially adjacency matrix representations of the CFG. As such, this gen-

eral approach would be much slower than our heuristic, which operates directly on the control-flow graph

structure. Our heuristic generates edge frequencies satisfying the flow law and can easily be adapted to

take branch probabilities into account.

Goldberg developed a heuristic for his profiling tool that uses a post-order numbering of the vertices in

the CFG (as determined by a depth-first search from the root vertex) to assign edge weights [10]. He

defines an edge’s weight to be the post-order number of its source vertex. However, if an edge is a loop

backedge then it is given a weight larger than the number of vertices in the graph. The rationale for this

heuristic is that “...a node always executes at least as many times as any of its descendants [successors];

hence, it seems best to place counters on nodes as far from the root as possible.” This heuristic clearly does

not produce a weighting satisfying the flow law, as Figure 17(b) shows. Because the distance of an edge

from the root vertex does not always correspond to that edge’s level of nesting, Goldberg’s heuristic will

not always lead to the best counter placements. In the example of Figure 17(b), the maximum spanning

tree for the given weighting (determined by his heuristic) induces a sub-optimal counter placement.

Wall experimented with a number of heuristics for estimating basic block and procedure profiles solely

from program text, reporting poor results [33]. Wall’s heuristics use information about loop nesting and

call graph structure to predict basic block and procedure profiles, but do not take into account conditional

control-flow (i.e., predicting that code that is more deeply nested in conditionals is executed less fre-

quently), as our heuristic does. It is this aspect of our heuristic that is key to reducing instrumentation over-

head (this is also the main idea behind Forman’s partial order). With Wall’s heuristic, every basic block

nested in the same number of loops gets equal weight. In the example graph of Figure 17, each block

would get equal weight, which is clearly not useful for the purposes of minimizing instrumentation cost.

Other authors have presented heuristics that are similar to ours, usually for the purpose of aiding code

optimization. For example, Fisher, Ellis, Ruttenberg, and Nicolau use loop nesting level and programmer-
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supplied hints to estimate block execution frequency for trace scheduling [7]. However, few of these

heuristics have the goal of producing edge frequencies satisfying the flow law.

None of the heuristics mentioned above nor our heuristic attempts to predict branch directions. If

branches can be accurately predicted, then instrumentation code can be placed on the less frequently exe-

cuted branch when a choice is possible. More recent work on branch prediction by Ball and Larus could be

used in this application [3].

8. CONCLUSIONS

This paper studied algorithms for efficiently profiling and tracing programs. These algorithms optimize

placement of instrumentation code with respect to a weighting of the control-flow graph. Empirical results

on real programs show that these algorithms are successful in reducing instrumentation overhead. Placing

instrumentation code along edges in the control-flow graph is essential to reduce both profiling and tracing

overhead. However, several open questions remain: (1) Is there an efficient algorithm to optimally solve

the vertex frequency problem with a set of edge counters or is the problem intractable? (2) Are there better

weighting schemes that can more accurately guide the placement of instrumentation code?
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