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Abstract

An obfuscation is a behaviour-preserving program transformation whose aim
is to make a program “harder to understand”. Obfuscations are applied to
make reverse engineering of a program more difficult. Two concerns about an
obfuscation are whether it preserves behaviour (i.e. it is correct) and the degree
to which it maintains efficiency. Obfuscations are applied mainly to object-
oriented programs but constructing proofs of correctness for such obfuscations
is a challenging task. It is desirable to have a workable definition of obfuscation
which is more rigorous than the metric-based definition of Collberg et al. and
overcomes the impossibility result of Barak et al. for their strong cryptographic
definition.

We present a fresh approach to obfuscation by obfuscating abstract data-
types allowing us to develop structure-dependent obfuscations that would other-
wise (traditionally) not be available. We regard obfuscation as data refinement
enabling us to produce equations for proving correctness and we model the data-
type operations as functional programs making our proofs easy to construct.
For case studies, we examine different data-types exploring different areas of
computer science. We consider lists letting us to capture array-based obfusca-
tions, sets reflecting specification based software engineering, trees demonstrat-
ing standard programming techniques and as an example of numerical methods
we consider matrices.

Our approach has the following benefits: obfuscations can be proved correct;
obfuscations for some operations can be derived and random obfuscations can
be produced (so that different program executions give rise to different obfusca-
tions). Accompanying the approach is a new definition of obfuscation based on
measuring the effectiveness of an obfuscation. Furthermore in our case studies
the computational complexity of each obfuscated operations is comparable with
the complexity of the unobfuscated version. Also, we give an example of how
our approach can be applied to implement imperative obfuscations.
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Preliminaries

Homer: “All right brain, you don’t like me and I don’t like you.
But let’s just do this and I can get back to killing you
with beer.”

The Simpsons — The Front (1993)

In this thesis, we consider the obfuscation of programs. “To Obfuscate”
means “To cast into darkness or shadow; to cloud, obscure”. From a Computer
Science perspective, an obfuscation is a behaviour-preserving program transfor-
mation whose aim is to make a program “harder to understand”. Obfuscations
are applied to a program to make reverse engineering of the program more dif-
ficult. Two concerns about an obfuscation are whether it preserves behaviour
(i.e. it is correct) and the degree to which it maintains efficiency.

Example

As an example of obfuscation, consider the program in Figure 1. The method
start takes an integer value array as input and the array is returned from the
method. But what does this method do to the elements of the array? The
obfuscation was achieved by using some of the methods outlined in this thesis.

Aims of the thesis

The current view of obfuscation (in particular, the paper by Collberg et al. [10])
concentrates on object-oriented programs. In [10], obfuscations for constructs
such as loops, arrays and methods are stated informally: without proofs of
correctness. Constructing proofs of correctness for imperative obfuscations is a
challenging task.

We offer an alternative approach based on data refinement and functional
programming. We want our approach to have the following objectives:

• to yield proofs of correctness (or even yield derivations) of all our obfus-
cations

• to use simple, established refinement techniques, leaving the ingenuity for
obfuscation

• to generalise obfuscations to make obfuscations more applicable.

7
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public class c
{ d t1 = new d();

public int [ ] b;
int r ;

public class d
{ public d a1;

public d a2;
public d a3;
public int z ;

}

public int [ ] start(int [ ] b)
{ t1 = null;

r = 0;
while (r < b.Length) { i(ref t1, b[r ]); r + +; }
r = 0;
s(t1);
return b;

}

void s(d t2)
{ if (t2 == null) return;

int k = t2.z ;
if (p(k)) s(t2.a1); else s(t2.a2);
b[r ] = g(k);
r + +;
s(t2.a3);

}

void i(ref d t2, int k)
{ int j = f (k);

if (t2 == null) { t2 = new d();
t2.z = j ; }

else { if (j < t2.z )
{ if (p(t2.z )) { i(ref t2.a1, g(j )); i(ref t2.a2, h(j )); }

else { i(ref t2.a1, f (j )); i(ref t2.a2, g(j )); }
else i(ref t2.a3, g(j )); }

}

bool p(int n) { return (n %2 == 0); }
int f (int n) { return (3 ∗ n + 1); }
int g(int n) { return ((n − 1)/3); }
int h(int n) { return ((4 ∗ n + 5)/3); }

}

Figure 1: An example of obfuscation
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We study abstract data-types (consisting of a local state accessible only
by declared operations) and define obfuscations for the whole data-type. In
other words, we obfuscate the state of the data-type under the assumption that
the only way it is being accessed is via the operations of the type. Different
operations (on a given state) may require different obfuscations.

To date, obfuscation has been an area largely untouched by the formal
method approach to program correctness. We regard obfuscation as data re-
finement allowing us to produce equations for proving correctness. We model
the data-type operations as functional programs. That enables us to establish
correctness easily as well as providing us with an elegant style in which to write
definitions of our operations. Two benefits of using abstract data-types are that
we can specify obfuscations which exploit structural properties inherent in the
data-type; and the ability to create random obfuscations. We also provide a
new definition of obfuscation that avoids the impossibility problem considered
by Barak et al. [6] and is appropriate for our data-type approach.

Structure of the thesis

The thesis is structured as follows:

• In Chapters 1 and 2 we consider the current view of obfuscation. In
Chapter 1 we discuss the need for obfuscation and summarise some of the
obfuscations from [10]. Also we evaluate the definitions for obfuscation
given in [6, 10]. In Chapter 2 we look at the .NET Intermediate Language
[23] and discuss joint work with Oege de Moor and Ganesh Sittampalam
that allows us to write some specifications of obfuscations for Intermediate
Language.

• In Chapter 3 we give an alternative view of obfuscation by concentrating
on abstract data-types. We use data refinement and functional program-
ming to produce a framework that allows us to prove the correctness of
obfuscations (or even to derive them) and we give a definition of obfusca-
tion pertinent to our approach.

• In Chapter 4 we use our approach to generalise an obfuscation called array
splitting and we show how to split more general data-types.

• The next three chapters concentrate on specific case studies for different
data-types. In Chapters 5 and 6 we use the results on data-type splitting
to show how to construct obfuscations for sets and matrices. In Chapter
7 we give a transformation suitable for obfuscating binary trees.

• Finally, in Chapter 8, we summarise our results and discuss possible areas
for future work.

Contributions

The thesis provides the following contributions.
Using established work on refinement, abstract data-types and functional

programming, a new approach to obfuscation is developed. This approach has
the following benefits:
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• Obfuscations can be proved correct.

• The obfuscations of some operations can be derived from their unobfus-
cated versions.

• Random obfuscations can be produced so that different program execu-
tions give rise to different obfuscations, making them particularly obscure.

The approach is accompanied by a new definition, based on measuring the
effectiveness of an obfuscation. Furthermore, in the case studies included here,
our obfuscations are (close to) optimal in the sense that the computational
complexity of each obfuscated operation is comparable with the complexity of
the unobfuscated version.

Notation

We will use various programming languages in this thesis and so we adopt the
following conventions to differentiate between the different languages:

• C#: We use bold sans serif for standard keywords and italics for variables.

• IL: We use typewriter font for the whole language.

• Prolog: We write all predicates in italics.

• Haskell: Operations are written in sans serif font, variables in italics and
keywords in normal font.

Type declarations are of the form f :: T — we use this notation instead of
the more usual notation f : T so that type statements and list constructions
are not confused.

We denote lists (and occasionally arrays) by [ ], sets by { }, sequences
by 〈[ ]〉 and a split data-type by 〈 〉 (see Chapter 4 for the definition of split
data-types). We assume the following types: N (natural numbers), Z (integers)
and B (Booleans). Also, we write [a..b] to denote {i :: Z |a ≤ i ≤ b} and
similarly [a..b) to denote {i :: Z | a ≤ i < b}.
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Chapter 1

Obfuscation

Scully: “Not everything is a labyrinth of dark conspiracy.
And not everyone is plotting to deceive, inveigle
and obfuscate”

The X-Files — Teliko (1996)

This chapter introduces the notion of obfuscation, summarises specific ex-
amples given in the original paper [10] and discusses some related work.

1.1 Protection

Suppose that a programmer develops a new piece of software which contains
a unique innovative algorithm. If the programmer wants to sell this software,
it is usually in the programmer’s interest that the algorithm should remain
secret from purchasers. What can the programmer do to stop the algorithm
from being seen or modified by a client? A similar issue arises when a piece of
software contains a date stamp that allows it to be used for a certain length of
time. How can we stop people from identifying (and changing) the date stamp?

We will assume that it is possible for an executable file to be decompiled to
a high-level language and so the source code of an executable can be studied.
In fact, this is the situation with Java Bytecode and the .NET framework (see
Chapter 2 for more details). Therefore, we need to consider ways of protecting
software so that it is hard to understand a program after decompilation. Here
are some of the protections that are identified in [10]:

• Server-side execution — this involves clients remotely accessing the soft-
ware from a programmer’s site. The downside of this approach is that the
application may become slow and hard to use due to limits of network
capacity.

• Watermarking — this is useful only for “stamping” a product. Stamps are
used for copyright protection — but they still do not prevent people from
stealing parts of the program, although there are methods for embedding
a watermark in a program [9, 42].

12



CHAPTER 1. OBFUSCATION 13

• Encryption — an encryption algorithm could be used to encrypt the entire
code or parts of the code. However, the decryption process must be in
the executable and so a client could intercept the code after decryption
has taken place. The only really viable option is for the encryption and
decryption processes take place in hardware [30].

1.2 Obfuscation

We now consider a different technique for software protection: code obfuscation.
An obfuscation is a behaviour-preserving transformation whose aim is to make
a program “harder to understand”.

Collberg et al. [10] do not define obfuscation but instead qualify “hard to
understand” by using various metrics which measure the complexity of code.
For example:

• Cyclomatic Complexity [37] — the complexity of a function increases with
the number of predicates in the function.

• Nesting Complexity [29] — the complexity of a function increases with
the nesting level of conditionals in the function.

• Data-Structure Complexity [40] — the complexity increases with the com-
plexity of the static data structures declared in a program. For example,
the complexity of an array increases with the number of dimensions and
with the complexity of the element type.

Using such metrics Collberg et al. [10] measure the potency of an obfuscation
as follows. Let T be a transformation which maps a program P to a program
P ′. The potency of a transformation T with respect to the program P is defined
to be:

Tpot(P) =
E (P ′)

E (P)
− 1

where E (P) is the complexity of P (using an appropriate metric). T is said to
be a potent obfuscating transformation if Tpot(P) > 0 (i.e. if E (P ′) > E (P)).
In [10], P and P ′ are not required to be equally efficient — it is stated that
many of the transformations given will result in P ′ being slower or using more
memory than P .

Other properties Collberg et al. [10] measure are:

• Resilience — this measures how well a transformation survives an attack
from a deobfuscator. Resilience takes into account the amount of time
required to construct a deobfuscator and the execution time and space
actually required by the deobfuscator.

• Execution Cost — this measures the extra execution time and space of an
obfuscated program P ′ compared with the original program P .

• Quality — this combines potency, resilience and execution cost to give an
overall measure.
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These three properties are measured informally on a non-numerical scale (e.g.
for resilience, the scale is trivial, weak, strong, full, one-way).

Another useful measure is the stealth [12] of an obfuscation. An obfusca-
tion is stealthy if it does not “stand out” from the rest of the program, i.e. it
resembles the original code as much as possible. Stealth is context-sensitive —
what is stealthy in one program may not be in another one and so it is difficult
to quantify (as it depends on the whole program and also the experience of the
reader).

The metrics mentioned above are not always suitable to measure the degree
of obfuscation. Consider these two code fragments:

if (p) {A; } else { if (q) {B ; } else {C ; }} (1.1)

if (p) {A; };

if (¬p ∧ q) {B ; }; (1.2)

if (¬p ∧ ¬q) {C ; }

These two fragments are equivalent if A leaves the value of p unchanged and B
leaves p and q unchanged. If we transform (1.1) to (1.2) then the cyclomatic
complexity is increased but the nesting complexity is decreased. Which fragment
is more obfuscated?

Barak et al. [6] takes a more formal approach to obfuscation — their notion
of obfuscation is as follows. An obfuscator O is a “compiler” which takes as
input a program P and produces a new program O(P) such that for every P :

• Functionality — O(P) computes the same function as P .

• Polynomial Slowdown — the description length and running time of O(P)
are at most polynomially larger than that of P .

• “Virtual black box” property — “Anything that can be efficiently com-
puted from O(P) can be efficiently computed given oracle access to P” [6,
Page 2].

With this definition, Barak et al. construct a family of functions which is un-
obfuscatable in the sense that there is no way of obfuscating programs that
compute these functions. The main result of [6] is that their notion of obfusca-
tion is impossible to achieve.

This definition of obfuscation, in particular the “Virtual Black Box” prop-
erty, is evidently too strong for our purposes and so we consider a weaker notion.
We do not consider our programs as being “black boxes” as we assume that any
attacker can inspect and modify our code. Also we would like an indication of
how “good” an obfuscation is. In Section 3.3 we will define what we mean by
“harder to understand”, however for the rest of the chapter (and for Chapter
2) we will use the notion of obfuscation from Collberg et al. [10].

1.3 Examples of obfuscations

This section summarises some of the major obfuscations published to date [10,
11, 12]. First, we consider some of the commercial obfuscators available and
then discuss some data structure and control flow obfuscations that are not
commonly implemented by commercial obfuscators.
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1.3.1 Commercial Obfuscators

We briefly describe a few of the many commercial obfuscators that are available.
Many commercial obfuscators employ two common obfuscations: renaming and
string encryption. Renaming is a simple obfuscation which consists of taking
any objects (such as variables, methods or classes) that have a “helpful” name
(such as “total” or “counter”) and renaming them to a less useful name.

Strings are often used to output information to the user and so some strings
can give information to an attacker. For example, if we saw the string “Enter
the password” in a method, we could infer that this method is likely to require
the input of passwords! From this, we may be able to see what the correct
passwords are or even bypass this particular verification. The idea of string
encryption is to encrypt all the strings in a program to make them unreadable
so that we can no longer obtain information about code fragments simply by
studying the strings. However, string encryption has a major drawback. All of
the output strings in a program must be displayed properly on the screen during
the execution of a program. Thus the strings must first be decrypted and so the
decryption routine will be contained in the program itself, as will the key for the
decryption. So by looking in the source code at how strings are processed before
being output we should be able to see how the strings are decrypted. Thus we
could easily see the decrypted strings by passing them through the decryption
method. Thus string encryption should not be considered as strong protection.

Here are some obfuscators which are commercially available:

• JCloak [26] This works on all classes in a program by looking at the
symbolic references in the class file and generating a new unique and
unintelligible name for each symbol name.

• Dotfuscator [49] This uses a system of renaming classes, fields and meth-
ods called “Overload-Induction”. This system induces method overloading
as much as possible and it tries to rename methods to a small name (e.g. a
single character). It also applies string encryptions and some control-flow
obfuscations.

• Zelix [57] This obfuscator uses a variety of different methods. One method
is the usual name obfuscation and another is string encryption which en-
crypts strings such as error messages which are decrypted at runtime. It
also uses a flow obfuscation that tries to change the structure of loops by
using gotos.

• Salamander [46] Variable renaming is used to try to convert all names to
“A” — overloading is then used to distinguish between different methods
and fields. Any unneccesary meta-data (such as debug information and
parameter names) is removed.

• Smokescreen [48] This uses some control-flow obfuscations. One obfus-
cation shuffles stack operations so that popping a stack value into a local
variable is delayed. The aim of this transformation is to make it more
difficult for decompilers to determine where stack values come from. An-
other obfuscation adds fake exceptions so that the exception block partly
overlaps with an existing block of code. The aim is to make control flow
analysis more difficult. Another transformation to the control flow is made
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by changing some switch statements by attempting to make the control
flow appear to bypass a switch statement and go straight to a case state-
ment.

1.3.2 Opaque predicates

One of the most valuable obfuscation techniques is the use of opaque predicates
[10, 12]. An opaque predicate P is a predicate whose value is known at obfus-
cation time — PT denotes a predicate which is always True (similarly for PF )
and P? denotes a predicate which sometimes evaluates to True and sometimes
to False.

Here are some example predicates which are always True (supposing that x
and y are integers):

x 2 ≥ 0

x 2(x + 1)2 ≡ 0 (mod4)

x 2 )= 7y2 − 1

Opaque predicates can be used to transform a program block B as follows:

• if (PT ) {B ; }
This hides the fact that B will always be executed.

• if (PF ) {B ′; } else {B ; }
Since the predicate is always false we can make the block B ′ to be a copy
of B which may contain errors.

• if (P?) {B ; } else {B ′; }
In this case, we can have two copies of B each with the same functionality.

We can also use opaque predicates to manufacture bogus jumps. Section 2.2.2
shows how to use an opaque predicate to create a jump into a while loop so that
an irreducible flow graph is produced.

When creating opaque predicates, we must ensure that they are stealthy so
that it is not obvious to an attacker that a predicate is in fact bogus. So we
must choose predicates that match the “style” of the program and if possible
use expressions that are already used within the program. A suitable source of
opaque predicates can be obtained from considering watermarks, such as the
ones discussed in [9, 42].

1.3.3 Variable transformations

In this section, we show how to transform an integer variable i within a method.
To do this, we define two functions f and g :

f :: X → Y
g :: Y → X

where X ⊆ Z — this represents the set of values that i takes. We require
that g is a left inverse of f (and so f needs to be injective). To replace the
variable i with a new variable, j say, of type Y we need to perform two kinds of
replacement depending on whether we have an assignment to i or use of i . An
assignment to i is a statement of the form i = V and a use of i is an occurrence
of i which is not an assignment. The two replacements are:
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• Any assignments of i of the form i = V are replaced by j = f (V ).

• Any uses of i are replaced by g(j ).

These replacements can be used to obfuscate a while loop.

1.3.4 Loops

In this section, we show some possible obfuscations of this simple while loop:

i = 1;
while (i < 100)
{

. . .
i + +;

}

We can obfuscate the loop counter i — one possible way is to use a variable
transformation. We define functions f and g to be:

f = λ i .(2i + 3)
g = λ i .(i − 3) div 2

and we can verify that g · f = id .
Using the rules for variable transformation (and noting that the statement

i + +; corresponds to a use and an assignment), we obtain:

j = 5;
while ((j − 3)/2 < 100)
{

. . .
j = (2 ∗ (((j − 3)/2) + 1)) + 3;

}

With some simplifications, the loop becomes:

j = 5;
while (j < 203)
{

. . .
j = j + 2;

}

Another method we could use is to introduce a new variable, k say, into
the loop and put an opaque predicate (depending on k) into the guard. The
variable k performs no function in the loop, so we can make any assignment to
k . As an example, our loop could be transformed to something of the form:

i = 1;
k = 20;
while (i < 100 && (k ∗ k ∗ (k + 1) ∗ (k + 1)%4 == 0))
{

. . .
i + +;
k = k ∗ (i + 3);

}
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We could also put a false predicate into the middle of the loop that attempts to
jump out of the loop.

Our last example changes the original single loop into two loops:

j = 0;
k = 1;
while (j < 10)
{

while (k < 10)
{

<replace uses of i by (10 ∗ j ) + k >
k + +;

}
k = 0;
j + +;

}

1.3.5 Array transformations

There are many ways in which arrays can be obfuscated. One of the simplest
ways is to change the array indices. Such a change could be achieved either by a
variable transformation (such as in Section 1.3.3) or by defining a permutation.
Here is an example permutation for an array of size n:

p = λi .(a × i + b (mod n)) where gcd (a,n) = 1

Other array transformations involve changing the structure of an array. One
way of changing the structure is by choosing different array dimensions. We
could fold a 1-dimensional array of size m×n into a 2-dimensional array of size
[m,n]. Similarly we could flatten an n-dimensional array into a 1-dimensional
array.

Before performing array transformations, we must ensure that the arrays are
safe to transform. For example, we may require that a whole array is not passed
to another method or that elements of the array do not throw exceptions.

1.3.6 Array Splitting

Collberg et al. [10] gives an example of a structural change called an array split:

int [ ] A = new int [10];

. . .
A[i ] = . . . ;

⇒
int [ ] A1 = new int [5];
int [ ] A2 = new int [5];
. . .
if ((i %2) == 0) A1[i/2] = . . . ;

else A2[i/2] = . . . ;

(1.3)

How can we generalise this transformation? We need to define a split so that
an array A of size n is broken up into two other arrays. To do this, we define
three functions ch, f1 and f2 and two new arrays B1 and B2 of sizes m1 and m2

respectively (where m1 + m2 ! n).
The types of the functions are as follows:

ch :: [0..n) → B

f1 :: [0..n) → [0..m1)

f2 :: [0..n) → [0..m2)
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Then the relationship between A and B1 and B2 is given by the following rule:

A[i ] =

{

B1[f1(i)] if ch(i)
B2[f2(i)] otherwise

To ensure that there are no index clashes we require that f1 is injective for the
values for which ch is true (similarly for f2).

This relationship can be generalised so that A could be split between more
than two arrays. For this, ch should be regarded as a choice function — this
will determine which array each element should be transformed to.

We can write the transformation described in (1.3) as:

A[i ] =

{

B1[i div 2] if i is even
B2[i div 2] if i is odd

(1.4)

We will consider this obfuscation in much greater detail: in Section 2.3.7 we
give a specification of this transformation and in Chapter 4 we apply splits to
more general data-types.

1.3.7 Program transformation

We now show how we can transform a method using example (1.4) above. The
statement A[i ] = V is transformed to:

if ((i%2) == 0) {B1[i/2] = V ; } else {B2[i/2] = V ; } (1.5)

and an occurrence of A[i ] on the right hand side of an assignment can be dealt
with in a similar manner by substituting either B1[i/2] or B2[i/2] for A[i ].

As a simple example, we present an imperative program for finding the first
n Fibonacci numbers:

A[0] = 0;
A[1] = 1;
i = 2;
while (i ≤ n)
{ A[i ] = A[i−1] + A[i−2];

i + +;
}

In this program, we can easily spot the Fibonacci identity:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n−1) + fib(n−2) (∀n ≥ 2)

Let us now obfuscate the array by using the rules above. We obtain the
program shown in Figure 1.1 which, after some simplifications, becomes:

B1[0] = 0;
B2[0] = 1;
i = 2;
while (i ≤ n)
{ if (i %2 == 0) B1[i/2] = B2[(i − 1)/2] + B1[(i − 2)/2];

else B2[i/2] = B1[(i − 1)/2] + B2[(i − 2)/2];
i + +;

}
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B1[0] = 0;
B2[0] = 1;
i = 2;
while (i ≤ n)
{ if (i % 2 == 0)

{ if ((i−1) % 2 == 0)
{ if ((i−2) % 2 == 0) B1[i/2] = B1[(i−1)/2] + B1[(i−2)/2];

else B1[i/2] = B1[(i−1)/2] + B2[(i−2)/2];
} else { if ((i−2) % 2 == 0) B1[i/2] = B2[(i−1)/2] + B1[(i−2)/2];

else B1[i/2] = B2[(i−1)/2] + B2[(i−2)/2];
}

} else
{ if ((i−1) %2 == 0)

{ if ((i−2) % 2 == 0) B2[i/2] = B1[(i−1)/2] + B1[(i−2)/2];
else B2[i/2] = B1[(i−1)/2] + B2[(i−2)/2];

} else { if ((i − 2) % 2 == 0) B2[i/2] = B2[(i−1)/2] + B1[(i−2)/2];
else B2[i/2] = B2[(i−1)/2] + B2[(i−2)/2];

}
}

i + +;
}

Figure 1.1: Fibonacci program after an array split

Simplification was achieved by removing infeasible paths. For instance, if we
had

if (i %2 == 0) { if ((i−1)%2 == 0 {X ; } else {Y ; } }

then we would know that the block of statements X could never be executed,
since if i %2 = 0 is true then (i−1)%2 = 0 is false. So, out of the eight possible
assignments, we can eliminate six of them.

1.3.8 Array Merging

For another obfuscation, we can the reverse the process of splitting an array by
merging two (or more) arrays into one larger array. As with a split, we will need
to determine the order of the elements in the new array.

Let us give a simple example of a merge. Suppose we have arrays B1 of size
m1 and B2 of size m2 and a new array A of size m1 + m2. We can define a
relationship between the arrays as follows:

A[i ] =

{

B1[i ] if i < m1

B2[i−m1] if i ≥ m1

This transformation is analogous to the concatenation of two sequences (lists).

1.3.9 Other obfuscations

All of the obfuscations that we have discussed so far only consider transforma-
tions within methods. Below are some transformations that deal with methods
themselves:

• Inlining A method call is replaced with the body of the method.
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• Outlining A sequence of statements within a method is made into a
separate method.

• Interleaving Two methods are merged; to distinguish between the orig-
inal methods, an extra parameter could be passed.

• Cloning Many copies of the same method are created by applying differ-
ent transformations.

1.4 Conclusions

We have seen there is a need for software protection, and code obfuscation is
one method for making reverse engineering harder. We have summarised some
current obfuscation techniques and highlighted a few of the many commercial
obfuscators available. In Section 1.2 we reviewed two definitions of obfuscation:
the definition of Collberg et al. [10] uses various complexity metrics and Barak et
al. [6] prove that obfuscation is impossible using their definition. We have seen
how to apply obfuscations to variables and arrays. In Chapter 3 we shall develop
a different approach to obfuscation which enables us to apply obfuscations to
more abstract data structures. As a consequence we will give a new definition
for obfuscation and also discuss the efficiency of obfuscated operations.

In the next chapter, we give a case study of a situation where there is a
particular need for obfuscation and give specifications for some obfuscations.



Chapter 2

Obfuscations for

Intermediate Language

. . . if you stick a Babel fish in your ear you can instantly understand
anything said to you in any form of language

The Hitchhiker’s Guide to the Galaxy (1979)

Before we look at a new approach to obfuscation, we present a case study in
which we explore a potential application of obfuscation. We look at the inter-
mediate language that is part of Microsoft’s .NET platform and we give some
obfuscations for this language. In particular, we specify some generalisations of
some of the obfuscations given in Section 1.3.

2.1 .NET

The heart of Microsoft’s .NET framework is the Common Language Infras-
tructure [23] which consists of an intermediate language (IL) which has been
designed to be the compilation target for various source languages. IL is a
typed stack based language and since it is at quite a high level, it is fairly easy
to decompile IL to C# [3]. Two example decompilers are Anakrino [2] and
Salamander [45]. IL is similar to Java bytecode but more complicated as it is
the compilation target for various languages.

Programs written using .NET are distributed as portable executables (PEs)
which are compact representations of IL. These executables are then just-in-
time compiled on the target platform. We can translate a PE to IL by using a
disassembler and we can convert back by using an assembler. This means that
from a PE we can disassemble back to IL and then decompile back to C#. Since
we can convert a PE to C#, there is a need for obfuscation.

2.1.1 IL Instructions

Before we describe some IL obfuscations, we give a brief overview of IL. We
concentrate on a fragment of IL — the instructions of interest are shown in

22
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add Adds the top two elements of the stack
beq.s l Branches to l on equality
bge.s l Branches to l on greater than or equal to
bgt.s l Branches to l on greater than
ble.s l Branches to l on less than or equal to
blt.s l Branches to l on less than
bne.s l Branches to l on not equal
br.s l Unconditional branch to l
call Calls a method
div Divides the top two elements of the stack
dup Duplicates the top value of the stack
ldarg.s v Pushes value of argument v onto the stack
ldc.t v Pushes a constant v with type t onto the stack
ldloc.s v Pushes value of variable v onto the stack
mul Multiplies the top two elements of the stack
rem Calculates the remainder when dividing
ret Returns from a method
sub Subtracts the top two elements of the stack
starg.s v Pops a value and stores it in argument v
stloc.s v Pops a value and stores it into v

Figure 2.1: Some common IL instructions

Figure 2.1. As an example, consider the following C# method which computes
the GCD of two integers:

public static int gcd(int a, int b)
{

int x = a;
int y = b;
while (x != y)

if (x < y) y = y − x ; else x = x − y ;
return x ;

}

After compiling and disassembling this method, we obtain the IL code shown
in Figure 2.2.

As IL is a typed stack language, each value handled by the stack must have
a type associated with it. For example, int32 is the type for 4-byte (32-bit)
integers and float64 for 8-byte real numbers — number types can also be signed
or unsigned. Non numeric types include string and bool.

At the start of a method, various properties of the method are stated. First,
the signature of the method is given. In the GCD example, we can see that the
method expects two integers and returns one integer as the result. Next, the
maximum stack depth in the method is specified by using the .maxstack key-
word. If we make any changes to the IL code then we should check whether the
maximum stack depth has increased and so must change the value of .maxstack
accordingly. Finally the names and types of any local variables for this method
are stated using the .locals keyword.
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.method public static int32 gcd(int32 a, int32 b)
{
.maxstack 2
.locals (int32 V_0, int32 V_1, int32 V_2)

IL0000: ldarg.0
IL0001: stloc.0
IL0002: ldarg.1
IL0003: stloc.1
IL0004: br.s IL0014

IL0006: ldloc.0
IL0007: ldloc.1
IL0008: bge.s IL0010

IL000a: ldloc.1
IL000b: ldloc.0
IL000c: sub
IL000d: stloc.1
IL000e: br.s IL0014

}

IL0010: ldloc.0
IL0011: ldloc.1
IL0012: sub
IL0013: stloc.0
IL0014: ldloc.0
IL0015: ldloc.1
IL0016: bne.un.s IL0006

IL0018: ldloc.0
IL0019: stloc.2
IL001a: br.s IL001c

IL001c: ldloc.2
IL001d: ret

Figure 2.2: IL for a GCD method

In the main body of an IL method, instructions can be preceded by a unique
label — typically when using ILDASM (the disassembler distributed with .NET)
each instruction has a label of the form IL****. Labels are needed for branch
instructions.

A value from the stack can be stored in a local variable, V , by using the
instruction stloc.s V and similarly, a value stored in a local variable V can
be pushed on the stack using ldloc.s V . If the local variable that is being
accessed is one of the first four variables that was declared in this method,
then there is a shorter form of stloc and ldloc. Suppose the local variable
were .locals(int32 V, int32 W). Then we could write ldloc.0 or stloc.1
instead of ldloc.s V or stloc.s W, respectively. Values passed to the method
are accessed using ldarg and starg. So in the GCD method, ldarg.0 loads the
value of “a” onto the stack. We use the command ldc to load constants (with
the appropriate type) onto the stack. As with ldloc, there is another form of
the instruction: we can write ldc.i4.4 instead of ldc.i4 4 for the integers
0..8 (note that i4 means a 4-byte integer).

Arithmetic operations, such as add and sub, take values off the stack and
then put the result back onto the stack. For instance, in the following sequence:

ldc.i4.7
ldc.i4.2
sub

sub will pop 7 and 2 off the stack and push 5 back.
Branches can either be unconditional (of the form br) or conditional (such

as bne — “jump if not equal to”), which compares values from the stack, and
requires a target (corresponding to a label). For a conditional jump, if the
condition is true, then the next instruction to be executed will be the one at
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the target label, otherwise the next instruction following the branch will be
executed.

In this example,

IL0001: ldloc.s V
IL0002: ldc.i4.1
IL0003: bge.s IL0020
IL0004: ...
. . .
IL0020: ...

if V ≥ 1 then IL0020 will be executed next — otherwise, IL0004 will be exe-
cuted.

When writing IL methods, we require that the code that we produce is
verifiable — here are some conditions that must be met for verifiability:

• Stacks must have the same height and contain the same types when control
flow paths meet.

• Operations must have the correct number of items on the stack (e.g. for
a binary operation there must be at least two elements on the stack).

• Operations must receive the type that they expect off the stack

If we have verified code then we can be sure that the code will run safely (e.g. the
code will not access memory locations that it not permitted to) and so we must
ensure that any obfuscations that we apply produce verifiable code.

2.2 IL obfuscations

Now, we will look at how to perform some obfuscations on IL by manually
editing an IL file and assembling this file to make a PE. We look at some of
the obfuscations given in [10] and we show how to write them in IL. The aim
of performing obfuscations on IL is to make it hard for a decompiler to take a
PE and produce C#. Ideally, we would like to stop the decompilation process
altogether but at the very least, we should make the resulting code harder to
understand.

2.2.1 Variable Transformation

For the first example of obfuscating IL, we show how to perform a simple variable
transformation (as outlined in Section 1.3.3). The functions we will use to
perform the transformations are:

f = λi .(2i − 1)

g = λj .((j + 1)/2)

Assignment of a variable corresponds to stloc and use corresponds to ldloc.
Using the GCD example given in Figure 2.2, we aim to transform the local
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variable V 0. So any occurrences of stloc.0 will need to be replaced by:

ldc.i4.2
mul
ldc.i4.1
sub
stloc.0

We replace the instruction ldloc.0 by:

ldloc.0
ldc.i4.1
add
ldc.i4.2
div

Also, we need to change the value of .maxstack to 4 as there are more items
to be stored on the stack. After assembling and decompiling, we obtain the
following program:

private static int gcd(int a, int b)
{

int x = a ∗ 2− 1;
int y = b;
while ((x + 1)/2 ! = y)
{ if ((x + 1)/2 < y) {y = y − (x + 1)/2; }

else {x = ((x + 1)/2− y) ∗ 2− 1; }
}
return (i + 1)/2;

}

For this trivial example, only a handful of changes need to be made in the IL.
For a larger method which has more uses and definitions or for a complicated
transformation, manually editing would be time-consuming. So it would be
desirable to automate this process.

2.2.2 Jumping into while loops

C# contains a jump instruction goto which allows a program to jump to a
statement marked by the appropriate label. The goto statement must be within
the scope of the labelled statement. This means that we can jump out of a loop
(or a conditional) but not into a loop (or conditional). This ensures that a loop
has exactly one entry point (but the loop can have more than one exit by using
break statements). This restriction on the use of goto ensures that all the flow
graphs are reducible [1, Section 10.4]. Thus, the following program fragment
would be illegal in C#:

if (P) goto S1;
...

while (G)
{

. . .
S1: . . .

. . .
}
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gcd(int a, int b)
{ int i;

int j;
i = a;
j = b;
if (i * i > 0) {goto IL001a;}
else {goto IL0016;}

IL000c: if (i < j) {j -= i; continue;}
IL0016: i -= j;
IL001a: if (i == j) {return i;}

else {goto IL000c;}
}

Figure 2.3: Output from Salamander

However in IL, we are allowed to use branches to jump into loops (while
loops do not, of course, occur in IL — they are achieved by using conditional
branches). So, if we insert this kind of jump in IL, we will have a control flow
graph which is irreducible and a naive decompiler could produce incorrect C#
code. A smarter decompiler could change the while into an if statement that
uses goto jumps. As we do not actually want this jump to happen, we use an
opaque predicate that is always false.

Let us look at the GCD example in Section 2.1.1 again. Suppose that we
want to insert the jump:

if ((x ∗ x ) < 0) goto L;

before the while loop where L is a statement in the loop. So, we need to put
instructions in the IL file to create this:

IL0100: ldloc.0
IL0101: ldloc.0
IL0102: mul
IL0103: ldc.i4.0
IL0104: blt.s IL0010

The place that we jump to in the IL needs to be chosen carefully — a
suitable place in the GCD example would be between the instructions IL0003
and IL0004. We must (obviously) ensure that it does actually jump to a place
inside the while loop. Also, we must ensure that we do not interfere with the
depth of the stack (so that we can still verify the program). Figure 2.3 shows the
result of decompiling the resulting executable using the Salamander decompiler
[45]. We can see that the while statement has been removed and in its place is
a more complicated arrangement of ifs and gotos.

This obfuscation as it stands is not very resilient. It is obvious that the
conditional x ∗ x < 0 can never be true and so the jump into the loop never
happens.

2.3 Transformation Toolkit

In the last section we saw writing obfuscations for IL involved finding appropri-
ate instructions and replacing all occurrences of these instructions by a set of
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new instructions. This replacement is an example of a rewrite rule [32]:

L⇒ R if c

which says that if the condition c is true then we replace each occurrence of
L with R. This form of rewrite rule can be automated and we summarise the
transformation toolkit described in [22] to demonstrate one way of specifying
obfuscations for IL. This toolkit consists of three main components:

• A representation of IL, called EIL, which makes specifying transformations
easier.

• A new specification language, called Path Logic Programming, which al-
lows us to specify program transformations on the control flow graph.

• A strategy language with which we can control how the transformations
are applied.

We briefly describe these components (more details can be found in [22]) before
specifying some of the generalised obfuscations given in Section 1.3.

2.3.1 Path Logic Programming

Path Logic Programming (PLP) is a new language developed for the specifica-
tion of program transformations. PLP extends Prolog [51] with new primitives
to help express the side conditions of transformations. The Prolog program will
be interpreted relative to the flow graph of the object program that is being
transformed. One new primitive is

all Q (N ,M )

which is true if N and M are nodes in the flow graph, and all paths from N to
M are of the form specified by the pattern Q . Furthermore, there should be at
least one path that satisfies the pattern Q . This is to stop a situation where we
do not have a path between N and M and so the predicate all Q (N ,M ) will
be vacuously true. Similarly, the predicate

exists Q (N ,M )

is true if there exists a path from N to M which satisfies the pattern Q .
As an example of all , consider:

all ( { }∗;
{ ′set(X ,A),

local(X ) };
{ not (′def (X )) }∗;
{ ′use(X ) }

) (entry ,N )

This definition says that all paths from the program entry to node N should
satisfy a particular pattern. A path is a sequence of edges in the flow graph.
The pattern for a path is a regular expression and in the above example the
regular expression consists of four components:
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• Initially we have zero or more edges that we do not particularly care about
which is indicated by { }∗ — the interpretation of { } is a predicate that
is always true.

• Next, we require an edge whose target node is an expression of the form
X := A where X is local variable.

• Then we want zero or more edges to nodes that do not re-define X .

• Finally we reach an edge pointing to node N which uses variable X .

A pattern, which denotes an property on the control flow graph, is a regular
expression whose alphabet is given by temporal goals — the operator ; represents
sequential composition, + represents choice, ∗ is zero or more occurrences and
ε an empty path. A temporal goal is a list of temporal predicates, enclosed
in curly brackets. A temporal predicate is either an ordinary predicate (like
local in the example we just examined), or a ticked predicate (like use). Ticked
predicates are properties involving edges and are denoted by the use of a tick
mark (′) in front of the predicate. For example, def (X ,E ) is a predicate that
takes two arguments: a variable X and an edge E , and it holds true when the
edge points at a node where X is assigned. Similarly, use(X ,E ) is true when
the target of E is a node that is labelled with a statement that makes use of
X . When we place a tick mark in front of a predicate inside a path pattern, the
current edge is added as a final parameter when the predicate is called.

We can think of the path patterns in the usual way as automata, where the
edges are labelled with temporal goals. In turn, a temporal goal is interpreted
as a property of an edge in the flow graph. The pattern

{p0, p1, . . . , pk−1}

holds at edge e if each of its constituents holds at edge e. To check whether
a ticked predicate holds at e, we simply add e as a parameter to the given
predicate and non-ticked predicates ignore e. A syntax for this language and a
more detail discussion of all and exists is given in [22].

2.3.2 Expression IL

Since IL is a stack based language, performing a simple variable transformation
described in Section 2.2.1 leads to performing quite a complicated replacement.
To make specifying transformation easier we work with a representation of IL
which replaces stack-based computations with expressions — this representation
is called Expression IL (EIL). To convert from IL to EIL, we introduce a new
local variable for each stack location and replace each IL instruction with an
assignment. As we use only verifiable IL, this translation is possible.

EIL is analogous to both the Jimple and Grimp languages from the SOOT
framework [53, 54] — the initial translation produces code similar to the three-
address code of Jimple, and assignment merging leaves us with proper expres-
sions like those of Grimp.
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stmt ::= nop | var := exp | br target | brif cnd target

exp ::= var | const |monop(exp) | binop(exp, exp)
monop ::= neg
binop ::= add | sub | mul | div | rem

var ::= local(name) | arg(name) | local(name)[exp]
const ::= ldc.type val

cnd ::= and(cnd , cnd) | or(cnd , cnd) | not(cnd) | ceq(exp, exp) | cne(exp, exp)
| clt(exp, exp) | cle(exp, exp) | cgt(exp, exp) | cge(exp, exp)

target ::= string

name ::= string

type ::= i4 | i8
instr ::= [target :]stmt

prog ::= instr list

Figure 2.4: Syntax for a simple subset of EIL

Thus, the following set of IL instructions:

ldc.i4.2
stloc x
ldc.i4.3
ldloc x
add
stloc y

is converted to something like:

local(v1) := ldc.i4.2
local(x) := local(v1)
local(v2) := ldc.i4.3
local(v3) := local(x)
local(v4) := add(local(v2), local(v3))
local(y) := local(v4)

We can then perform standard compiler optimisations (such as constant prop-
agation and dead code elimination) to simplify this set of instructions further.
We concentrate on only a simple fragment of EIL and a concrete syntax for this
fragment is given in Figure 2.4.

This concrete syntax omits many significant details of EIL; for example,
all expressions are typed and arithmetic operators have multiple versions with
different overflow handling. This detail is reflected in the representation of these
expressions as logic terms. For example, the integer 5 becomes the logic term

expr type(ldc(int(true, b32), 5), int(true, b32))

The first parameter of expr type is the expression and the second is the type
— this constructor reflects the fact that all expressions are typed. The type
int(true, b32) is a 32-bit signed integer (the true would become false if we wanted
an unsigned one). To construct a constant literal, the constructor ldc is used
— it takes a type parameter, which is redundant but simplifies the processing
of EIL in other parts of the transformation system, and the literal value.
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For a slightly more complicated example, the expression x + 5 (where x is a
local variable) is represented by

expr type(applyatom(add(false, true),
expr type(localvar(sname(“x”)),

int(true, b32)),
expr type(ldc(int(true, b32), 5),

int(true, b32))),
int(true, b32))

The term localvar(sname(“x”)) refers to the local variable x — the seemingly
redundant constructor sname reflects the fact that it is also possible to use a
different constructor to refer to local variables by their position in the method’s
declaration list, although this facility is not used.

The constructor applyatom exists to simplify the relationship between IL
and EIL — the term add(false, true) directly corresponds to the IL instruction
add , which adds the top two items on the stack as signed values without over-
flow. Thus, the meaning of applyatom can be summarised as: “apply the IL
instruction in the first parameter to the rest of the parameters, as if they were
on the stack”.

Finally, it remains to explain how EIL instructions are defined. It is these
that will be used to label the edges and nodes of flow graphs. An instruction
is either an expression, a branch or a return statement, combined with a list
of labels for that statement using the constructor instr label . For example, the
following defines a conditional branch to the label target :

instr label(“conditional” : nil ,
branch(cond(. . .), “target”))

Note that we borrow the notation for lists from functional programming, writing
X : Xs instead of [X |Xs]. If the current instruction is an expression, then exp
enclosing an expression would be used in place of branch, and similarly return
is used in the case of a return statement.

2.3.3 Predicates for EIL

The nodes of the flow graph are labelled with the logic term corresponding to
the EIL instruction at that node. In addition, each edge is labelled with the
term of the EIL instruction at the node that the edge points to; it is these labels
that are used to solve the existential and universal queries.

The logic language provides primitives to access the relevant label given
a node or an edge — @elabel(E , I ) holds if I is the instruction at edge E ,
and @vlabel(V , I ) holds if I is the instruction at node V (where @ denotes a
primitive).

We can define the set predicate used in Section 2.3.1 as follows:

set(X ,A,E ) :−
@elabel(E , instr label( , exp(expr type(assign(X ,A), )))).

Note that we denote unbound variables by using an underscore. It is straight-
forward to define def in terms of set :

def (X ,E ) :− set(X , ,E )
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build(N ,V ,X ,M ) builds M by replacing uses of X in N with V
def (X ,E ) holds if X is defined at edge E
@elabel(E , I ) holds if I is the instruction at edge E
@new vertex (L,Es,M ) builds a vertex M with edges Es and label L
occurs(R,X ) holds if X occurs in R
set(X ,A,E ) holds if X is assigned the value A at E
source(N ,E ) holds if the vertex N is the source of the edge E
subst(X ,V ,M ,N ) builds N from M by replacing uses of X with V
use(X ,E ) holds if X is used at E
@vlabel(V , I ) holds if I is the instruction at node V

Figure 2.5: Some common predicates

The definition of use is based on the predicate occurs(R,X ), which checks
whether X occurs in R (by the obvious recursive traversal). When defining
use(X ,E ), we want to distinguish uses of X from definitions of X , whilst still
finding the uses of the variable x in expressions such as a[x ] := 5 and x := x +1:

use(X ,E ):− @elabel(E ,S ), occurs(S ,X ),
not(def (X ,E )).

use(X ,E ):− set( ,R,E ), occurs(R,X ).

The common predicates that we will use are summarised in Figure 2.5.

2.3.4 Modifying the graph

When creating new vertices the predicate build will often be used. The expres-
sion build(N ,V ,X ,M ) creates a new vertex M , by copying the old vertex N ,
replacing uses of X with V :

build(N ,V ,X ,M ) :− @vlabel(N ,Old),
subst(V ,X ,Old ,New),
listof (E , source(N ,E ),Es),
@new vertex (New ,Es,M ).

The predicate:

subst(V ,X ,Old ,New)

constructs the term New from Old , replacing uses of V with X . As with use,
it is defined so as not to apply this to definitions of X — if we are replacing x
with 0 in x := x + 1 we want to end up with x := 0 + 1, not 0 := 0 + 1.

New vertices are constructed by using @new vertex . This primitive takes a
vertex label and a list of outgoing edges and binds the new vertex to its final
parameter. For the definition of build we use the same list of edges as the old
vertex, since all we wish to do is to replace the label.

The predicate source(N ,E ) is true if the vertex N is the source of the edge
E , whilst the listof predicate is the standard Prolog predicate which takes three
parameters: a term T , a predicate involving the free variables of T , and a third
parameter which will be bound to a list of all instantiations of T that solve the
predicate. Thus the overall effect of listof (E , source(N ,E ),Es) is to bind Es to
the outgoing edges from node N , as required.
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2.3.5 Applying transformations

Although the logic language we have described makes it convenient to define
side conditions for program transformation, it would be rather difficult to use
this language to apply these transformations, since that would require the pro-
gram flow graph to be represented as a logic term. The approach that is taken is
that a successful logic query should also bind its parameter to a list of symbolic
“actions” which define a correct transformation on the flow graph. A high-level
strategy language, which is similar to Stratego [55], is responsible for direct-
ing in what order logic queries should be tried and for applying the resulting
transformations.

An action is a term, which can be either of the form replace vertex (V ,W )
or new local(T ,N ). The former replaces the vertex V with the vertex W , while
the latter introduces a new local variable named N of type T . We write a list
of actions as the last parameter of predicate.

Suppose that we have a predicate P specified. If we want to apply this
predicate once then we write apply(P) in the strategy language. If we want to
exhaustively apply this predicate (i.e. keep applying the predicate while it is
true) then we write exhaustively(apply(P)). An example of a strategy is given
at the end of the next section.

2.3.6 Variable Transformation

For our first example, let us consider how to define a variable transformation
(Section 1.3.3). The first part of the transformation involves finding a suitable
variable and for simplicity, we require that the variable is local and has integer
type. We also require that it is assigned somewhere (otherwise there would be
no point in performing the transformation). Once we find a suitable variable
(which we call OldVar), we generate a new name using @fresh name which
takes a type as a parameter. We can write the search for a suitable variable as
follows:

find local (OldVar ,
NewVar ,
new local(int(true, b32),NewVarName) : nil
) :−

exists ( { }∗ ;
{ ′set(OldVar ,V ),

OldVar = expr type(localvar( ), int(true, b32))}
) (entry ,OldVarVert),

@fresh name (int(true, b32),NewVarName),
NewVar = expr type(localvar (sname(NewVarName)),

int(true, b32)).

The next step of the transformation replaces uses and assignments of OldVar
exhaustively. To do this, we need to define predicates which allow us to build
expressions corresponding to f and g (the functions used for variable transfor-
mation). The predicate use fn(A,B) binds B to a representation of g(A) and
similarly, assign fn(C ,D) binds D to f (C ). We can specify any variable trans-
formation by changing these two predicates. As an example, let us suppose
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that

f = λi .(2i)

g = λj .(j/2)

Then we would define

use fn(A,
expr type(applyatom(cdiv(true),

A,
expr type(applyatom(ldc(int(true, b32), 2)),

int(true, b32))),
int(true, b32))).

and we can define assign fn similarly.
We define a predicate replace var which replaces occurrences of OldVar with

NewVar with the appropriate transformation. We need to deal with assignment
and uses separately. We can easily write a predicate to replace uses of OldVar
as follows:

replace var (OldVar ,
NewVar ,
replace vertex (OldVert ,NewVert) : nil
) :−

exists ({ }∗ ;
{ ′use(OldVar)}
) (entry ,OldVert),

use fn (NewVar ,NewUse),
build (OldVert ,NewUse,OldVar ,NewVert).

To replace assignments to OldVar we cannot use the build and instead have to
create a new vertex manually — the definition is shown in Figure 2.6. In this
definition, we use the predicate set to find a vertex where there is an assignment
of the form OldVar := OldVal . At this vertex, we find a list of edges from this
vertex and the list of labels. We then create the expression f (OldVal) and bind
it to NewVal . Finally, we use the predicate build assign to create a new vertex
that contains the instruction NewVar := NewVal and which has the same labels
and edges as OldVar .

To apply this transformation, we write the following two lines in the strategy
language:

apply(find local(OldVar ,NewVar));
exhaustively(apply(replace var(OldVar ,NewVar)))

The first line applies the search to find a suitable variable and the second ex-
haustively replaces all occurrences of the old variable with the new variable.

2.3.7 Array Splitting

For our second example, we consider splitting an array using the method stated
in Section 1.3.6. First, we briefly describe how to find a suitable array — more
details can be found in [22].
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replace var (OldVar ,
NewVar ,
replace vertex (OldVert ,NewVert) : nil
) :−

exists ({ }∗ ;
{ ′set(OldVar ,OldVal)}
) (entry ,OldVert),

listof (OldEdge, source(OldVert ,OldEdge),OldEdges),
@vlabel(OldVert , instr label(Labels, )),
assign fn(OldVal ,NewVal),
build assign(Labels,NewVar ,NewVal ,OldEdges,NewVert).

build assign(Labs,L,R,Edges,Vert) :−
@new vertex (instr label(Labs, exp(expr type(assign(L,R),

int(true, b32)))),
Edges,Vert).

Figure 2.6: Predicates for replacing assignments

Finding a suitable array

We need to find a vertex InitVert which has an array initialisation of the form:

OldArray := newarr(Type)[Size]

where OldArray is a local variable of array type.
For this transformation to be applicable, we ensure that every path through

our method goes through InitVert and that the array is always used with its
index (except at the initialisation) — so for example, we cannot pass the whole
array to another method. We can write this safety condition as follows:

safe to transform(InitVert ,OldArray) :−
all ({ }∗ ;

{ ′isnode(InitVert) } ;
{ not(′unindexed(OldArray)) }∗
) (entry , exit).

The predicate unindexed(OldArray ,E ) holds if OldArray is used without an
index at the node pointed to by edge E . We define unindexed by pattern
matching to EIL expressions. So, for example:

unindexed(A,A).

unindexed(exp(E ),A) :− unindexed(E ,A).

unindexed(expr type(E ,T ),A) :− unindexed(E ,A).

unindexed(arrayindex (L,R),A) :− not(L = A), unindexed(L,A).

unindexed(arrayindex (L,R),A) :− unindexed(R,A).

After a suitable array has been found we need to create initialisations for
our two new arrays with the correct sizes.
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replace array(A,B1,B2, replace vertex (N ,M ) : nil) :−
exists ({ } ∗;

{ ′set(X ,V ),
X = expr type(arrayindex (A, I ), ) }

) (entry ,N ),
listof (E , source(N ,E ),Es),
@vlabel(N , instr label(L, )),
is even(I ,C ),
index (I , J ),
@fresh label(ThenLab),
build assign(ThenLab : nil ,

expr type(arrayindex (B1, J ), int(true, b32)),
V ,Es,ThenVert),

new edge(ThenVert ,ThenEdge),
@fresh label(ElseLab),
build assign(ElseLab : nil ,

expr type(arrayindex (B2, J ), int(true, b32)),
V ,Es,ElseVert),

new edge(ElseVert ,ElseEdge),
@new vertex (instr label(L, branch(cond(C ),ThenLab)),

ThenEdge : ElseEdge : nil ,M ).

Figure 2.7: Definition of replace array for assignments

Replacing the array

Once we have identified which array we want to split (and checked that it is
safe to do so) then we need to replace exhaustively the original array with
our two new ones. As with variable transformation, we have to treat uses
and assignments of array values separately. But instead of a straightforward
substitution, we have to insert a conditional expression at every occurrence of
the original array.

Let us consider how we can replace an assignment of an array value. Suppose
that we want to split an array A into two arrays B1 and B2 using the split
(Equation (1.4)) defined in Section 1.3.6. For an assignment of A, we look for
a statement of the form:

A[I ] = V

and, from Equation (1.5), we need to replace it with a statement of the form:

if ((i%2) == 0) {B1[i/2] = V ; } else {B2[i/2] = V ; }

The predicate for this transformation is given in Figure 2.7. The first step
in the transformation is to find an assignment to A by using the predicate set .
We want to match the left-hand side of an assignment to

expr type(arrayindex (A, I ),T )

where I is the index of the array (and T is the type). Once we find the node,
N , of such an assignment, we need to find the list of outgoing edges from N and
the label L for N .
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M

ThenVert ElseVert

ThenEdge ElseEdge

Es Es

Figure 2.8: Flow graph to build a conditional expression

Next, we create a test C corresponding to i %2 == 0 in the the predicate
is even(I ,C ) and we create an expression J for the indices of the new arrays,
using the predicate index (I , J ) (we omit the details of these predicates).

Now, we need to create vertices corresponding to the branches of the con-
ditional — the flow graph we want to create is shown in Figure 2.8. To create
the “then” branch, we first obtain a fresh label ThenLab with which we create
a new vertex ThenVert . This vertex needs to contain an instruction B1[J ] = V
and have the same outgoing edges as N . Then we create a new incoming edge,
ThenEdge, for ThenVert . The construction of the “else” branch is similar (we
build the instruction B2[J ] = V instead).

Finally, we are ready to build a new vertex M which replaces N . This vertex
contains an instruction for the conditional which has label L. The outgoing edges
for this vertex are ThenEdge and ElseEdge.

Replacing uses of the original array is slightly easier. Instead of manually
building ThenVert and ElseVert we can use the predicate subst to replace A[I ]
with B1[J ] or B2[J ] as appropriate.

We can adapt this specification for other array splits. In Section 1.3.6, we
defined an array split in terms of three functions ch, f1 and f2. The predicate
is even corresponds to the function ch and index corresponds to f1 and f2
(which are equal for our example). So by defining a predicate that represents
ch and two predicates for f1 and f2, we can write a specification for any split
that creates two new arrays.

2.3.8 Creating an irreducible flow graph

In Section 2.2.2, we saw how by placing an if statement before a loop we could
create a method with an irreducible control flow graph. Could we specify this
transformation in PLP? The control flow graph that we want to search for is
shown in Figure 2.9 and we would like to place a jump from the node Jump
to the node InLoop. However, in EIL (and IL) we do not have an instruction
corresponding to while; instead we have to identify a loop from the flow graph.

Figure 2.10 contains the logic program that performs this transformation.
The code has two parts: the first finds a suitable loop and the second builds the
jump.

Let us look at the conditions needed to find a loop. First we want to find a
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Figure 2.9: Flow graph to create jump into a loop

node such that there is a path from this node to itself. The conditions

exists ({ };
{ }∗
) (entry ,Header),

exists ({ };
{ }∗
) (Header ,Header)

find such a node which we call Header . We want to make sure that this is the
“first” node in the loop (i.e. the header of the loop) and so there must be a
node immediately before Header :

exists ({ };
{ }∗
) (entry ,Before),

exists ({ }
) (Before,Header)

and this node, Before, is not in the loop (i.e. there is not a path from Loop to
Before):

not (exists ({ };
{ }∗
) (Header ,Before))

We want to jump to a node in the loop that is not Header so that we can
create an irreducible jump. To find another node in the loop, we require that a
node has a path to itself and this node is not Header :

exists ({ };
{ }∗
) (Header , InLoop),

exists ({ }∗;
{not (′is node (Header)) }
) (InLoop, InLoop)
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irred jump(replace vertex (Jump,Branch) : nil):−
exists ({ };

{ }∗
) (entry ,Header),

exists ({ };
{ }∗
) (Header ,Header),

exists ({ };
{ }∗
) (entry ,Before),

exists ({ }
) (Before,Header),

not (exists ({ };
{ }∗
) (Header ,Before)),

exists ({ };
{ }∗
) (Header , InLoop),

exists ({ }∗;
{not (′is node (Header)) }
) (InLoop, InLoop),

all ({ }∗;
{′def (X ),
X = expr type(localvar( ), int(true, b32))};
{ }
) (entry , Jump),

not (exists ({ };
{ }∗
) (Header , Jump)),

jump cond(X ,C ),
@vlabel(Jump, instr label(Label , Inst)),
outedges(Jump,Edges),
@fresh label(NewLabel),
@new vertex (instr label(NewLabel : nil , Inst),

Edges,Then),
new edge(Then,ThenEdge),
new edge(InLoop, InLoopEdge),
@new vertex (instr label(Label , branch(cond(C ),NewLabel)),

ThenEdge : InLoopEdge : nil ,Branch).

Figure 2.10: Code for the irred jump method
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Finally, we need to find the declaration of a local variable (in our case, we look
for an integer variable) that occurs before the loop. We bind the node Jump to
the node after the declaration.

all ({ }∗;
{ ′def (X ),
X = expr type(localvar( ), int(true, b32))};
{ }
) (entry , Jump),

not (exists ({ };
{ }∗
) (Header , Jump))

Now that we have found a loop and a suitable variable, we are ready to create
the jump. We aim to replace the node Jump with a node Branch which is a
conditional expression. If the test of the conditional is True then we perform
the instructions that were at Jump but if the test is False then we jump to
InLoop. We create an expression for the test using the predicate jump cond —
so jump cond(X ,C ) uses the variable X to bind C to a representation of the
condition. For example, here is a predicate that creates X ×X ≥ 0:

jump cond(X ,
expr type(applyatom(

compare(geq(true)),
expr type(applyatom(mul(false, true),X ,X ),

int(true, b32)),
expr type(applyatom(ldc(int(true, b32), 0)),

int(true, b32))),
bool)).

We must ensure that the predicate that we build evaluates to True.
Since we are replacing the node Jump, we need to know what label Label ,

instruction Inst and outgoing edges Edges are at Jump. We then create a new
node Then (for when the condition is True) which has the label NewLabel and
contains the instruction Inst and has outgoing edges Edges. Next we create
two new incoming edges: ThenEdge and InLoopEdge. Finally, we can build the
node Branch. This node has the same label as Jump and contains a conditional
jump — if True we go to the node Then and if False we go to InLoop.

If we had nested loops then this specification would be able to produce only
a jump from outside the outermost loop. We have to write many conditions just
to find a loop — it would be convenient to use a language that includes loops.

2.4 Related Work

We briefly summarise some work related to the specifications of IL transforma-
tions.

2.4.1 Forms of IL

In Section 2.3.2 we outlined a form of IL that replaced stack expressions with
assignments which we called EIL. As we discussed in Section 2.3.8, it would
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be useful to have loops in our language and so we need to recover loops as
well as expressions from IL. Baker [5] gives an algorithm for transforming a
flow graph into a program which contains constructs such as if/then/else and
repeat and Ramshaw [44] shows how many goto statements can be eliminated.
An algorithm is given in [24] which eliminates goto statements by applying
a sequence of transformations to move a goto. This is followed by a goto-
eliminating transformation which introduces extra variables and predicates.

Extensions of EIL and PLP are discussed in [47] in which the specification
language has a new primitive:

paths(B ,P)

which states that all paths through B satisfy the pattern P and the language
can match expressions of the form:

while(Cond ,Body)

These extensions should allow the specification in Section 2.3.8 to be written
more succinctly.

2.4.2 Transformation Systems

PLP uses the idea of Universal Regular Path Queries [14] in which transfor-
mations are expressed as logic predicates using regular expressions. The APTS
system of Paige [41] was also a major source of inspiration. In APTS, program
transformations are expressed as rewrite rules, with side conditions expressed
as Boolean functions on the abstract syntax tree, and data obtained by pro-
gram analyses. As mentioned in Section 2.3.5, the strategy language used in
the toolkit was based on Stratego [55].

Some other transformation systems that provided inspiration for PLP are
briefly described below.

• TyRuBa [17] is based on representing programs as logic propositions. The
system is not really used for program transformations; instead it is used
for the implementation of classes and interfaces.

• Gospel [56] is a specification language to express program-improving trans-
formations. This needs a declaration of variables (which might be state-
ments), a precondition consisting of a code pattern and dependencies and
an action.

• TRANS [31] is a language in which temporal logic is used to specify trans-
formations with rewrite rules. The specification language has constructors
such as E (there exist a path) and A (for all paths) for expressing paths
in a control flow graph.

2.4.3 Correctness

Throughout this chapter we have not been concerned with the correctness of the
transformations, i.e. whether a transformation is behaviour-preserving. Proving
the correctness of a transformation is a challenging task. In [33] a framework is
provided for proving the correctness of compiler optimisations that are expressed
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in temporal logic. A simple language consisting of read, write, assignments,
conditionals and jumps (but not procedures or exceptions) is considered and a
semantics for this language is given. A method for showing semantic equival-
ence is stated and used to prove the correctness of some optimisations. This
method is quite complicated but seems suited to automation — a technique for
automatically proving the soundness of optimisations is given in [34].

The proofs given in [33] are difficult since they require setting up complicated
semantics and a proof is too detailed to be stated here. For instance, the proof
of a code motion transformation takes one whole double column page. This
method could be adapted for our obfuscations but would be a very demanding
task.

2.5 Conclusions

We have seen that there is a need for obfuscating the .NET Intermediate Lan-
guage and we have given a way of specifying obfuscations for IL. We have seen
that by changing certain predicates in the specification we can specify more
general obfuscations.

Proving the correctness of transformations requires considerable effort and
theoretical techniques (such as developing semantics) which are detailed and
complicated. The proofs also require simplifying the source language. Thus
proving the correctness of our obfuscations will be a challenging task. Using IL
also makes proofs difficult as it is a low-level language.

In the rest of the thesis, we will consider obfuscating abstract data-types.
We will model operations as functional programs and we consider obfuscation
as data refinement. We will find that using abstract data-types makes prov-
ing correctness easier and in some cases we will be able to derive obfuscated
operations.
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Chapter 3

Techniques for Obfuscation

Klieg: “How did you know in the first place?”
Doctor: “Oh, I used my own special technique.”
Klieg: “Oh really, Doctor? And may we know what that is?”
Doctor: “Keeping my eyes open and my mouth shut!”

Doctor Who — The Tomb of the Cybermen (1967)

3.1 Data-types

To obfuscate a program, you can either obfuscate its algorithms or obfuscate
its data structures. We will concentrate on the latter and propose a framework
for objects which we view (for the purpose of refinement) as data-types, calling
the methods operations. We consider abstract data-types (i.e. a local state
accessible only by declared operations) and define obfuscations for the whole
data-type (rather than just for single methods).

When creating obfuscations it is important to know various properties about
our obfuscations. Most importantly we need to know that an obfuscation is
correct thus ensuring that the obfuscation does not change the behaviour of a
program. In imperative languages, proofs of correctness are frequently hard,
typically requiring language restrictions. As a result, obfuscations are mostly
stated without giving a proof of correctness. We also might want to know
whether an obfuscation can be generalised. For instance can we apply the
technique of splitting to data-types other than arrays? The conditions for the
application of an imperative obfuscation can be quite complicated as we have
to deal with features such as side-effects, exceptions and pointers.

For our framework, we model data-type operations using a functional lan-
guage (see Section 3.1.2 for more details) and view obfuscation as data refine-
ment [16]. Using these mathematical techniques allow us to prove the correct-
ness of all our obfuscations and also for some obfuscations we will be able to
derive an obfuscated operation from an unobfuscated one. Our framework also
provides scope for generalisation of some of the standard obfuscations mentioned
in Chapter 1. A benefit of generalisation is that we can introduce randomness
into our obfuscations. Having random obfuscations means that different pro-
gram executions produce different program traces (even with the same input)

44



CHAPTER 3. TECHNIQUES FOR OBFUSCATION 45

which helps to confuse an attacker further. Random obfuscations appear to
have received little attention to date.

The current view of obfuscation [10] (and Chapters 1 and 2) concentrates
on concrete data structures such as variables and arrays. All of the data-types
that we will use could be implemented concretely using arrays — for example,
we can use the standard “double, double plus one” conversion [13, Chapter
6] to represent a binary tree as an array. Why, therefore, do we obfuscate
the abstract data-type rather than its concrete implementation? Apart from
providing a simple way of proving correctness, using data-types gives us an
extra “level” in which to add obfuscations. Going immediately to arrays forces
us to think in array terms and we would have only array obfuscations at our
disposal. For instance, in Chapter 7, we consider a data-type for trees and
so the usual tree transformations (such as swapping two subtrees) are naturally
available; they would be more difficult to conceive using arrays. Also, converting
a data-type to an array often loses information about the data-type (such as
the structure) and so it would be difficult to perform operations that use or
rely on knowledge of that structure. Some matrix operations rely on the 2-
dimensional structure of matrices and so we would have difficulties defining such
operations for matrices that have flattened to arrays — Section 6.3.5 gives an
example considering the transposition operation. We may also gain new array
obfuscations by obfuscating a data-type and then converting the data-type to
an array. Thus, we have two opportunities for obfuscation; the first using our
new data-type approach and the second using the standard imperative methods.

When we define a data-type, we will insist that the operations are total
and deterministic. This restriction ensures that we can use equality in our
correctness proofs. As the aim of obfuscation is to obscure the meaning of an
operation we should give an indication of what an operation should do so that
we can assess whether an obfuscation is suitable. Therefore when defining a
data-type we require that we give assertions for the operations that we declare
in our data-type. But we do not insist that we give a full axiomatisation of
the data-type — we can just consider assertions that we are interested in. This
requirement will aid us in producing our own definition of obfuscation. We
could give an axiomatic definition of a data-type [36, Chapter 4] which provides
axioms (i.e. laws involving the operations) but we choose to give a combination
of both definitions and axioms.

One aim of our approach is to make the process of creating obfuscations
more accessible and applicable. The techniques that we will use (such as data-
types, refinement and functional programming) are well established in the pro-
gramming research community and so they will be familiar to many computer
scientists. Although the techniques of formal methods are well-known, the ap-
plication of obfuscation using these techniques is not.

3.1.1 Notation

When defining a data-type, we want to specify the following things:

• a name for the data-type

• a declaration of the types and constructors (which can be given as a
schema)



CHAPTER 3. TECHNIQUES FOR OBFUSCATION 46

• data-type invariants (dti)

• a list of operations with their types

• a list of assertions that these operations satisfy

and we use the following notation when declaring a data-type:
∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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∣
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∣

∣

∣

name

declaration
dti

operations:
f1 :: T1

f2 :: T2

. . .
fn :: Tn

assertions

which borrows features from modules in [39, Chapter 16] and Z schemas [50].
This notation acts as a “module” for the data-type D which means that

only the operations defined in this data-type are “visible” to other data-types.
We may define other operations that act on D but these cannot be used by
another data-type. In we wish to use another data-type then we write the word
“USING” in the name part. When defining a data-type, we insist that we state
a list of assertions which are only in terms of the “visible” operations. If we have
no particular invariant for the data-type then we omit this from the data-type
declaration.

As an example, we show an array data-type for arrays of length N whose
elements have type α in Figure 3.1. The operation access(A, i) is usually written
as A[i ] and update(i , x ,A) is written as A[i ] = x . We can make some of the
array values Null (where Null /∈ α) which ensures that we can perform the
operation A[i ] for all i in the range [0..N ). All the values of the array new are
Null (corresponding to new in object-oriented languages).

3.1.2 Modelling in Haskell

We now need to choose a language to model data-type operations. Since we
aim for a more mathematical approach in which we want to prove correctness
easily, we should use a language that reflects this approach. We choose to
use the functional language Haskell [43] to specify operations and obfuscations
(note that we are not aiming to obfuscate Haskell code but to use Haskell as a
modelling language). Haskell is a suitable language as its mathematical flavour
lends itself to derivational proofs thus allowing us to prove properties (such as
correctness) of Haskell functions (see for example [7, Chapter 4] and [52, Chapter
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Array (α)

Array α :: [0..N ) → α ∪ {Null}

access :: Array α× [0..N ) → α ∪ {Null}
update :: [0..N )× (α ∪ {Null})×Array α → Array α

new :: Array α

access(update(i , x ,A), i) = x
i )= j ⇒ access(update(i , x ,A), j ) = access(A, j )
(∀ i :: [0..N )) • access(new , i) = Null

Figure 3.1: Data-type for Arrays

14]). As Haskell is a purely functional language there are no side-effects, which
can complicate proofs. Since we using Haskell as a modelling language we should
ensure that we can convert our operations in other languages. Thus we will not
exploit all the characteristics of Haskell and in particular, we will use finite,
well-defined data-types and we will not use laziness. We could have chosen a
strict language such as ML but the syntax of ML and the presence of reference
cells means that it is not as elegant a setting for proofs as Haskell.

Often, obfuscation is seen as applicable only to object-oriented languages (or
the underlying bytecode) but the use of a more mathematical approach (by using
standard refinement and derivation techniques) allows us to apply obfuscations
to more general areas. Since we use Haskell for our (apparently new) approach
we have the benefits of the elegance of the functional style and the consequent
abstraction of side-effects. Thus our functional approach will provide support
for purely imperative obfuscations.

When defining data-types, we usually give operations which act on the local
state of the data-type and so they have type D → D . We will insist that
all operations are deterministic and are functions rather than relations (which
mirrors the use of functional programming as our modelling language). This
means that we can take a more mathematical view and define functions for
abstract data-types. Also we will use functional composition (·) rather than
sequential composition (;).

Can we match this mathematical view up with the traditional data-type
view? Consider the length function for lists which takes a list as input and
returns a natural number as the output. Imperatively, using linked lists we
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could define length as follows:

public static int length(list l)
{

int s = 0;
while (l ! = null)
{ s = s + 1;

l = l .next ; }
return s;

}

We can consider this to be an operation on the data-type of lists which leaves a
list unchanged but gives a natural number as an output. This conversion from
“function” to “operation” is valid for all our definitions and so, in our cases,
these two notions are equivalent. Thus we will write operation or function to
denote the actions that we allow on our data-types.

3.2 Obfuscation as data refinement

Suppose that we have a data-type D and we want to obfuscate it to obtain the
data-type O . Obfuscating D involves giving definitions for the obfuscation of
each of the operations defined in D and ensuring that they are correct. What
does it mean to be correct and how can we prove correctness?

To provide a framework for obfuscating data-types (and establishing the
correctness of the obfuscated operations) we view obfuscation as data refinement
[16]. A refinement can be achieved by a relation R between an abstract and a
concrete state:

R :: A↔ C

that satisfies a simulation condition [16, Section 2.1]. A refinement is called
functional if and only if there exists a data-type invariant dti and a function af
called an abstraction function with type:

af :: C → A

such that R has the form

a R c ≡ af (c) = a ∧ dti(c)

If we have a functional refinement then each instance of the concrete state sat-
isfying the data-type invariant is related to at most one instance of the abstract
state. That corresponds to the concrete state having more “structure” than the
abstract state. In general, when obfuscating we aim to obscure the data-type by
adding more structure and so we propose that the obfuscated data-type O will
be no more abstract than the original data-type D . Thus the most general form
of refinement for us is functional refinement. This formulation allows us to have
many obfuscations which can be “undone” by the same abstraction function
(see Section 7.2.2 for an example using trees). We may have a situation where
we obfuscate a data-type by first performing a (possibly non-functional) refine-
ment and then obfuscating this refinement. As data refinement is a well-known
technique, we will concentrate on just the obfuscation part of the refinement.
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So, for obfuscation we require an abstraction function af with type

af :: O → D

and a data-type invariant dti such that for elements x :: D and y :: O

x ! y ⇔ x = af (y) ∧ dti(y) (3.1)

The term x ! y is read as “x is data refined by y” (or in our case, “. . . is
obfuscated by. . . ”) which expresses how data-types are related.

For obfuscation the abstraction function acts as a “deobfuscation” and there-
fore it is important to keep this function secret from an attacker. In our situa-
tion, it turns out that af is a surjective function so that if we have an obfuscation
function of

of :: D → O

that satisfies

of (x ) = y ⇒ x ! y

then

af · of = id (3.2)

Thus, of is a right-inverse for af . Note that it is not necessarily the case that

of · af = id (3.3)

since we could have another obfuscation function of ′ such that of ′(x ) = y ′ and
x ! y ′ and so we have that

of (af (y ′)) = of (x ) = y

The abstraction function will have a left-inverse only if it is injective. In that
case, each object of D will be refined by exactly one of O and we will call the
inverse (which is both left and right) of af the conversion function (cf ) for the
obfuscation.

3.2.1 Homogeneous operations

Suppose that the operation f with type

f :: D → D

is defined in D . Then to obfuscate f we want a operation f O with type

f O :: O → O

which preserves the correctness of f . In terms of data refinement, we say that
f O is correct if it is satisfies:

(∀x :: D ; y :: O) • x ! y ⇒ f (x ) ! f O(y) (3.4)
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If f O is a correct refinement (obfuscation) of f then we write f ! f O . Using
Equation (3.1), we can draw the following commuting diagram [16]:

x f (x )

y f O(y)

f

af

f O

af

From this diagram, we have the following equation:

f · af = af · f O (3.5)

Thus we can prove that a definition of f O is correct by using this equation.
Note that since we have total, deterministic operations then we have equality
in this equation. However general correctness follows if the equality is merely
3 (refinement).

Now, suppose that af is a bijection with conversion function cf

cf :: D → O

Then af and cf satisfy (3.2) and (3.3) and so cf = af −1. Thus pre-composing
Equation (3.5) by cf gives us

f O = cf · f · af (3.6)

which provides a way of deriving the operation f O from f .

3.2.2 Non-homogeneous operations

Suppose that we have a operation

f :: D → E

where D and E are the state spaces of two data-types. Let afD and afE be
abstraction functions for some obfuscations of D and E . How do we define an
obfuscation f O of f ? Using the abstraction functions, we can construct the
following commuting diagram:

x f (x )

y f O(y)

f

afD

f O

afE

and from this, we obtain

f · afD = afE · f O (3.7)

In Section 7.2.4, we define a operation mktree which takes a list and produces a
tree. We can obfuscate this operation twice by obfuscating trees and obfuscating
lists — see Appendix D for more details.
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3.2.3 Operations using tuples

Let us define a function cross that applies a tuple of functions to a tuple of
arguments

cross (f1, f2, . . . , fn) (x1, x2, . . . , xn) = (f1 x1, f2 x2, . . . , fn xn)

Note that we cannot write this function in Haskell without writing different
definition for each n since we are not able to define arbitrary tuples (also we
cannot use a list as the functions may have different types). If we want to
implement this function then we could use a dependently typed language such
as Cayenne [4].

So, for an operation

f :: S1 × S2 × . . .× Sn → T

an obfuscation f O of f (with respect to the relevant abstraction functions)
satisfies:

f · cross (afS1 , afS2 , . . . , afSn
) = afT · f O (3.8)

If we have a conversion function cfT for the data-type T such that:

cfT · afT = id

then we can pre-compose (3.8) by cfT to give

f O = cfT · f · cross (afS1 , afS2 , . . . , afSn
) (3.9)

3.2.4 Refinement Notation

If the data-type D is refined by a data-type O then we write
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∣

New-Name
REFINEMENT [af ] : D

declaration
dti

〈[f1, f2, . . . , fn ]〉 ! 〈[g1, g2, . . . , gn ]〉

[additional operations]

[additional assertions]

The notation

〈[f1, f2, . . . , fn ]〉 ! 〈[g1, g2, . . . , gn ]〉
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is shorthand for:

f1 ! g1 ∧ f2 ! g2 ∧ . . . ∧ fn ! gn

When we state “REFINEMENT” in a data-type we assume that we have
a functional refinement and so we give the abstraction function (af ) for the
refinement. We consider this refinement to be an implementation (analogous to
the implementation of interfaces in object-oriented programming) rather than
an overriding. This means that O still has access to the operations f1, . . . , fn as
well as the refined operations g1, g2, . . . , gn . The ability to access the original
operations will prove useful when defining obfuscations. The type of the refined
operations can be inferred from the original operations and the set of assertions
for O contains the set of assertions for f1, . . . , fn with the appropriate name
changes. We can add extra operations to the refined data-type if we wish and
if we do so, then we must give assertions for these extra operations. Section
4.3 gives an example of a data-type for lists and Section 4.3.1 shows how we
can refine it. Note that as the list of assertions give away knowledge about a
data-type we should ensure that we hide the assertions when implementing an
obfuscated data-type.

3.3 What does it mean to be obfuscated?

In Section 1.2, we saw that if P ′ is an obfuscation of P then

• P ′ should have the same functionality as P .

• The running time and length of P ′ should be at most polynomially larger
than that of P .

• P ′ should be “harder to understand” than P .

Since we are going to model our operations in Haskell many of the metrics for
object-oriented programs mentioned in [10] are not directly applicable. Thus
we must state when we consider an operation to be obfuscated (i.e. when an
operation is “harder to understand”).

Suppose that we have an operation g and we obfuscate it to obtain an
operation gO . Using cyclomatic complexity [37] and data-structure complexity
[40] for inspiration, we could consider gO to be more obfuscated than g if:

• gO uses a more complicated data structure than g

• gO has more guards in the definition than g

When considering what an operation does we often see what properties the
operation has. If an operation is obfuscated then it should be harder to prove
what properties it has. For our data-types we give a list of assertions — prop-
erties that the operations of the data-type satisfy. We should make sure that
the definitions of each operation satisfy the assertions and so we will have to
construct a proof for each assertion. If an operation is obfuscated then it should
be harder to prove that the assertions are true — we will have to qualify what
it means for a proof to be “harder”.
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Definition 1 (Assertion Obfuscation). Let g be an operation and A be
an assertion that g satisfies. We obfuscate g to obtain gO and let AO be the
assertion corresponding to A which gO satisfies. The obfuscation O is said to be
an assertion obfuscation if the proof that gO satisfies AO is more complicated
than the proof that g satisfies A.

Note that AO is well-defined as we have restricted ourselves to functional
refinements.

How can we compare proofs and decide whether one is more complicated
than another? One way to have a fair comparison is to ensure that our proofs
are minimal. This is not practical as we can never be certain if we have a
minimal proof. Instead we should ensure that we prove assertions consistently.
We will split the proof of an assertion into different cases (often determined by
the guards in a definition). For example, for induction proofs, the base steps
and the induction steps all constitute cases.

We will prove each case using the derivational style [18, Chapter 4]:

LHS

= {result}

. . .

= {result}

RHS

We can replace “=” by other connectives such as “⇒” or “⇐”.
Each stage of the derivation should use one result, where we consider a result

to be

• the definition of an operation

• an arithmetic or Boolean law

• a property of an operation

If we want to use a property of an operation then we also need to also prove
this property. We will take standard results from set theory and logic (such as
natural number arithmetic and predicate calculus) as our laws.

How do we measure whether one proof is more complicated than another?
One way could be to count the total number of results (including multiplicities)
for all the cases of a proof. If an obfuscation increases the number of guards in
the definition of an operation then a proof for this obfuscation may be longer
as we will have more cases to prove. Therefore, to ensure that an operation is
an assertion obfuscation we can just add in extra guards. So, if the definition
of a operation f :: α → β is

f x = g

then by using a predicate p :: α → B, we could define

f O x
∣

∣

∣

∣

p(x ) = g
otherwise = g
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The proof of an assertion for f O will require two cases (one for p(x ) and one
for ¬p(x )) and so to make an assertion obfuscation, we just have to insert a
predicate. To prevent this, we require that each case in a definition gives rise
to a different expression.

At each stage of a proof, we aim to use definitions and properties associated
with the innermost operation. For instance, if we had an assertion

f (g (h x ))

Then we first deal with h before we deal with g . This method will not always
produce a minimal length proof but will help in making our proofs consistent.
Where possible, we aim to use only one result at each stage so that we do not
make proofs shorter by using many results in the same stage. We should also
ensure that at each stage, we make progress towards our goal. In particular, we
should not have any cycles in our proofs and so we insist that at each stage we
do not have an expression that we have seen before (although we may use the
same result many times).

For our definition of obfuscation, we will not be concerned with syntactic
properties such as the name of operations, the layout of operations and whether a
definition uses standard operations (for example, head or foldr). For example, we
do not make distinctions between guarded equations and (nested) conditionals.
So we consider the following two expressions to be equivalent:

f x
∣

∣

∣

∣

∣

∣

∣

∣

g1 = s1
g2 = s2
. . .
otherwise = sn

≡
f x = if g1 then s1

else (if g2 then s2
· · ·

else sn · · ·)

The total number of results that a proof takes may not be a detailed enough
measure. For instance, suppose we have two proofs: the first has one case and
uses n results and the second has n cases each of which uses one result. Both
of these proofs use n results in total but is one proof more complicated than
the other? We propose that the first is more complicated as we claim that it
is harder to do one long proof than many short proofs. Thus the number of
results used is not a satisfactory measure — we need to consider the “shape” of
a proof.

3.4 Proof Trees

How do we measure the shape of a proof? We will compare proofs by drawing
proof trees — using trees gives an indication of the “shape” of a proof. Note
that our style of proof lends itself to producing proof trees.

From the last section, we consider a proof to be a series of cases. Each case
is proved using the derivational style where each stage is either a definition, a
law or a property of an operation. This gives us a way of defining a grammar
for proof trees:

Proof = Seq Case

Case = Stage Case (Seq Result) | End

Result = Definition | Law | Proof
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Rather than use this grammar explicitly, we will draw out the proof trees
instead. We draw Stage C 〈[R1, . . . ,Rm ]〉 (where C is a case and Ri are results):

Case

C R1 ... Rm

and 〈[C1, . . . ,Cn ]〉 (where Ci are cases) as

Proof

C1 . . . Cn

Let us now see how a derivation can be drawn as a proof tree. The derivation

e0

= {definition of X }

e1

= {arithmetic and definition of Y }

e2

corresponds to the following expression:

〈[Stage (Stage End 〈[arithmetic,definition of Y ]〉) 〈[definition of X ]〉]〉

and can be drawn as follows:

arithmetic Y

X

To improve the readability of the trees, we can annotate each stage with a
label if we wish, and so for the above example, we could draw

e0

e1

e2 arithmetic Y

X

Let us now consider how to draw a tree for an induction proof. An induction
consists of some base cases and some step cases. For our example, let us suppose
that we have one base and two step cases.

Base Case

b0

= {X1}

. . .

= {Xn}

bn
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Step Case We set up an induction hypothesis (IH) and have two subcases.

Subcase 1

s0

= {Y1}

. . .

= {IH}

..

= {Ym}

sm

Subcase 2

t0

= {Z1}

. . .

= {IH}

..

= {Zl}

tl
Note that we treat the use of IH as a result. This proof can be drawn as

follows:

induction

b0

. . .

bn Xn

X1

s0

. . .

. . .

sm Ym

IH

Y1

t0

. . .

. . .

tl Zl

IH

Z1

3.4.1 Measuring

For our comparison of proofs we will measure two things: number of results and
height.

Since we are using sequences and not sets, we do not use ∈ to define mem-
bership. Instead we write x ← sq to mean the element x is “drawn from” the
sequence sq (this notation matches list comprehension in Haskell).

We define R, the number of results, as follows:

[Case] R (Stage C Rs) = R (C ) +
∑

x←Rs R (x )
[Proof] R (Cs) =

∑

x←Cs R (x )
[Result] R (End) = 0
[Otherwise] R ( ) = 1

and the height H is defined as follows:

[Case] H (Stage C Rs) = 1 + max
(

H (C ), (maxx←Rs H (x ))
)

[Proof] H (Cs) = 1 + maxx←Cs H (x )
[Otherwise] H( ) = 0

where C is a case, Cs is a sequence of cases and Rs is a sequence of results.
Looking at the tree for the induction derivation, we can see that the proof

uses l +m +n results and the height of the proof tree is 1+max(l ,m,n) (where
l , m and n are the number of results for each case).

3.4.2 Comparing proofs

As an example, we prove the following assertion:

(head (x : xs)) : (tail (x : xs)) = x : xs (3.10)
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for a finite list xs.
First we prove it using the standard definitions of head and tail:

head (x : xs) = x
tail (x : xs) = xs

The proof of (3.10) is as follows:

(head (x : xs)) : (tail (x : xs))

= {definition of tail}

(head (x : xs)) : xs

= {definition of head}

x : xs

and we can draw the following proof tree:

(3.10)

head

tail

The height of this tree is 2 and uses 2 results.
Now suppose that we obfuscate head as follows:

head = last.reverse

where

reverse [ ] = [ ]
reverse (x : xs) = xs ++ [x ]

and

last [x ] = x
last (x : xs) = last xs

Note that this definition of last has overlapping cases (since the first case is
a special case of the second) but since Haskell matches from top to bottom it
is a valid definition. This alternate definition of head is much more expensive
to compute (and we use an inefficient version of reverse) — we consider this
definition only for demonstration purposes.

We prove (3.10) for this definition of head as follows:

(head (x : xs)) : (tail (x : xs))

= {definition of tail}

(head (x : xs)) : xs

= {definition of head}

(last (reverse (x : xs))) : xs

= {definition of reverse}

(last (xs ++ [x ])) : xs

= {property of last (3.11)}

x : xs
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This derivation produces the following tree:

(3.10)

(3.11)

reverse

head

tail

The height of this tree is 4 + H (3.11) and the proof uses 3 + R (3.11) results.
To complete the proof, we need to prove that for a finite list xs:

last (xs ++ [x ]) = x (3.11)

We prove this by induction on xs

Base Case Suppose that xs = [ ], then

last ([ ] ++ [x ])

= {definition of ++}

last [x ]

= {definition of last}

x

Step Case Let xs = y : ys and for the induction hypothesis, we suppose that
ys satisfies (3.11). Then

last ((y : ys) ++ [x ])

= {definition of ++}

last (y : (ys ++ [x ]))

= {definition of last}

last (ys ++ [x ])

= {induction hypothesis}

x

(3.11)

base

last

++

step

IH

last

++
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This tree has a height of 4 and the proof uses 5 results. To obtain the full proof
tree, we plug in this induction proof giving:

(3.10)

(3.11)

base

last

++

step

IH

last

++

reverse

head

tail

The height of this tree is 8 and the proof uses 8 results — both are 4 times
more than for the standard definition of head and so we can conclude that our
obfuscation of head is an assertion obfuscation.

3.4.3 Changing the measurements

In our simple head example, measuring the height and the number of results
gave us a simple way of comparing the two proofs. In the second proof, we used
a subsidiary result — Equation (3.11) — in the proof. To work out the height
and number of results of the whole proof tree we simply plugged in the tree for
(3.11) at the appropriate place. Is this a reasonable approach to take?

If we had used our subsidiary result more than once then using this approach
of plugging in proof tree means that we would count the number of results that
the result uses twice. Surely if we prove a result once then we do not need to
prove it again! Once we prove a result then using this result again should not
add to the “difficulty” of a proof. But the measure of the number of results
does not reflect this observation.

We could decide that we are not allowed to use results that we have proved
before but this is not what we do when proving a property. Instead if we use
a proved result more than once then we have to declare it as a lemma (with
an appropriate name). We make a slight change to the grammar for proofs as
follows:

Result = Definition | Law | Lemma | Proof

For a proof P , we define L(P) to be the set of lemmas for P (and so we ignore
multiplicities).

Instead of computing the number of results used, we measure the cost of
a proof. To calculate the cost, we add together the number of results used in
a proof tree (where each lemma has cost 1) with the sum of the cost of each
lemma used. Thus the cost C is defined to be:

C (P) = R (P) +
∑

x∈L(P)

C (x )
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Note that if for a proof P we have that L (P) = ∅ then C (P) = R (P).
We leave the height measure unchanged as we already only use the height of a
lemma once.

3.4.4 Comments on the definition

How useful is our definition? Does this definition give a good indication of the
degree of obfuscation?

We use the definition with different main data-types — see Section 5.4 and
Appendices A, B and D for examples of proof trees. Here are some comments
about this definition:

• It is often hard to prove properties in a consistent way — which is essential
for a fair comparison.

• To fully compare how well an operation is obfuscated, we have to prove
all assertions related to that operation. We may find that an obfuscation
is better for one assertion than another — how do we decide on the degree
of obfuscation in such a case?

• To fully reflect on the effectiveness of an obfuscation on a data-type we
have to consider all the operations. Therefore we should obfuscate accord-
ing to the operations and not just the data structure.

• Since we should consider all the assertions for each data-type, is there a
way of finding a minimal set of assertions?

• Every time we use a standard result in a proof, we have to prove that
result as well. Declaring such a result as a lemma minimizes the amount
of effort required for our proofs.

• Constructing proof trees is quite easy for our style of proof — will it be
as easy for other styles?

• In Section 5.4 we consider an assertion for a particular set operation. We
find that a better obfuscation is achieved if the obfuscated operation does
not have a similar structure to the unobfuscated operation.

• There is a trade-off between the degree of obfuscation and the computa-
tional complexity and so we should consider the complexity as well as the
degree of obfuscation.

3.5 Folds

Since we are using functional programming we could use folds in our definitions
and proofs. In this section, we briefly look at some properties of folds and
unfolds. Folds are commonly known in functional programming — in particular,
in the Haskell prelude, foldr is defined as follows:

foldr :: (α → β → β) → β → List α → β
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)
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Unfolds are less commonly known than folds and for unfoldr we follow the defi-
nition given in [28]:

unfoldr :: (α → B) → (α → β) → (α → α) → α → List β
unfoldr p f g x

∣

∣

∣

∣

p x = [ ]
otherwise = (f x ) : (unfoldr p f g (g x ))

A fold consumes a list to produce a new data-structure whilst an unfold
generates a list from another data-structure. If we obfuscate a list then, in
general, a conversion function can be written as a fold and the corresponding
abstraction function can be written as an unfold.

The operations of foldr and unfoldr satisfy various properties which we state
without proof:

Property 1 (Fold Fusion). For a function f

f · (foldr g a) = foldr h b

if f is strict, f a = b and h satisfies the relationship

f (g x y) = h x (f y)

Property 2 (Unfold Fusion). For a function f ,

(unfoldr p g h) · f = unfoldr p′ g ′ h ′

if p · f = p′, g · f = g ′ and h · f = f · h ′

Property 3 (Map Fusion). Two fusion rules for map:

(fold f a) · (map g) = foldr (f · g) a

(map f ) · (unfoldr p g h) = unfoldr p (f · g) h

In general, we can use these properties in derivations and proofs. We will
tend not to use folds and unfolds for definitions of operations (except for matrix
operations). This is because using folds often restricts the definition of an
operation (i.e. using a fold means that an operation can only be written in
one way) and thus restricts the opportunities for obfuscation. Also, we do not
use folds and unfolds in proofs as we want to prove results in a consistent way
and any rules (such as fusion) will have to be proved and declared as lemmas.
This means that a standard derivational proof is often shorter — see [21] for
a discussion of using folds to show the correctness of an operation. In [19], we
derive some operations using the fusion theorem and in Section C, we prove
that transpose is an involution by using fold fusion.

3.6 Example Data-Types

In the next four chapters, to show the generality of our approach we give some
case studies in which we explore obfuscating some different data-types. In Chap-
ter 4, we generalise the array split discussed in Section 1.3.6 and we give some
example splits for lists. In Chapters 5 and 6 we apply splitting to sets and
matrices. Finally, in Chapter 7, we develop a new obfuscation for trees.
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Chapter 4

Splitting Headaches

And all dared to brave unknown terrors, to do mighty deeds, to
boldly split infinitives that no man had split before.

The Hitchhiker’s Guide to the Galaxy (1979)

In this chapter, we generalise the array-split obfuscation that we discussed
in Section 1.3.6 and, using this obfuscation, we show how to produce different
splits for lists.

4.1 Generalising Splitting

We aim to generalise the array-split obfuscation and we want to specify splitting
as a refinement (Section 3.2). The aim of a split is to break up an object t of
a particular data-type T into n smaller objects (which we normally refer to as
the split components) t0, t1, . . . , tn−1 of type T by using a so-called split sp:

t ! 〈t0, t1, . . . , tn−1〉sp

This aim of this refinement is to spread the information contained in t across
the split components. The obfuscator knows the relationship between an object
and the components and should aim to hide this relationship.

4.1.1 Indexed Data-Types

What features do arrays have that allowed us to define a split? First, the array
data-type has an underlying type e.g. we can define an array of integers or an
array of strings. Secondly, we can access any element of the array by providing
an index (with arrays we usually use natural numbers).

We generalise these features as follows by defining Indexed Data-Types
(which we abbreviate to IDT). An indexed data-type T has the following prop-
erties:

(a) an underlying type called the element type — if T has an element type α
then we write T (α)

(b) a set of indexes IT called the indexer

63
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(c) a partial function AT called the access function with type

AT :: T (α)× IT →+ α

If t has type T (α) (an IDT) then t consists of a collection of elements
(multiple elements are allowed) of type α. Borrowing notation from Haskell
list comprehension, we write e ← t to denote that e is an element of t (this is
analogous to set membership) and this satisfies:

e ← t ⇔ (∃ i ∈ IT ) • AT (t , i) = e

We can define an indexer It for t as follows:

It = {i ∈ IT |AT (t , i) ← t}

Note that AT (t , i) will be undefined if and only if i ∈ IT\It .
Let us look at some example IDTs:

• For arrays, Iarray = N and

Aarray (A, I ) = X ⇔ A[I ] = X

• For finite Haskell lists, the indexer Ilist is N and the access function is
usually written !!.

• For sequences in Z [50, Section 4.5], the indexer is N and the access func-
tion is written as functional application, i.e.

Aseq (s,n) = a ⇔ s n = a

• If Mr×c is the set of matrices with r rows and c columns, then IMr×c =
[0..r)× [0..c) and we usually write M(i , j ) to denote the access function.

• For binary trees which have type:

Tree α == Null | Fork (Tree α) α (Tree α)

we can define an indexer to be a string of the form (L|R)∗ where L stands
for left subtree and R for right subtree (if we want to access the top
element then we use the empty string ε).

4.1.2 Defining a split

Now that we have a more general data-type, how can we define a split for IDTs?
We will characterise a split of an IDT by a pair (ch,F) — where ch is a function
(called the choice function) and F is a family of functions. Suppose that we
want to split t :: T (α) of an indexed data-type T using a split sp = (ch,F).
For data refinement we require a unique abstraction function that “recovers”
t unambiguously from the split components. We insist that for every position
i ∈ It the element AT (t , i) is mapped to exactly one split component. Thus
we need the choice function to be a total function and all the functions fk ∈ F
to be injective. We also require that the domain of fk is ch−1(k) so that each
position of It is mapped to exactly one split component.
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Hence

t ! 〈t0, t1, . . . , tn−1〉sp
⇔

ch :: It → [0..n)

∧

(∀ fk ∈ F) • fk :: ch−1(k) " Itk

∧

AT (tk , fk (i)) = AT (t , i) where ch(i) = k (4.1)

We will call Equation (4.1) the split relationship.
From this formulation, we can see that every element of t (counting multi-

plicities) must be contained in the split components. So we require that

(∀ a ← t) • freq(a, t) ≤
∑

e∈[0..n)

freq(a, te) (4.2)

where freq(c, y) is the frequency of the occurrence of an element c where c ← y
and can be defined as follows:

freq(c, y) = |{i ∈ Iy |AT (y , i) = c}|

4.1.3 Example Splits

We now give two examples which will be used with some of our data-types. For
these splits, we assume that we have an IDT T (α) which has an access function
AT and for each t :: T (α), the indexer It ⊆ Z.

The first split we shall look at is called the alternating split, written as asp.
This will split an element of an IDT into two — the first contains the elements
with an even index and the second contains the rest.

The choice function is defined as

ch(i) = i mod 2

and the family of functions F = {f0, f1} where

f0 = f1 = (λi .i div 2)

For an element t :: T , we write t ! 〈t0, t1〉asp . We can easily see that if
dom(fk ) = ch−1(k) then fk is injective.

Using the definitions of ch and F we can define an access operation:

ATasp
(〈t0, t1〉asp , i) =

{

AT (t0, (i div 2)) if i mod 2 = 0
AT (t1, (i div 2)) otherwise

The second split that we will look at is called the k-block split, which we
will write as b(k) for a constant k :: Z. For this split, the first split component
contains the elements which has an index less than k and the second contains
the rest. The choice function is defined as

ch(i) =

{

0 if i < k
1 otherwise
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and the family of functions F = {f0, f1} where

f0 = (λi .i)
and f1 = (λi .i − k)

Note that we could write F = {fp = (λi .i − k × ((p + 1) mod 2)) | p ∈ {0, 1}}
and ch(i) = sgn(i div k) where sgn is the signum function, i.e.

sgn(x ) =







1 if x > 0
0 if x = 0
−1 if x < 0

We can easily see that each fk is injective.
We can define an access function for this split as follows:

ATb(k)
(〈t0, t1〉b(k), i) =

{

AT (t0, i) if i < k
AT (t1, (i − k)) otherwise

4.1.4 Splits and Operations

Suppose that we have an indexed data-type D(X ) and an operation g of arity
p and elements x 1, . . . , xp of type D(X ) which we split with respect to a split
sp, so that:

x e ! 〈x e
0 , x e

1 , . . . , x e
n−1〉sp for e :: [1..p]

Suppose that we want to compute g(x 1, . . . , xp). Is it possible to express each
of the components of the split of this result in terms of exactly one of the split
components from each of our p elements? That is, we would like

g(x 1, . . . , xp) ! 〈g(x 1
θ1(0), . . . , x

p
θp(0)), . . . , g(x 1

θ1(n−1), . . . , x
p
θp(n−1)) 〉sp

for some family of permutations on [0..n), {θe}e::[1..p]. This can be achieved if
we can find a function h

h :: X p → Y

and a family of functions {φe}e::[1..p], where for each e

φe :: Ixe
→ Ixe

and for all i ∈ Ix

AD(y , i) = h(AD(x 1,φ1(i)), . . . , AD(xp ,φp(i))) (4.3)

where y = g(x 1, . . . , xp).

Theorem 1. Function Splitting Theorem
Suppose that the elements x 1, . . . , xp of a data-type D(X ) are split for some
split sp = (ch,F). Let g be an operation

g :: D(X )p → D(Y )

with element y and functions h and {φe}e as above in Equation (4.3). If there
exists a family of functions {θe}e::[1..p], such that for each e:

θe · ch = ch · φe (4.4)
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and if each φe satisfies:

φe(fk (i)) = fθe(k) (φe(i)) (4.5)

where k = ch(i) and fk , fθ(k) ∈ F and if

y ! 〈y0, y1, . . . , yn−1〉sp

then, for each split component of y (with respect to sp)

(∀ i) yk = g(x 1
θ1(k), . . . , x

p
θp(k)) where k = ch(i)

Proof. Pick i ∈ Ix , let k = ch(i) and then consider AD(yk , fk (i)).

AD(yk , fk (i))

= {split relationship (4.1)}

AD(y , i)

= {Equation (4.3)}

h (AD(x 1,φ1(i)), . . . , AD(xp ,φp(i)))

= {split relationship (4.1) with ke = ch(φe(i))}

h (AD(x 1
k1

, fk1(φ
1(i))), . . . , AD(xp

kp
, fkp

(φp(i))))

= {Property (4.4), ke = ch(φe(i)) = θe(ch(i)) = θe(k)}

h (AD(x 1
θ1(k), fθ1(k) (φ1(i))), . . . , AD (xp

θp(k), fθp(k) (φp(i))))

= {Property (4.5)}

h (AD(x 1
θ1(k),φ

1(fk (i))), . . . , AD(xp
θp(k),φ

p(fk (i))))

= {definition of g in terms of h and φe , Equation (4.3)}

AD(g(x 1
θp(k), . . . , x

p
θp(k)), fk (i))

Thus

(∀ i) yk = g(x 1
θ1(k), . . . , x

p
θp(k)) where k = ch(i)

Let us consider an operation F which has type

F :: (X → Y ) → D(X ) → D(Y )

which is defined as follows:

AD(F f x , i) = f (AD(x , i)) (4.6)

where x :: D(X ) and i ∈ ID .
If we take a function f :: X → Y then the function (F f ) satisfies the

Function Splitting Theorem where h = f and φ1 = id . So, for any split sp =
(ch,F), if we let θ1 = id then

θ1 · ch = id · ch

= ch · id

= ch · φ1
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Thus Equation (4.4) is satisfied. Also, if k = ch(i) and fk ∈ F then

fθ1(k)(φ
1(i)) = fk (i)

= φ1(fk (i))

and so Equation (4.5) is satisfied. So, we can define

Fsp f 〈x0, . . . , xn−1〉sp = 〈F f x0, . . . ,F f xn−1〉sp

Let x :: D(X ) then for some i ∈ ID

AD(F id x , i) = id (AD(x , i))

= AD(x , i)

and so

F id = id (4.7)

Now let f :: Y → Z and g :: X → Y . Then for any x :: D(X ) and for some
i ∈ ID

AD(F (f · g) x , i) = (f · g) (AD(x , i))

= f (g (AD(x , i)))

= f (AD (F g x , i))

= AD (F f (F g x ), i)

= AD ((F f · F g) x , i)

and so

F (f · g) = (F f ) · (F g) (4.8)

The two equations (4.7) and (4.8) are called functor laws and so we can conclude
that F is a functor for the data-type D .

4.2 Arrays

We need to consider whether the array splitting discussed in Section 1.3.6
matches up with our notion of data-type splitting — we defined a data-type
for arrays in Section 3.1.1. Let us suppose that we want to split an array A into
n smaller arrays A0,A1, . . . ,An−1. If we have

A ! 〈A0,A1, . . . ,An−1〉sp

then we need to define ch and F where sp = (ch,F).
The relationship between A and the split components is:

A[i ] = Ak [fk (i)] where k = ch(i). (4.9)

This equation shows us how both access and update can be defined for a
split. Note that with arrays, we can have the situation where

A ! 〈A0,A1, . . . ,An−1〉sp

but

|A| ≤
n−1
∑

k=0

|Ak |

Strict inequality could occur if we had Null elements in some of the split com-
ponents.
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4.2.1 Array-Split properties

In Section 4.1.3 we defined two splits: asp and b(k). Can these be used for
arrays? Yes, in fact, we can use exactly the same definitions as before and the
alternating split matches the array-split defined in Equation (1.4).

When using an array, we may have properties of the array which we might
want to preserve. Two such properties are monotonicity and completeness. An
array A is monotone increasing if

(∀x :: N; y :: N) • (0 ≤ x < y < |A|) ⇒ A[x ] ≤ A[y ]

We can define monotone decreasing similarly and we define strictly monotone
increasing (decreasing) by replacing ≤ (≥) in the consequent by < (>). Mono-
tonic arrays are sufficient for binary searches.

We say an array A is complete, if

(∀i :: N) • (0 ≤ i < |A|) ⇒ A[i ] )= Null

We now state a result (without proof) about the splits asp and b(k).
Suppose for an array A that

A ! 〈P0,P1〉asp

and

A ! 〈Q0,Q1〉b(k)

Then (i) if A is monotone increasing (decreasing) then P0, P1, Q0, Q1 are
all monotone increasing (decreasing) and (ii) if A is complete then so are P0,
P1, Q0, Q1.

Note that the converse of (i) is not always true — consider

[3, 2, 5, 6] ! 〈[3, 5], [2, 6]〉asp
and [3, 5, 2, 6] ! 〈[3, 5], [2, 6]〉b2

The arrays [3, 5] and [2, 6] are both monotone increasing but the arrays [3, 2, 5, 6]
and [3, 5, 2, 6] are not.

It is not always the case that splits preserve completeness and monotonicity.
For example, let us consider the following array-split. Let us suppose that we
have an array of length N and let sp = (ch,F) with

ch = (λi .i mod 2)

and F = {f0, f1} where

f0 = (λi .(N − i) div 2)
and f1 = (λi .(i div 2) + 1)

With this split, taking N = 6:

[0, 1, 2, 3, 4, 5] ! 〈[Null, 4, 2, 0], [Null, 1, 3, 5]〉sp

and so this split does not preserve completeness or monotonicity.
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List (α)

List α ::= Empty | Cons α (List α)

(:) :: α → List α → List α
| | :: List α → N

null :: List α → B

head :: List α → α
tail :: List α → List α
elem :: α → List α → B

(++) :: List α → List α → List α
map :: (α → β) → List α → List β
filter :: (α → B) → List α → List α
(!!) :: List α → N → α

not(null xs) ⇒ (head xs) : (tail xs) = xs
|xs ++ ys| = |xs| ++ |ys|

xs !! 0 = head xs
xs !! (n + 1) = (tail xs) !! n

|xs| = 0 ⇔ null xs
elem x [ ] = False

elem x (xs ++ ys) = elem x xs ∨ elem x ys
elem x (filter p xs) = elem x xs ∧ p x

map (f · g) = map f · map g

Figure 4.1: Data-type for Lists
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4.3 Lists

Our data-type for finite lists is given in Figure 4.1 and is based on the list
data-type in Haskell. We will use the normal Haskell shorthand for list viz. for
Empty we write [ ] and we write Cons 1 (Cons 2 Empty) as 1 : (2 : [ ]) or just
[1, 2] and so

x : xs ≡ Cons x xs

We will write |xs| instead of length xs. Haskell lists form an IDT where the
access function is denoted by !! and the indexer for a list xs is [0..|xs| − 1].

We use the definitions of the operations given in [7, Chapter 4]:

• length of a list

|[ ]| = 0

|(x : xs)| = 1 + |xs|

• test for empty list

null xs = (xs == [ ])

• return first element

head (x : xs) = x

• return all but the first element

tail (x : xs) = xs

• test whether an element is contained within a list

elem a [ ] = False

elem a (x : xs) = (x == a) ∨ (elem a xs)

• join two lists together (concatenate)

[ ] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

• apply a function to every element in a list

map f [ ] = [ ]

map f (x : xs) = f x : (map f xs)

• filter a list using a Boolean function

filter p [ ] = [ ]

filter p (x : xs) = if p x then x : (filter p xs)

else filter p xs

• list indexing

(x : xs) !! 0 = x

(x : xs) !! (n + 1) = xs !! n

Note that head and tail are defined for non-empty finite lists while the rest are
defined for all finite lists.
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SpList (α)
REFINEMENT [unsplit] : List (α)

SpList α ::= 〈List α,List α〉sp ∧ dti

〈[(:), | |, null, head, tail,
elem, (++),map, filter, (!!)]〉

! 〈[conssp , | |sp , nullsp , headsp , tailsp ,
elemsp , (++)sp ,mapsp , filtersp , (!!)sp ]〉

Figure 4.2: Data-type for Split Lists

4.3.1 List Splitting

Suppose that we have a split sp that splits a list into two split components.
The definition for a data-type for split lists is given in Figure 4.2. Note that the
invariant dti will be defined individually for each split.

As the list indexing operation (!!) is expensive to use, for Haskell list splitting,
we will define two functions split (the splitting function) and unsplit (which is
the inverse of split), such that

xs ! 〈l , r〉sp ⇔ splitsp(xs) = 〈l , r〉sp ∧ unsplitsp(〈l , r〉sp) = xs

and

unsplitsp · splitsp = id (4.10)

In Section 5.3.1 we work with sets which are represented by ordered lists
and we will need to know whether a split preserves ordering — i.e. if we split a
list that is increasing (decreasing), are both of the split components increasing
(decreasing)? To help us answer this question, we define the notion of a sublist
(if we think of lists as sequences then sublists are analogous to subsequences).

We write ls " xs if ls is a sublist of xs. The operator " can be defined as
follows:

[ ] " xs = True
(l : ls) " [ ] = False
(l : ls) " (x : xs) = if l == x then ls " xs else (l : ls) " xs

From this, we can see that if ls " xs and xs is increasing (decreasing) then ls is
also increasing (decreasing). So, when we split a list xs, if the split components
are always sublists of xs then we know that the split has preserved the ordering.

Since lists are IDTs can we use the Function Splitting Theorem? For a list
operation op, we would like to find a function h and a family of functions {φi}
such that, for all n,

(op (xs1, xs2, . . . , xsp)) !! n = h (xs1 !! (φ1(n)), . . . , xsp !! (φp(n)))
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If we take h = id and φ1 = λi .i + 1 then

(tail xs) !! n = h (xs !! (φ1(n)))

Note that

(map f xs) !! n = f (xs !! n)

and so map satisfies Equation (4.6). Thus for any split sp

mapsp f 〈x0, .., xn−1〉sp = 〈map f x0, . . . ,map f xn−1〉sp

Now let us consider how we can split lists using the two example splits in
Section 4.1.3.

4.3.2 Alternating Split

We now define the alternating split for lists. For example, we would like:

[4, 3, 1, 1, 5, 8, 2] ! 〈[4, 1, 5, 2], [3, 1, 8]〉asp

Using the definitions of ch and F from Section 4.1.3, if

xs ! 〈l , r〉asp

then

xs !! n =

{

l !! (n div 2) if n mod 2 = 0
r !! (n div 2) otherwise

where n < |xs|.
The representation xs ! 〈l , r〉asp satisfies the following invariant:

dti ≡ |r | ≤ |l | ≤ |r | + 1 (4.11)

We will strengthen this invariant in Section 5.3.1 when we work with ordered
lists. As this split does not introduce any extra elements into the split compo-
nents, we can strengthen Equation (4.2). So if xs :: List α and xs ! 〈l , r〉asp
then

(∀x ← α) • freq(x , xs) = freq(x , l) + freq(x , r) (4.12)

From Equation (4.12), it is immediate that

|xs| = |l | + |r |

We define a splitting function by stating cases for Empty and Cons as follows:

splitasp [ ] = 〈[ ], [ ]〉asp
splitasp (a : xs) = 〈a : r , l〉asp

where 〈l , r〉asp = splitasp xs

and here is the inverse:

unsplitasp 〈[ ], [ ]〉asp = [ ]

unsplitasp 〈x : r , l〉asp = x : unsplitasp 〈l , r〉asp

Both of these operations take time proportional to |l | + |r | (=|xs|). We can
easily check that Equation (4.10) is true and we also have that:

splitasp · unsplitasp = id (4.13)

To ensure that our definition of splitasp matches the (ch,F) formulation, we
prove the following.
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Correctness Proof 1 (Splitting function for the alternating split). If

splitasp xs = 〈l , r〉asp

then (∀ n :: N) • n < |xs|

xs !!n =

{

l !! (n div 2) if n is even
r !! (n div 2) otherwise

(4.14)

where xs is a finite list.

Proof. We prove this by structural induction on xs.

Base Case 1 Suppose that xs = [ ] then, by the definition of splitasp

splitasp [ ] = 〈[ ], [ ]〉asp

So there are no possible values of n and so Equation (4.14) is vacuously true.

Base Case 2 Suppose that xs = [x ] then, by the definition of splitasp ,

splitasp [x ] = 〈[x ], [ ]〉asp

The only possible value for n is zero and so Equation (4.14) is easily satisfied.

Step Case Suppose that xs = x : y : ys. If we let

〈l , r〉asp = splitasp ys

then using the definition of splitasp twice,

splitasp (x : y : ys) = 〈x : l , y : r〉asp

For an induction hypothesis, suppose that ys satisfies Equation (4.14) for all
natural numbers less than n.

Subcase 1 Suppose that n = 0. Then

(x : y : ys) !! 0 = x = (x : l) !! 0

and so Equation (4.14) is satisfied.

Subcase 2 Suppose that n = 1. Then

(x : y : ys) !! 1 = y = (y : r) !! (1 div 2)

and so Equation (4.14) is satisfied.
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Subcase 3 Suppose that n > 1. Then

(x : y : ys) !!n

= {property of !!}

(y : ys) !! (n − 1)

= {property of !!}

ys !! (n − 2)

= {induction hypothesis}
{

l !! ((n − 2) div 2) if n − 2 is even
r !! ((n − 2) div 2) otherwise

= {arithmetic}
{

l !! ((n div 2)− 1) if n is even
r !! ((n div 2)− 1) otherwise

= {property of !!}
{

(x : l) !! (n div 2) if n is even
(y : r) !! (n div 2) otherwise

So by induction, Equation (4.14) is satisfied.

We can consider unsplitasp to be an abstraction function, so we can write

xs ! 〈l , r〉asp ⇔ xs = unsplitasp 〈l , r〉asp ∧ (|r | ≤ |l | ≤ |r | + 1) (4.15)

Following the definition of splitasp , we can define an operation

consasp a 〈l , r〉asp = 〈a : r , l〉asp

that satisfies

splitasp (a : xs) = consasp a (splitasp xs) (4.16)

From the previous section, we know that

mapasp f 〈l , r〉asp = 〈map f l ,map f r〉asp

Can we use Theorem 1 for tail with asp? For tail, h = id and φ1 = λi .i + 1.
We can define θ1 = λi .1− i and so we find that

θ1 · ch = ch · φ1

However, if i is even then ch(i) = 0 and from Equation (4.5) we require that

φ1(f0(i)) = fθ1(0) (φ1(i))

The left hand side gives 1+(i div 2) and the right hand side gives (i +1) div 2.
Since i is even, these expressions are not equal and so Theorem 1 does not apply.

For the more straightforward operations, we can define the following:

|〈l , r〉asp |asp = |l | + |r |

nullasp 〈l , r〉asp = null l

headasp 〈l , r〉asp = head l

tailasp 〈l , r〉asp = 〈r , tail l〉asp
elemasp a 〈l , r〉asp = elem a l ∨ elem a r
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Let us now consider an operation catasp which corresponds to ++, i.e. (++) !

catasp . By writing ++ as an uncurried operation then we can use Equation (3.9)
so that catasp satisfies

catasp (xsp, ysp) = splitasp (++ (unsplitasp xsp, unsplitasp ysp))

This is equivalent to:

catasp xsp ysp = splitasp ((unsplitasp xsp) ++ (unsplitasp ysp)) (4.17)

We derive a definition for catasp by structural induction on xsp.

Base Case Suppose that xsp = 〈[ ], [ ]〉asp and so unsplitasp xsp = [ ].

splitasp ((unsplitasp xsp) ++ (unsplitasp ysp))

= {definitions of xsp and unsplitasp}

splitasp ([ ] ++ (unsplitasp ysp))

= {definition of ++}

splitasp (unsplitasp ysp)

= {Equation (4.13)}

ysp

Step Case Suppose that xsp = 〈x : r , l〉asp and for the induction hypothesis,
we assume that 〈l , r〉asp satisfies Equation (4.17).

splitasp ((unsplitasp xsp) ++ (unsplitasp ysp))

= {definition of xsp}

splitasp ((unsplitasp (〈x : r , l〉asp)) ++ (unsplitasp ysp))

= {definition of unsplitasp}

splitasp ((x : (unsplitasp 〈l , r〉asp)) ++ (unsplitasp ysp))

= {definition of ++}

splitasp (x : ((unsplitasp 〈l , r〉asp) ++ (unsplitasp ysp)))

= {Property (4.16)}

consasp x (splitasp ((unsplitasp 〈l , r〉asp) ++ (unsplitasp ysp)))

= {induction hypothesis}

consasp x (catasp 〈l , r〉asp ysp)

Thus, we can define

catasp 〈[ ], [ ]〉asp ysp = ysp
catasp 〈x : r0, l0〉asp ysp = consasp x (catasp 〈l0, r0〉asp ysp)

As an alternative, we could define:

〈l0, r0〉asp ++asp 〈l1, r1〉asp =

{

〈l0 ++ l1, r0 ++ r1〉asp if |l0| = |r0|
〈l0 ++ r1, r0 ++ l1〉asp otherwise

In Appendix A, we discuss which of these two definitions produces the better
obfuscation with respect to one of the assertions. We find that ++asp gives rise
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to a more complicated assertion proof than catasp . This is because the structure
of catasp is similar to ++ and the definition of ++asp uses ++ (so that we have to
use the proof of the assertion for ++ in the proof of the assertion for ++asp).

For filterasp , we may expect to define

filterasp p 〈l , r〉asp = 〈filter p l , filter p r〉asp

But, for example,

filterasp (odd) 〈[1, 4, 6, 8], [2, 5, 7]〉asp

would give

〈[1], [5, 7]〉asp

which violates the Invariant (4.11). However, we can define filterasp as follows:

filterasp p 〈[ ], [ ]〉asp = 〈[ ], [ ]〉asp
filterasp p 〈a : r , l〉asp = if p a

then consasp a (filterasp p 〈l , r〉asp)
else filterasp p 〈l , r〉asp

Now computing

filterasp (odd) 〈[1, 4, 6, 8], [2, 5, 7]〉asp

gives

consasp 1 (consasp 5 (consasp 7 〈[ ], [ ]〉asp))

which is equal to

〈[1, 7], [5]〉asp

We can prove that

filterasp p = splitasp · (filter p) · unsplitasp

The operations for the alternating split have similar efficiencies to the unsplit
list operations. For ++asp , the only extra computation is the test for |l0| = |r0|.

4.3.3 Block Split

The k -block split (written b(k)) — where k ∈ N is a constant — splits a list so
that the first component contains the first k elements of the list and the second
component contains the rest. For this split we must determine the value of k
before the split is performed and we need to keep the value constant. The value
of k determines how the list is split — we call such a value the decision value
for a split. For instance,

[4, 3, 1, 1, 5, 8, 2] ! 〈[4, 3, 1], [1, 5, 8, 2]〉b(3)

Using the definitions of ch and F from Section 4.1.3 we can define an access
operation, so if

xs ! 〈l , r〉b(k)
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then

xs !! n =

{

l !! n if n < k
r !! (n − k) otherwise

The representation xs ! 〈l , r〉b(k) satisfies the invariant:

dti ≡ (|r | = 0 ∧ |l | < k) ∨ (|l | = k) (4.18)

This invariant will be strengthened in Section 5.3.2. From this we can see that
if the list xs has at most k elements then,

xs ! 〈xs, [ ]〉b(k)

This split also satisfies Equation (4.12).
As with the alternating split, rather than using !!, we define a function that

splits a list:

splitb(k) [ ] = 〈[ ], [ ]〉b(k)

splitb(0) xs = 〈[ ], xs〉b(0)

splitb(k) (x : xs) = 〈x : l , r〉b(k)

where 〈l , r〉b(k−1) = splitb(k−1) xs

To ensure that our definition of splitb(k) matches up with the (ch,F) formu-
lation, we prove the following.

Correctness Proof 2 (Splitting function for the block split). Let xs be
a non-empty list and n :: N. If

splitb(k) xs = 〈l , r〉b(k)

then (∀ n :: N) • n < |xs|

xs !!n =

{

l !! n if n < k
r !! (n − k) otherwise

(4.19)

Proof. We prove this by induction on k .

Base Case Suppose that k = 0. Then, by the definition of splitb(k), l = [ ]
and r = xs. We know that since n ≥ 0 then n < k is always false and so we
need to compute r !! n which is exactly xs !! n.

Step Case 1 Suppose that k > 0 and xs = [ ]. Then by the definition of split,

splitb(k) [ ] = 〈[ ], [ ]〉b(k)

Thus Equation (4.19) is vacuously true as there are no possible values for n.
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Step Case 2 Suppose that k > 0 and xs = t : ts. Then by the definition of
split,

splitb(k+1) (t : ts) = 〈t : l , r〉b(k+1) where 〈l , r〉b(k) = splitb(k) ts

and for the induction hypothesis, we suppose that Equation (4.19) is true for
all values at most k . If n = 0 then (t : ts) !! 0 = t and (t : l) !! 0 = t .

If n + 1 < k + 1 then n < k and consider

(x : l) !! (n + 1)

= {definition of !!}

l !! n

= {induction hypothesis}

ts !! n

= {definition of !!}

(t : ts) !! (n + 1)

If n + 1 ≥ k + 1 then n ≥ k and consider

r !! ((n + 1)− (k + 1))

= {arithmetic}

r !! (n − k)

= {induction hypothesis}

ts !! n

= {definition of !!}

(t : ts) !! (n + 1)

Thus, by induction, Equation (4.19) holds.

The function splitb(k) is invertible and we can define:

unsplitb(k) 〈l , r〉b(k) = l ++ r

Note that this definition is independent of k and we now show that unsplitb(k)

is a left-inverse for splitb(k).

Property 4 (Left inverse of splitb(k)). For all k :: N and all finite lists xs

unsplitb(k) (splitb(k) xs) = xs (4.20)

Proof. We prove this by considering the value of k .

Case 1 Suppose that k = 0. Then

unsplitb(0) (splitb(0) xs)

= {definition of splitb(k) with k = 0}

unsplitb(0) 〈[ ], xs〉b(0)

= {definition of unsplitb(0)}

[ ] ++ xs

= {definition of ++}

xs



CHAPTER 4. SPLITTING HEADACHES 80

Case 2 Suppose that k > 0. We prove Equation (4.20) by structural induction
on xs.

Base Case Suppose that xs = [ ]. Then

unsplitb(k) (splitb(k) [ ])

= {definition of splitb(k)}

unsplitb(k) 〈[ ], [ ]〉b(k)

= {definition of unsplitb(k)}

[ ] ++ [ ]

= {definition of ++}

[ ]

Step Case We now suppose that xs = t : ts and let ts ! 〈l , r〉b(k−1). For
the induction hypothesis, we suppose that ts satisfies Equation (4.20), i.e. ts =
l ++ r . Then

unsplitb(k) (splitb(k) (t : ts))

= {definition of splitb(k) and refinement of ts}

unsplitb(k) 〈t : l , r〉b(k)

= {definition of unsplitb(k)}

(t : l) ++ r

= {definition of ++}

t : (l ++ r)

= {induction hypothesis}

t : ts

We can consider unsplitb(k) to be an abstraction function for this split and
so

xs ! 〈l , r〉b(k) ⇔
xs = unsplitb(k) 〈l , r〉b(k) ∧ ((|r | = 0 ∧ |l | < k) ∨ (|l | = k))

(4.21)

We would like a function consb(k) that satisfies:

splitb(k) (a : xs) = consb(k) a (splitb(k) xs)

and so we define:

consb(k) a 〈l , r〉b(k) =

{

〈a : l , r〉b(k) if |l | < k
〈a : (init l), (last l) : r〉b(k) otherwise

where the functions init and last satisfy:

xs = init xs ++ [last xs] where xs )= [ ]

From earlier in this chapter, by using Theorem 1, we can define

mapb(k) f 〈l , r〉b(k) = 〈map f l ,map f r〉b(k)
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Can we use Theorem 1 with tail? For tail, h = id and φ1 = λi .i +1. If k > 1
then from Equation (4.4), we need a function θ1 such that

(∀i) θ1(ch(i)) = ch(i + 1)

Taking i = 0 gives that θ1(0) = 0 but taking i = k − 1 gives that θ1(0) =
ch(k) = 1 and so we cannot find a function θ1 and Theorem 1 is not satisfied
for tail.

Below we define the more straightforward list operations for the block split:

|〈l , r〉b(k)|b(k)
= |l | + |r |

nullb(k) 〈l , r〉b(k) = null l ∧ null r

headb(k) 〈l , r〉b(k) =

{

head r if k = 0
head l otherwise

tailb(k) 〈l , r〉b(k) =

{

〈tail l , r〉b(k) if |r | = 0
〈tail l ++ [head r ], tail r〉b(k) otherwise

elemb(k) a 〈l , r〉b(k) = elem a l ∨ elem a r

We can derive a function ++b(k) that satisfies

xsp ++b(k) ysp = splitb(k) ((unsplitb(k) xsp) ++ (unsplitb(k) ysp)) (4.22)

by using induction on |xsp| and we obtain the following definition:

〈[ ], [ ]〉b(k) ++b(k) ysp = ysp
〈a : l , [ ]〉b(k) ++b(k) ysp = consb(k) a (〈l , [ ]〉b(k) ++b(k) ysp)
〈a : l , r〉b(k) ++b(k) ysp = consb(k) a (〈l ++ [head r ], tail r〉b(k) ++b(k) ysp)

In Appendix A, we find that this operation is a good obfuscation as the definition
has three distinct cases and does not follow a similar pattern to the definition
of ++. We can define a filtering function as follows:

filterb(k) p 〈[ ], [ ]〉b(k) = 〈[ ], [ ]〉b(k)

filterb(k) p 〈a : l , [ ]〉b(k) = if p a
then consb(k) a (filterb(k) p 〈l , [ ]〉b(k))
else filterb(k) p 〈l , [ ]〉b(k)

filterb(k) p 〈a : l , b : r〉b(k) = if p a
then consb(k) a (filterb(k) p 〈l ++ [b], r〉b(k))
else filterb(k) p 〈l ++ [b], r〉b(k)

We can show that this definition satisfies

filter p = unsplitb(k) · (filterb(k) p) · splitb(k)

The operations for the block split have the same complexities as the normal
split operations but most operations require an extra test (usually to determine
whether the second component is an empty list).

Before using the block split, we need to determine what value of k we want to
use. Many of operations depend on the choice of the decision value (k) and so we
need know what this value will be in advance. We can remove this requirement
if we use an augmented split (Section 4.4.1).
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4.4 Random List Splitting

Each of the two list splittings that we have discussed so far always split a list
in the same way. Suppose that we split up a finite list randomly so that the list
is split differently each time a program is executed. This means that even with
the same input, different program traces are produced on different executions
and this helps to confuse an attacker further. So, for a list xs, we want

xs ! 〈l , r〉

If we want to do this randomly then an easy way to do so is to provide a random
Boolean for each element of xs. We could say that if the value is True for an
element of xs then that element should be placed into the list r and if False
then into l . So when splitting each list, we need to provide a list of Booleans
that tells us how to split the list — such a list can be a decision value for this
split. For example, we want to split up the list [1, 2, 3, 4, 5, 6]. Then using the
list [F ,F ,F ,T ,F ,T ]

[1, 2, 3, 4, 5, 6] ! 〈[1, 2, 3, 5], [4, 6]〉

Instead of providing a list of Booleans, we could use a natural number —
we can take this number to be the decision value. If we let T have value 1
and F have value 0 then we can consider the list of Booleans as the binary
representation of a natural number. For ease of definitions, we will consider
the least significant bit to be the head of the list. For the example above,
[F ,F ,F ,T ,F ,T ] has the value 40.

To be able to use the split list, we will need to how it has been split and
so we have to carry around the decision value (for the example split above, the
decision value is 40). To do this we create a new type called an augmented split
list which contains a decision value (of type β) as well as the split lists:

ASpList α ::= 〈β,List α,List α〉A

So,

[1, 2, 3, 4, 5, 6] ! 〈40, [1, 2, 3, 5], [4, 6]〉A

For our example split, we take β = N.
To use the (ch,F), we need to change the types of the functions so that they

take in an extra parameter n. We can define a choice function as follows:

ch(0,n) = n mod 2
ch(i ,n) = ch(i − 1,n div 2)

and we can define fi ∈ F as follows:

fk (t ,n) = |{i | 0 ≤ i < t ∧ ch(i ,n) == k}|

Before we define some operations for this split, we derive a property of fk :

fk (s + 1,n)

= {definition}

|{i | 0 ≤ i < s + 1 ∧ ch(i ,n) == k}|

= {range split}
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|{i | i = 0 ∧ ch(i ,n) == k}|+
|{i | 1 ≤ i < s + 1 ∧ ch(i ,n) == k}|

= {let j = i − 1 and definition of ch}

|{i | i = 0 ∧ n mod 2 == k}|+
|{j + 1 | 0 ≤ j < s ∧ ch(j + 1,n) == k}|

= {arithmetic and definition of ch}

(1− k + n mod 2) mod 2+
|{j + 1 | 0 ≤ j < s ∧ ch(j ,n div 2) == k}|

= {since we take the size of the set we can replace j + 1 by j}

(1− k + n mod 2) mod 2 + |{j | 0 ≤ j < s ∧ ch(j ,n div 2) == k}|

= {definition of fk}

(1− k + n mod 2) mod 2 + fk (s,n div 2)

Thus

fk (s + 1,n) = fk (s,n div 2) + (1− k + n mod 2) mod 2 (4.23)

We now need to consider how to implement a “cons” operation for this split.
When adding a new element to the front of an augmented split list, we need to
give indicate whether the value should be added to the first or to the second
list. So our cons operation will also need to take in a random bit which decides
into which list we add to. If m ∈ {0, 1} then we can define:

consA m x 〈d , l , r〉A = if m == 0 then 〈n, (x : l), r〉A
else 〈n, l , (x : r)〉A

where n = (2× d) + m

We would like two functions split and unsplit that satisfy the following prop-
erty

xs ! 〈n, l , r〉A ⇔ splitA n xs = 〈n, l , r〉A ∧ unsplitA 〈n, l , r〉A = xs

Note that for this split we will take dti ≡ True.
Using the definition of consA, we can easily define a splitting function, splitA:

splitA n [ ] = 〈n, [ ], [ ]〉A
splitA n (x : xs) = consA m x (splitA d xs)

where (d ,m) = divMod n 2

We give a definition for unsplitA on Page 85.
Now we prove that this definition of splitA matches up with the (ch,F)

formulation.

Correctness Proof 3 (Splitting function for the augmented split). If

splitA xs = 〈n, l , r〉A

for a list xs then (∀ s :: N) • s < |xs|

xs !! s =

{

l !! f0 (s,n) if ch(s,n) == 0
r !! f1 (s,n) otherwise

(4.24)

Proof. Suppose that xs = [ ] then there are no possible values of s and so the
result is vacuously true.

We now induct on s and suppose that xs is non-empty. We have two cases
depending on whether n is even or odd.
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Even Suppose that n mod 2 = 0. Then by the definitions of splitA and consA:

(t : ts) ! 〈n, (t : l), r〉A where ts ! 〈n div 2, l , r〉A

Base Case Let s = 0 then ch(s,n) = n mod 2 = 0 and so

(t : l) !! f0 (0,n) = (t : l) !! 0 = t = (t : ts) !! 0

Step Case Suppose that s > 0. For the induction hypothesis, we suppose that
Equation (4.24) is true for all natural numbers at most s. If ch(s + 1,n) = 0
then, by the definition of ch, ch(s,n div 2) = 0 and

(t : l) !! f0 (s + 1,n)

= {Property (4.23) and 1− k + n mod 2 = 1}

(t : l) !! (1 + f0 (s,n div 2))

= {definition of !!}

l !! f0 (s,n div 2)

= {induction hypothesis}

ts !! s

= {definition of !!}

(t : ts) !! (s + 1)

If ch(s + 1,n) = 1 then ch(s,n div 2) = 1 and

r !! f1 (s + 1,n)

= {Property (4.23) and 1− k + n mod 2 = 0}

r !! f1 (s,n div 2)

= {induction hypothesis}

ts !! s

= {definition of !!}

(t : ts) !! (s + 1)

Odd Suppose that n mod 2 = 1. Then by the definition of splitA

(t : ts) ! 〈n, l , (t : r)〉A where ts ! 〈n div 2, l , r〉A

Base Case Let s = 0 then ch(s,n) = n mod 2 = 1 and so

(t : r) !! f1 (0,n) = (t : r) !! 0 = t = (t : ts) !! 0
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Step Case Suppose that s > 0. For the induction hypothesis, we suppose that
Equation (4.24) is true for all natural numbers at most s. If ch(s +1,n) = 0 by
the definition of ch, ch(s,n div 2) = 0 and

l !! f0 (s + 1,n)

= {Property (4.23) and 1− k + n mod 2 = 0}

l !! f0 (s,n div 2)

= {induction hypothesis}

ts !! s

= {definition of !!}

(t : ts) !! (s + 1)

If ch(s + 1,n) = 1 then ch(s,n div 2) = 1 and

(t : r) !! f1 (s + 1,n)

= {Property (4.23) and 1− k + n mod 2 = 1}

(t : r) !! (1 + f1 (s,n div 2))

= {definition of !!}

r !! f1 (s,n div 2)

= {induction hypothesis}

ts !! s

= {definition of !!}

(t : ts) !! (s + 1)

We now define an inverse for splitA — unsplitA — which can be written as
follows:

unsplitA 〈n, [ ], rs〉A = rs
unsplitA 〈n, ls, [ ]〉A = ls
unsplitA 〈n, (l : ls), (r : rs)〉A = if m == 0

then l : (unsplitA 〈d , ls, (r : rs)〉A)
else r : (unsplitA 〈d , (l : ls), rs〉A)

where (d ,m) = divMod n 2

Although

unsplitA · (splitA n) = id

it is not always the case that

(splitA n) · unsplitA = id

For example,

[1, 2, 3, 4] ! 〈10, [1, 3], [2, 4]〉A
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but

split 11 (unsplitA 〈10, [1, 3], [2, 4]〉A)
= splitA 11 [1, 2, 3, 4]
= 〈11, [3], [1, 2, 4]〉A
)= 〈10, [1, 3], [2, 4]〉A

Instead of equality for split lists, we could set up an equivalence relation.

xsp ≡ ysp ⇔ unsplitA xsp = unsplitA ysp

or equivalently

xsp ≡ yss ⇔ (∃ xs) (xs ! xsp ∧ xs ! ysp)

We can define the more straightforward list operations as follows:

|〈n, l , r〉A|A = |l | + |r |
nullA 〈n, l , r〉A = null l ∧ null r
elemA x 〈n, l , r〉A = elem x l ∨ elem x r
mapA f 〈n, l , r〉A = 〈n,map f l ,map f r〉A

Following the definition of consA, we can define headA and tailA as follows:

headA 〈n, l , r〉A = if mod n 2 == 0 then head l else head r
tailA 〈n, l , r〉A = if m == 0 then 〈d , tail l , r〉A else 〈d , l , tail r〉A

where (d ,m) = divMod n 2

For efficiency, we can combine these two operations in a single operation called
headTailA which has type ASpList α → (N,α,ASpList α). We define the oper-
ation as follows:

headTailA 〈n, l , r〉A = if m == 0 then (m, head l , 〈d , tail l , r〉A)
else (m, head r , 〈d , l , tail r〉A)

where (d ,m) = divMod n 2

This operation satisfies the following property:

xsp = consA b h t ⇔ (b, h, t) = headTailA xsp (4.25)

The proof is routine and we omit the details.
Using headTailA, we can define an operation analogous to ++:

catA 〈n, [ ], [ ]〉A ysp = ysp
catA xsp ysp = consA b h (catA t ysp)

where (b, h, t) = headTailA xsp

which satisfies

xs ++ ys = unsplitA (catA (splitA m xs) (splitA n ys))

Using headTailA, we can define a more succinct definition for unsplit

unsplitA 〈n, [ ], [ ]〉A = [ ]
unsplitA xsp = h : (unsplitA t)

where (b, h, t) = headTailA xsp

and finally we can prove that unsplitA is a left inverse for splitA.

Property 5 (Left inverse of splitA). For all d :: N,

unsplitA (splitA d xs) = xs (4.26)

Proof. We prove this by induction on xs.
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Base Case Suppose that xs = [ ]

unsplitA (splitA d [ ])

= {definition of splitA}

unsplitA 〈d , [ ], [ ]〉A
= {definition of unsplit}

[ ]

Step Case Suppose that xs = y : ys and that ys satisfies Equation (4.26).
Let n = 2d + m so that (d ,m) = divMod n 2 then

unsplitA (splitA n (y : ys))

= {definition of splitA}

unsplitA (consA m y (split d ys))

= {definition of unsplitA and Equation (4.25)}

y : (unsplitA (splitA d ys))

= {induction hypothesis}

y : ys

Consider this definition:

filterA p 〈n, [ ], [ ]〉A = 〈n, [ ], [ ]〉A
filterA p xsp = if p h then consA b h ysp else ysp

where ysp = filterA p t
(b, h, t) = headTailA xsp

We would like this operation to correspond to the filter operation for lists, i.e.

xs ! xsp ⇒ filter p xs ! filterA p xsp

To show this, we can prove that

filter p ys = unsplitA (filterA p (splitA n ys))

by structural induction on ys.
The complexities of the augmented split operations are the same as for nor-

mal lists however most operations require some extra computations. Operations
such as consA and tailA need to perform some arithmetic and catA and filterA
need to compute headTailA.

Using augmented split lists we develop two versions of the block split that
allows us to introduce some randomness in the splits.

4.4.1 Augmented Block Split

We now briefly describe (without proofs) a variation of the block split in which
we store the decision value and the split components. We call this the augmented
block splits — denoted by a subscript B . We would like

xs ! 〈l , r〉b(k) ⇒ xs ! 〈k , l , r〉B
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We can define a split function as follows:

splitB k [ ] = 〈k , [ ], [ ]〉B
splitB 0 (x : xs) = 〈0, [ ], x : xs〉B
splitB (k + 1) (x : xs) = 〈k + 1, x : l , r〉B

where 〈m, l , r〉B = splitB k xs

The unsplitting function is the same as the k -block split:

unsplitB 〈n, l , r〉B = l ++ r

The representation xs ! 〈n, l , r〉B satisfies the invariant

dti ≡ (|r | = 0 ∧ |l | < n) ∨ (|l | = n) (4.27)

By storing the decision value, we will see that the operations that we define
can use this value. Hence, we can choose the decision value randomly and so
on different execution runs, the same list could be split differently. Also, when
performing operation on this split, we can change the decision value as well the
lists themselves.

For instance, we can define a cons operation as follows:

consB a 〈k , l , r〉B
∣

∣

∣

∣

|l | < k = 〈k , a : l , r〉B
otherwise = 〈k + 1, a : l , r〉B

The definition for the k -block split required keeping the length of the first list
component the same and so the last of element of the first list was added to
the front of the second list. The version of cons for the augmented block split is
more efficient as we merely increase the decision value by one. However consB
cannot be used to build up split lists starting from an empty split list as the list
r will remain empty.

The straightforward list operations are defined as follows:

|〈k , l , r〉B |B = |l | + |r |

nullB 〈k , l , r〉B = null l ∧ null r

elemB a 〈k , l , r〉B = elem a l ∨ elem a r

headB 〈k , l , r〉B =

{

head r if k = 0
head l otherwise

tailB 〈k , l , r〉B =

{

〈k , l , tail r〉B if k = 0
〈k − 1, tail l , r〉B otherwise

mapB f 〈k , l , r〉B = 〈k ,map f l ,map f r〉B

All these definitions, with the exception of tail, match the definitions for the
k -block split. The definition of tail is more efficient as we just decrease the
decision value instead of joining the head of the second component to the end
of the first component.

Here is a possible definition for a concatenation operation:

〈k , [ ], [ ]〉B ++B 〈k ′, l ′, r ′〉B = 〈k ′, l ′, r ′〉B
〈k , l , r〉B ++B 〈k ′, l ′, r ′〉B = 〈|l ++ r |, l ++ r , l ′ ++ r ′〉B
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and a definition for a filtering operation:

filterB p 〈n, l , r〉B = 〈|l ′|, l ′, filter p r〉B
where l ′ = filter p l

The complexities of the augmented block split operations match the com-
plexities of the normal list operations. The operations headA and tailA have an
extra test for k = 0 and ++B and filterB need to compute some list lengths.

4.4.2 Padded Block Split

For a list xs = ls ++ rs, we want

xs ! 〈|ls|, ls ++ js, rs〉P

where js is a list of random elements — thus we can pad the split list with extra
junk elements.

We decide on how many elements to put into the first component and so we
pass this decision value in as a parameter. Since we store the decision value as
well as the split list, we can choose the value randomly.

We can define a splitting function as follows:

splitP n [ ] = 〈0, js, [ ]〉P
splitP 0 (x : xs) = 〈0, js, x : xs〉P
splitP (n + 1) (x : xs) = 〈m + 1, x : l , r〉P

where 〈m, l , r〉P = splitP n xs

where the list js is a random list. We define the unsplitting function as follows:

unsplitP 〈n, l , r〉P = (take n l) ++ r

where the operation take is specified as follows:

take n xs = ys where xs = ys ++ zs

|ys| =

{

|xs| if |xs| < n
n otherwise

The representation xs ! 〈n, l , r〉P satisfies the following invariant:

dti ≡ |l | ≥ n (4.28)

Note that for this split, Invariant (4.12) is not true. Instead, we have that
for a list xs of type List α

xs ! 〈n, l , r〉P ⇒ (∀x :: α) freq(x , xs) = freq(x , take n l) + freq(x , r)

We can define consP as follows:

consP a 〈n, l , r〉P = 〈n + 1, a : l , r〉P

This is more efficient than consb(k) as we just need to add the new element to
the front of l and increment n.
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The straightforward list operations are defined as follows:

|〈n, l , r〉P |P = n + |r |

nullP 〈n, l , r〉P = n == 0 ∧ null r

elem a 〈n, l , r〉P = elem a (take n l) ∨ elem a r

headP 〈k , l , r〉P =

{

head r if k = 0
head l otherwise

tailP 〈k , l , r〉P =

{

〈k , l , tail r〉P if k = 0
〈k − 1, tail l , r〉P otherwise

mapP f 〈n, l , r〉P = 〈n,map f l ,map f r〉P

For the definition of elemP we need to use the take function so that we discard
the junk elements. The definition of tailP is the same as for tailB .

We can define a concatenation operation as follows:

〈0, l , [ ]〉P ++P 〈m, l ′, r ′〉P = 〈m, l ′ ++ l , r ′〉P
〈n, l , r〉P ++P 〈m, l ′, r ′〉P = 〈|lt | + |r |, lt ++ r ++ ld ′ ++ ld , lt ′ ++ r ′〉P

where lt = take n l
ld = drop n l
lt ′ = take m l ′

ld ′ = drop m l ′

We actually have some degree of freedom with this operation. Instead of creating
the list lt ++ r ++ ld ′ ++ ld , we can create lt ++ r ++ rs, where rs is a random list.

Finally, we define filterP as follows:

filterP f 〈n, l , r〉P = 〈|lf |, lf ++ ld , filter f r〉P
where lf = filter f (take n l)

ld = drop n l

Again, we can replace ld by a random list.
Many of the operations require the use of take and drop. This means that

many of the operations for the padded block split are less efficient although
all have the same complexity as the corresponding unsplit list operation. For
efficiency we could use the function splitAt which computes both take and drop
in one pass through the list.

4.5 Conclusions

In this chapter we have seen how to generalise the array-split discussed in [10]
and we have shown various ways of splitting lists. Our generalisation of a split
included creating a choice function and stating an abstract data-type. We then
saw that this generalisation covers the array-split discussed in [10]. Thus using
the techniques from this chapter enables us to produce more array obfuscations
for imperative programs. In the next chapters we extend the notion of splitting
to other abstract data-types.

A consequence of our generalisation of splitting was that we could devise
ways of splitting randomly. To date, random obfuscations seem to have received
little attention. Randomness can help to confuse an attacker by adding an extra
level of obscurity. One of the random obfuscations that we proposed involved
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padding one of the components with junk elements. This obfuscation raises
concerns about stealth. We must ensure that any junk elements that we create
do not “stand out” so that it is not obvious which elements are “real” data.
We could also make some of the operations act on the junk so that it is not
noticeable that the junk is unimportant. These concerns also apply to the tree
obfuscations that we discuss in Chapter 7.

In Appendix A we consider different obfuscations of ++. We prove the same
assertion for each definition. Here is a table of results for the different proofs:

Operation C H
++ 11 7
++asp 27 13
catasp 15 10
++b(k) 43 16
catA 18 10
++B 24 13
++P 27 12

where the C is the cost of a proof tree and H is the height. We find that if the
definition of an obfuscated operation follows a similar pattern to the definition
of the original operation then the proof of the assertion is also similar. Thus an
operation will be a good assertion obfuscation if its definition does not follow
a similar pattern to the unobfuscated operation. In general, there is a trade-
off between the degree of obfuscation and the computational complexity of an
obfuscation but all of our obfuscations of ++ have linear complexity (although
many require extra computations such as evaluating tests).



Chapter 5

Sets and the Splitting

Buffy: “This’ll probably go faster if we split up.”
Lily: “Can I come with you?”
Buffy: “Okay, where did I lose you on the whole splitting up

thing?”

Buffy the Vampire Slayer — Anne (1998)

In this chapter, we consider how we can split finite sets. For the padded
block split (defined in Section 4.4.2) we placed junk elements at specific places
in the list. Since sets are unordered we have difficulties adding junk elements as
we are not sure which elements are “real” and which are “junk”. So to split sets
we will represent sets using Haskell lists and then split the corresponding lists.
We consider the set data-type and the representations discussed in [7, Section
8.3].

5.1 A Data-Type for Sets

The data-type for sets is defined in Figure 5.1. Note that dti is a data-type
invariant (we specify this when we decide on a list representation).

How do these operations relate to the mathematical operations? The oper-
ation empty stands for ∅, member for ∈, union for ∪, meet for ∩ and minus for
set difference (\). We can specify

isEmpty s ≡ s == ∅

insert a s ≡ {a} ∪ s

and delete a s ≡ s\{a}

We will consider two list representations — unordered lists with duplicates
and strictly-increasing lists. A discussion using unordered lists without dupli-
cates is given in [20].

5.2 Unordered Lists with duplicates

We first choose to represent a set as an unordered list with duplicates — then
there is no particular data-type invariant and so dti is True. We define the set

92
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Set (α)
USING : List (α)

Set α ∼ List α ∧ dti

empty :: Set α
isEmpty :: Set α → B

member :: Set α → α → B

insert :: α → Set α → Set α
delete :: α → Set α → Set α
union :: Set α → Set α → Set α
meet :: Set α → Set α → Set α

minus :: Set α → Set α → Set α

insert a (insert a xs) = insert a xs
insert a (insert b xs) = insert b (insert a xs)

isEmpty empty = True
isEmpty (insert a xs) = False

member empty y = False
member (insert a xs) y = (a = y) ∨member xs a

delete a empty = empty
delete a (insert b xs) = if a = b then delete a xs

else insert b (delete a xs)
union xs empty = xs

union xs (insert b ys) = insert b (union xs ys)
meet xs empty = empty

meet xs (insert b ys) = if member xs b then insert b (meet xs ys)
else meet xs ys

minus xs empty = xs
minus xs (insert b ys) = minus (delete b xs) ys

Figure 5.1: Data-type for Sets
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operations as follows:

empty = [ ]
isEmpty = (== [ ])

member xs a = if isEmpty xs then False
else a == (head xs) ∨member (tail xs) a

insert a xs = a : xs
delete a xs = filter ()= a) xs
union xs ys = xs ++ ys
meet xs ys = filter (member ys) xs

minus xs ys = filter (not · member ys) xs

The advantage of this representation is that insert is a constant time oper-
ation but, in the worst case, member, delete and union have linear complexity
and meet and minus have quadratic complexity.

5.2.1 Alternating Split

Let us now consider obfuscating the set operations using the alternating split.
We state the operations (without proof) using the definitions from Section 4.3.2
— more detail can be found in [20].

We can define the empty set as 〈[ ], [ ]〉asp and

isEmptyasp 〈l , r〉asp = isEmpty l ∧ isEmpty r

Using the definition of consasp , we define

insertasp a 〈l , r〉asp = 〈a : r , l〉asp

As with insert this is a constant time operation. Since member is analogous to
elem then we can define

memberasp 〈l , r〉asp a = member l a ∨member r a

We can show that memberasp satisfies:

memberasp xsp a = member (unsplitasp xsp) a (5.1)

The definition of unionasp is:

unionasp xs ys = xs ++asp ys

These last two operations have linear complexity.
Using the definition of filterasp we can define:

deleteasp a xs = filterasp ()= a) xs
meetasp xs ys = filterasp (memberasp ys) xs

minusasp xs ys = filterasp (not · memberasp ys) xs

The operation deleteasp has linear complexity and the other two have quadratic
complexity.
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5.3 Strictly Ordered Lists

We now represent sets by lists which are in strictly-increasing order. If xs is a
strictly-increasing ordered list then it has a data-type invariant as follows:

dti ≡ ((∀m :: N;n :: N) • 0 ≤ m < n < |xs| ⇒ xs !! m < xs !! n) (5.2)

The definitions of empty and isEmpty are the same as before. We can define:

member xs a = if isEmpty zs then False else (a == head zs)
where zs = dropWhile (< a) xs

insert a xs = ys ++ (if isEmpty zs ∨ head zs )= a then a : zs else zs)
where (ys, zs) = span (< a) xs

delete a xs = ys ++ (if isEmpty zs ∨ head zs )= a then zs else tail zs)
where (ys, zs) = span (< a) xs

These operations all have complexity O(|xs|).
In [7, Page 267], the union operation is defined for this representation:

union [ ] ys = ys
union xs [ ] = xs
union (x : xs) (y : ys)

∣

∣

∣

∣

∣

∣

x < y = x : union xs (y : ys)
x == y = x : union xs ys
otherwise = y : union (x : xs) ys

For the definitions of union, meet and minus we can exploit the fact that we
have an ordering. Since the lists are ordered (Invariant (5.2)), we can walk
through both lists in order, taking the appropriate action at each stage. Thus
the definitions of minus and meet are:

minus [ ] ys = [ ]
minus xs [ ] = xs
minus (x : xs) (y : ys)

∣

∣

∣

∣

∣

∣

x < y = x : minus xs (y : ys)
x == y = minus xs ys
otherwise = minus (x : xs) ys

meet [ ] ys = [ ]
meet xs [ ] = [ ]
meet (x : xs) (y : ys)

∣

∣

∣

∣

∣

∣

x < y = meet xs (y : ys)
x == y = x : meet xs ys
otherwise = meet (x : xs) ys

We could have defined the insert and delete operations in a similar way — these
operations would be slightly more efficient (but with the same complexity). We
chose to define insert and delete in the way that we have as they produce more
interesting obfuscated versions — see Section 5.4 for a discussion of the insert
operation.
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5.3.1 Alternating Split

If we wish to use the alternating split with ordered lists then we need to
strengthen Invariant (5.3). The representation xs ! 〈l , r〉asp satisfies:

(|r | ≤ |l | ≤ |r | + 1) ∧ (l " xs) ∧ (r " xs) (5.3)

Since we require that the split components are sublists, we know that the al-
ternating split preserves ordering. Using the definition of splitasp , we can easily
check that this new invariant holds.

The definitions of emptyasp , isEmptyasp and memberasp are the same as for
unordered lists. The definition of deleteasp is:

deleteasp a 〈l , r〉asp =
if member lz a then 〈ly ++ rz , ry ++ tail lz 〉asp
else if member rz a then 〈ly ++ tail rz , ry ++ lz 〉asp

else 〈l , r〉asp
where (ly , lz ) = span (< a) l

(ry , rz ) = span (< a) r

Note that in the definition of deleteasp (and insertasp), we use member lz a
instead of member l a — by the definition of lz , member lz a reduces to checking
whether head lz == a. The number of steps for computing delete is proportional
to |ly | + |ry | — so it has linear complexity. The definition of insertasp is:

insertasp a 〈l , r〉asp =
〈ly , ry〉asp ++asp (if member lz a then 〈lz , rz 〉asp

else if |ly | == |ry | then 〈a : rz , lz 〉asp
else if member rz a then 〈rz , lz 〉asp
else 〈a : lz , rz 〉asp )

where (ly , lz ) = span (< a) l
(ry , rz ) = span (< a) r

This definition has four conditions. In the first and third conditions we know
that a is a member of the split list and so we do not insert a — instead we just
have to reconstruct the split list. In the other two cases, we have to insert a
into the split list and so we use the definition of ++asp to tell us where to place
the element a.

This version of insertasp is still linear time — the only extra work is a check
that |ly | == |ry |. The proof of correctness of insertasp can be found in Appendix
B and the correctness of deleteasp can be found in [20].

Using the definition of minus with ordered lists, we can easily define minusasp
as follows:

minusasp 〈[ ], [ ]〉asp ys = 〈[ ], [ ]〉asp
minusasp xs 〈[ ], [ ]〉asp = xs
minusasp 〈x : l0, r0〉asp 〈y : l1, r1〉asp

∣

∣

∣

∣

∣

∣

x < y = consasp x (minusasp 〈r0, l0〉asp 〈y : l1, r1〉asp)
x == y = (minusasp 〈r0, l0〉asp 〈r1, l1〉asp)
otherwise = (minusasp 〈x : l0, r0〉asp 〈r1, l1〉asp)

and the definitions of unionasp and meetasp are similar. This definition of
minusasp follows a similar pattern to the unobfuscated version. This operation is
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not very interesting from an obfuscation point of view because it is very similar
to the unobfuscated operation — except for a reversal in the order of the split
components.

Since filter preserves ordering (i.e. (filter p xs) " xs) then we can use the
definition for minus for unordered lists:

minus xs ys = filter (not · member ys) xs

(note that this definition has quadratic complexity).
Using this, we derive an operation minusasp that satisfies:

minusasp xsp ysp = splitasp (minus (unsplitasp xsp) (unsplitasp ysp))

The right-hand of this equation becomes

splitasp (filter (not · member (unsplitasp ysp)) (unsplitasp xsp))

Using Equation (5.1), we obtain

minusasp xsp ysp =
splitasp (filter (not · memberasp ysp) (unsplitasp xsp))

(5.4)

We derive minusasp by induction on xsp.

Base Case Suppose that xsp = 〈[ ], [ ]〉asp then

splitasp (filter (not · memberasp ysp) (unsplitasp xsp))

= {definition of xsp}

splitasp (filter (not · memberasp ysp) (unsplitasp 〈[ ], [ ]〉asp))

= {definition of unsplitasp}

splitasp (filter (not · memberasp ysp) [ ])

= {definition of filter}

splitasp [ ]

= {definition of splitasp}

〈[ ], [ ]〉asp

Step Case Let xsp = 〈x : xl , xr〉asp and for the induction hypothesis, we
suppose that 〈xr , xl〉asp satisfies Equation (5.4). We have two subcases.

Subcase 1 Suppose that memberasp ysp x = False.

splitasp (filter (not · memberasp ysp) (unsplitasp xsp))

= {definition of xsp}

splitasp (filter (not · memberasp ysp) (unsplitasp 〈x : xl , xr〉asp))

= {definition of unsplit}

splitasp (filter (not · memberasp ysp) x : (unsplitasp 〈xr , xl〉asp))

= {definition of filter with memberasp ysp x = False}

splitasp (x : (filter (not · memberasp ysp) (unsplitasp 〈xr , xl〉asp)))
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= {Equation (4.16)}

consasp x (filter (not · memberasp ysp) (unsplitasp 〈xr , xl〉asp))

= {induction hypothesis}

consasp x (minus 〈xr , xl〉asp ysp)

Subcase 2 Suppose that memberasp ysp x = True.

splitasp (filter (not · memberasp ysp) (unsplitasp xsp))

= {definition of xsp}

splitasp (filter (not · memberasp ysp) (unsplitasp 〈x : xl , xr〉asp))

= {definition of unsplit}

splitasp (filter (not · memberasp ysp) x : (unsplitasp 〈xr , xl〉asp))

= {definition of filter with memberasp ysp x = False}

splitasp (filter (not · memberasp ysp) (unsplitasp 〈xr , xl〉asp))

= {induction hypothesis}

minus 〈xr , xl〉asp ysp

Putting all the cases gives the following definition:

minusasp 〈[ ], [ ]〉asp ysp = 〈[ ], [ ]〉asp
minusasp 〈x : xl , xr〉asp ysp = if memberasp ysp x

then minusasp 〈xr , xl〉asp ysp
else consasp x (minusasp 〈xr , xl〉asp ysp)

5.3.2 Block Split

Let us now consider how we can obfuscate the set operations using the block
split. As we are now working with ordered lists, we need to strengthen Invariant
(4.18). The representation xs ! 〈l , r〉b(k) satisfies:

((|r | = 0 ∧ |l | < k) ∨ (|l | = k)) ∧ (l " xs) ∧ (r " xs) (5.5)

which ensures that the block split preserves ordering. Using the definition of
splitb(k), we can easily check that this invariant holds and so we can use this
split with ordered lists.

As with the alternating split, we state the operations for ordered lists —
the proofs of correctness can be found in [20]. The memberb(k) operation is the
same as usual:

memberb(k) 〈l , r〉b(k) a = member l a ∨member r a

For insertb(k), we may have to break the list l into ls ++ [l ′], where l ′ is the
last element of l (assuming that l is not empty). Note that since |l | ≤ k then
breaking l into ls and l ′ is a constant operation.

insertb(k) a 〈l , r〉b(k)
∣

∣

∣

∣

∣

∣

∣

∣

memberb(k) 〈l , r〉b(k) a = 〈l , r〉b(k)

|l | < k = 〈insert a l , r〉b(k)

l ′ < a = 〈l , insert a r〉b(k)

otherwise = 〈insert a ls, l ′ : r〉b(k)

where ls = init l
l ′ = last l
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As |l | ≤ k then the insert operation still has linear complexity in the worst case.
The operation deleteb(k) follows a similar pattern to the unordered version,

except that we have to take care where we place head r .

deleteb(k) a 〈l , r〉b(k)
∣

∣

∣

∣

∣

∣

member a l ∧ r == [ ] = 〈delete a l , r〉b(k)

member a l ∧ r )= [ ] = 〈(delete a l) ++ [head r ], tail r〉b(k)

otherwise = 〈l , delete a r〉b(k)

Again, in the worst case, deleteb(k) has linear complexity.
This definitions of unionb(k), meetb(k) and minusb(k) are similar to the defi-

nitions stated at the start of Section 5.3. As an example, here is the definition
of meetb(k):

meetb(k) 〈[ ], [ ]〉b(k) ys = 〈[ ], [ ]〉b(k)

meetb(k) xs 〈[ ], [ ]〉b(k) = 〈[ ], [ ]〉b(k)

meetb(k) (consb(k) x 〈l0, r0〉b(k)) (consb(k) y 〈l1, r1〉b(k))
∣

∣

∣

∣

∣

∣

x == y = consb(k) x (meetb(k) 〈l0, r0〉b(k) 〈l1, r1〉b(k))
x < y = meetb(k) 〈l0, r0〉b(k) (consb(k) y 〈l1, r1〉b(k))
otherwise = meetb(k) (consb(k) x 〈l0, r0〉b(k)) 〈l1, r1〉b(k)

5.4 Comparing different definitions

When using ordered lists we defined insert as follows:

insert a xs = ys ++ (if isEmpty zs ∨ head zs )= a then a : zs else zs)
where (ys, zs) = span (< a) xs

As an alternative, we could define:

insert1 a [ ] = [a]
insert1 a (x : xs)

∣

∣

∣

∣

∣

∣

a > x = x : (insert1 a xs)
a == x = x : xs
otherwise = a : x : xs

We chose the first formulation as we claimed that it had a more interesting
obfuscation. If we obfuscate both of these operations by using the alternating
split then we obtain:

insertasp a 〈l , r〉asp =
〈ly , ry〉asp ++asp (if member lz a then 〈lz , rz 〉asp

else if |ly | == |ry | then 〈a : rz , lz 〉asp
else if member rz a then 〈rz , lz 〉asp
else 〈a : lz , rz 〉asp )

where (ly , lz ) = span (< a) l
(ry , rz ) = span (< a) r

and

insert1asp a 〈[ ], [ ]〉asp = 〈[a], [ ]〉asp
insert1asp a 〈x : l , r〉asp

∣

∣

∣

∣

∣

∣

a > x = consasp x (insert1asp a 〈r , l〉asp)
a == x = 〈x : l , r〉asp
otherwise = 〈a : r , x : l〉asp
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We saw the definition of insertasp in Section 5.3.1.
These four operations all have linear complexity. The definition of insert1 is

generally the most efficient as it passes through the list only once. For insert1asp

we need to swap the split components — this can be implemented in constant
time. The other two operations require walking through the initial part of the
list (i.e. the elements less than a) twice. In the definition of insertasp we have
extra tests and so insertasp is slightly less efficient than insert.

While it is certainly true that insert1asp is syntactically similar to insert, is
it less obfuscated? We prove that each of the four operations satisfy:

f a (f a xs) = f a xs (5.6)

which corresponds to the assertion:

insert a (insert a xs) = insert a xs

(i.e. that insert a is idempotent).

5.4.1 First Definition

We prove Equation (5.6) for insert — so let (ys, zs) = span (< a) xs and we
have two cases.

Case 1 Suppose that zs = [ ] ∨ head zs )= a. Then

insert a (insert a xs)

= {definition of insert}

insert a (ys ++ (a : zs))

= {definition of insert; span (< a) (ys ++ (a : zs)) = (ys, a : zs)}

ys ++ (a : zs)

= {definition of insert}

insert a xs

Case 2 Suppose that head zs = a, then

insert a (insert a xs)

= {definition of insert}

insert a (ys ++ zs)

= {property of span (Property 9)}

insert a xs

Note that Property 9 is proved in Appendix B.1.
We can draw the following proof tree:

insert

Case 1

insert

insert span

insert

Case 2

(Prop 9)

insert
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For this proof tree, the cost and height are as follows:

C (insert) = 5 + C (Prop 9) = 9
and H (insert) = 3 + H (Prop 9) = 6

5.4.2 Second Definition

We prove Equation (5.6) for insert1 by induction on xs.

Base Case Suppose that xs = [ ]. Then

insert1 a (insert1 a [ ])

= {definition of insert1}

insert1 a [a]

= {definition of insert1}

[a]

= {definition of insert1}

insert1 a [ ]

Step Case Suppose that xs = y : ys and for the induction hypothesis, we
assume that ys satisfies Equation (5.6). We have three subcases.

Subcase 1 Suppose that a > y then

insert1 a (insert1 a (y : ys))

= {definition of insert1}

insert1 a (y : (insert1 a ys))

= {definition of insert1}

y : (insert1 a (insert1 a ys))

= {induction hypothesis}

y : (insert1 a ys)

= {definition of insert1}

insert1 a (y : ys)

Subcase 2 Suppose that a = y then

insert1 a (insert1 a (y : ys))

= {definition of insert1}

insert1 a (y : ys)

Subcase 3 Suppose that a < y then

insert1 a (insert1 a (y : ys))

= {definition of insert1}

insert1 a (a : y : ys)

= {definition of insert1}
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a : y : ys

= {definition of insert1}

insert1 a (y : ys)

The tree for this proof is:

insert1

Base Step Case 1 Step Case 2 Step Case 3

where

Base

insert1

insert1

insert1

and

Step Case 1

insert1

IH

insert1

insert1

Step Case 2

insert1

Step Case 3

insert1

insert1

insert1

So,

C (insert1) = 11
and H (insert1) = 5

5.4.3 Third Definition

We prove Equation (5.6) for insertasp — so we let xs = 〈l , r〉asp and

(ly , lz ) = span (< a) l
(ry , rz ) = span (< a) r

We have four cases.

Case 1 Suppose that member lz a. By (B.3 ⇒) (proved in Appendix B.1)
|ly | = |ry | and so,

insertasp a (insertasp a 〈l , r〉asp)

= {definition of insertasp}

insertasp a (〈ly , ry〉asp ++asp 〈lz , rz 〉asp)

= {definition of ++asp with |ly | = |ry |}

insertasp a (〈ly ++ lz , ry ++ rz 〉asp)

= {property of span (Property 9)}

insertasp a 〈l , r〉asp
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Case 2 Suppose that ¬(member lz a) and |ly | = |ry |

insertasp a (insertasp a 〈l , r〉asp)

= {definition of insertasp}

insertasp a (〈ly , ry〉asp ++asp 〈a : rz , lz 〉asp)

= {definition of ++asp with |ly | = |ry |}

insertasp a 〈ly ++ (a : rz ), ry ++ lz 〉asp
= {definition of insertasp with member (a : rz ) a}

〈ly ++ (a : rz ), ry ++ lz 〉asp
= {definition of insertasp}

insertasp a 〈l , r〉asp

Case 3 Suppose that member rz a then by (B.4 ⇒) |ly | )= |ry |.

insertasp a (insertasp a 〈l , r〉asp)

= {definition of insertasp}

insertasp a (〈ly , ry〉asp ++asp 〈rz , lz 〉asp)

= {definition of ++asp with |ly | )= |ry |}

insertasp a (〈ly ++ lz , ry ++ rz 〉asp)

= {property of span (Property 9)}

insertasp a 〈l , r〉asp

Case 4 Suppose that ¬(member rz a) and |ly | )= |ry |

insertasp a (insertasp a 〈l , r〉asp)

= {definition of insertasp}

insertasp a (〈ly , ry〉asp ++asp 〈a : lz , rz 〉asp)

= {definition of ++asp with |ly | )= |ry |}

insertasp a 〈ly ++ rz , ry ++ (a : lz )〉asp
= {definition of insertasp with member (a : lz ) a}

〈ly ++ rz , ry ++ (a : lz )〉asp
= {definition of insertasp}

insertasp a 〈l , r〉asp

Below is the proof tree for Cases 1 and 2:

insertasp

1

(Prop 9)

++asp (B.3 ⇒)

insertasp

2

insertasp

insertasp

++asp

insertasp

The proof tree for Cases 3 and 4 is similar (except that (B.3 ⇒) is replaced
by (B.4 ⇒)). Both of (B.3 ⇒) and (B.4 ⇒) use (B.1) and so

L (insertasp) = {(B.1), (Prop 9)}
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Note that C (B.3 ⇒) = 6 + C (B.1), where C (B.1) = 12, and thus

C (insertasp) = (2× (7 + 6)) + C (B.1) + C (Prop 9) = 42
and H (insertasp) = max(5, 3 + H (B.3 ⇒), 4 + H (Prop 9)) = 16

Thus the proof for insertasp is much more complicated than for insert.

5.4.4 Last Definition

We prove Equation (5.6) for insert1asp by induction on xs.

Base Case Suppose that xs = 〈[ ], [ ]〉asp then

insert1asp a (insert1asp a 〈[ ], [ ]〉asp)

= {definition of insert1asp}

insert1asp a 〈[a], [ ]〉asp
= {definition of insert1asp}

〈[a], [ ]〉asp
= {definition of insert1asp}

insert1asp a 〈[ ], [ ]〉asp

Step Case Suppose that xs = 〈y : l , r〉asp and for the induction hypothesis,
we assume that 〈r , l〉asp satisfies (5.6). Let 〈p, q〉asp = insert1asp a 〈r , l〉asp . We
have three subcases

Subcase 1 Suppose that a > y then

insert1asp a (insert1asp a 〈y : l , r〉asp)

= {definition of insert1asp}

insert1asp a (consasp y (insert1asp a 〈r , l〉asp))

= {definition of 〈p, q〉asp}

insert1asp a (consasp y 〈p, q〉asp)

= {definition of consasp}

insert1asp a 〈y : q , p〉asp
= {definition of insert1asp}

consasp y (insert1asp a 〈p, q〉asp)

= {definition of 〈p, q〉asp}

consasp y (insert1asp a (insert1 a 〈r , l〉asp))

= {induction hypothesis}

consasp y (insert1asp a 〈r , l〉asp)

= {definition of insert1asp}

insert1asp a 〈y : l , r〉asp
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Subcase 2 Suppose that a = y then

insert1asp a (insert1asp a 〈y : l , r〉asp)

= {definition of insert1asp}

insert1asp a 〈y : l , r〉asp

Subcase 3 Suppose that a < y then

insert1asp a (insert1 a 〈y : l , r〉asp)

= {definition of insert1asp}

insert1asp a 〈a : r , x : l〉asp
= {definition of insert1asp}

〈a : r , x : l〉asp
= {definition of insert1asp}

insert1 a 〈y : l , r〉asp

Here is a tree for this proof:

insert1asp

Base Step Case 1 Step Case 2 Step Case 3

where

Base

insert1asp

insert1asp

insert1asp

and

Step Case 1

insert1asp

IH

def

insert1asp

:asp

def

insert1asp

Step Case 2

insert1asp

Step Case 3

insert1asp

insert1asp

insert1asp

So,

C (insert1asp) = 14
and H (insert1asp) = 8
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5.5 Conclusions

The following table summarises the results from the proof trees in the last
section:

Version C H
insert 9 6
insert1 11 5
insertasp 42 16
insert1asp 14 8

In Section 5.3 we claimed that the definition of insert which uses span pro-
duces a more interesting obfuscation. We can see that this claim is supported
by the results in the table. The definition of insert1asp has a similar structure
to insert1 while the definition of insertasp is more complicated than insert. Al-
though the two unobfuscated definitions are similar in the difficulty of the proof,
there is a much greater difference between the proofs for the obfuscated oper-
ations. As with the ++ operation discussed in Appendix A we can see that an
obfuscated operation seems to be a good assertion obfuscation if the definition
has a different structure to the unobfuscated operation.



Chapter 6

The Matrix Obfuscated

The Doctor: “I deny this reality.
This reality is a computation matrix.”

Doctor Who — The Deadly Assassin (1976)

The next data-type we consider is matrices and we briefly develop some splits
for this data-type — more details can be found in [19]. A matrix M which has
r rows and c columns with elements of type α will be denoted by Mr×c(α). We
write M(i , j ) to denote the access function which denotes the element located at
the ith row and the j th column. An indexer for a matrix Mr×c is [0..r)× [0..c).
Thus since matrices are examples of IDTs, we can perform splits.

6.1 Example

Matrices are used for a variety of applications in Computer Science. One such
application is computer graphics in which coordinates have type Float3. We use
matrices, taking α = Float , to represent transformations, such as rotations and
scaling and column vectors to represent coordinates. So that we can define a
translation matrix, we use homogeneous coordinates [25, Chapter 5]; we write
the point (x , y , z ) as (x , y , z ,w) where w )= 0. Two homogeneous coordinates are
equal if one is a multiple of the other. When using 3D homogeneous coordinates
we need to have 4× 4 transformation matrices.

Let us consider a scaling matrix which has the form:

S (sx , sy , sz ) =









sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1









To scale the point (x , y , z ,w), we compute

S (sx , sy , sz )









x
y
z
w









=









x × sx
y × sy
z × sz

w
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How could we obfuscate this operation? Consider the matrix

A =







a(0,0) . . . a(0,3)
...

. . .
...

a(3,0) . . . a(3,3)







In each of the first three rows, we choose which of the first three columns to
place each scaling factor and the last number in each row indicates the choice
of column. The rest of the matrix can be filled with junk. So we can define:

S (sx , sy , sz )









x
y
z
w









=









x × a(0,a(0,3) mod 3)

y × a(1,a(1,3) mod 3)

z × a(2,a(2,3) mod 3)

w









6.2 Matrix data-type

We can model matrices in Haskell using a list of lists. Not all lists of lists
represent a matrix: mss represents a matrix if and only if all the members of
mss are lists of the same length. We can define a function valid that checks
whether a list of lists is a valid matrix representation.

valid [mss] = True

valid (ms : ns : mss) = |ms| == |ns| ∧ valid (ns : mss)

We represent Mr×c by a list of lists mss where |mss| = r and each list in mss
has length c.

Our data-type for matrices is shown in Figure 6.1. Note that we saw the
operation cross in Section 3.2.3:

cross (f1, f2) (x1, x2) = (f1 x1, f2 x2)

For addition, the two matrices must have the same size and for multiplication
we need the matrices to be conformable, i.e. the number of columns of the first
is equal to the number of rows in the second. We can specify the operations
point-wise as follows:

(scale s M)(i , j ) = s ×M(i , j )
(add (M,N))(i , j ) = M(i , j ) + N(i , j )
(transpose M)(i , j ) = M(j , i)
(mult (M,P))(i , k) =

∑c
j=1 M(i , j )×P(j , k)

M !!! (i , j ) = M(i , j )

for matrices Mr×c , Nr×c and Pc×d with i :: [0..r), j :: [0..c) and k :: [0..d).
For simplicity, we assume the our element type is Z and so we simply write

M instead of M(Z).
We assume that basic arithmetic operations take constant time and so the

computational complexities of add M N, scale s M and transpose M are all r×c
and the complexity of mult M P is r×c×d . In fact, to reduce the number of
multiplications in the calculation of mult, we could use Strassen’s algorithm [13,
Section 28.2] which performs matrix multiplication by establishing simultaneous
equations. The algorithm requires starting with a 2n×2n matrix and splitting
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∣

∣
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∣
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∣
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∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

Matrix (α)

Matrix α ::= List (List α) ∧ (∀ mss :: Matrix α • valid mss)

scale :: α → Matrix α → Matrix α
add :: (Matrix α,Matrix α) → Matrix α

transpose :: Matrix α → Matrix α
mult :: (Matrix α,Matrix α) → Matrix α
(!!!) :: Matrix α → N× N → α

transpose · transpose = id
transpose · add = add · cross (transpose, transpose)

transpose · (scale s) = (scale s) · transpose
(add (M,N)) !!! (r , c) = (M !!! (r , c)) + (N !!! (r , c))

transpose (mult (M,N)) = mult (transpose N, transpose M)
add (M,N) = add (N,M)

Figure 6.1: Data-type for Matrices

it into four n×n matrices but by padding a matrix with zeros, this method can
be adapted for more general matrices.

We must ensure that when we obfuscate these operations we do not change
the complexity.

6.2.1 Definitions of the operations

We now define operations to match the data-type given in Figure 6.1. Two of
our definitions will use the function zipWith — the definition below contains a
catch-all to deal with the situation where one of the lists is empty:

zipWith f (x : xs) (y : ys) = f x y : (zipWith f xs ys)
zipWith f = [ ]

For brevity, we define the infix operation (⊗) to correspond to zipWith (++).
We define the matrix operations functionally as follows:

scale a mss = map (map (a×)) mss
add (mss,nss) = zipWith (zipWith (+)) mss nss
transposemss = foldr1 (⊗) (map (map wrap) mss)

where wrap x = [x ]
mult (mss,nss) = map (row nss) mss

where row nss xs = map (dotp xs) (transpose nss)
dotp ms ns = sum (zipWith (×) ms ns)

mss !!! (r , c) = (mss !! r) !! c
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We can see that using lists of lists to model matrices allows us to write succinct
definitions for our matrix operations.

6.3 Splitting Matrices

Since matrices are an IDT we can use the Function Splitting Theorem (Theorem
1 from Section 4.1.4). Can we express our matrix operations using functions h
and φe? For scale (×s), we can take h = (×s) and φ1 = id ; for transpose, h = id
and φ1(i , j ) = (j , i) and for add, we can take h = (+) and φ1 = id = φ2. We
cannot define mult using h and φe — in the next section, we use a split in which
the components of the split of mult (A,B) are calculated using two components
from the split of A and two from the split of B.

For add and scale the φ functions are equal to id (as are the θ functions) and
so Equation (4.5) is satisfied for any split. If, for some split sp,

A ! 〈A0 , . . . ,An−1〉sp
B ! 〈B0 , . . . ,Bn−1〉sp

then

addsp (A,B) = 〈add (A0,B0), . . . , add (An−1,Bn−1)〉sp

and

scalesp s A = 〈scale s A0, . . . , scale s An−1〉sp

Note that it is not surprising that scale satisfies the Function Splitting Theorem
as it is defined in terms of map.

6.3.1 Splitting in squares

A simple matrix split is one which splits a square matrix into four matrices —
two of which are square. Using this split we can give definitions of our operations
for split matrices. Suppose that we have a square matrix Mr×r and choose a
positive integer k such that k < n. The choice function ch(i , j ) is defined as

ch(i , j ) =















0 (0 ≤ i < k) ∧ (0 ≤ j < k)
1 (0 ≤ i < k) ∧ (k ≤ j < r)
2 (k ≤ i < n) ∧ (0 ≤ j < k)
3 (k ≤ i < n) ∧ (k ≤ j < r)

which can be written as a single formula

ch(i , j ) = 2 sgn (i div k) + sgn (j div k)

where sgn is the signum function. The family of functions F is {f0, f1, f2, f3}
where

f0 = (λ (i , j ) . (i , j ))
f1 = (λ (i , j ) . (i , j − k))
f2 = (λ (i , j ) . (i − k , j ))

and f3 = (λ (i , j ) . (i − k , j − k))
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Again, we can write this in a single formula:

F = {fp = (λ (i , j ) . (i − k × (p div 2), j − k × (p mod 2))) | p ∈ [0..3]}

We call this split the (k , k)-square split since the first component of the split is
a k×k square matrix. Pictorially, we split a matrix as follows:





















a(0,0) . . . a(0,k−1) a(0,k) . . . a(0,n−1)
...

. . .
...

...
. . .

...
a(k−1,0) . . . a(k−1,k−1) a(k−1,k) . . . a(k−1,n−1)

a(k ,0) . . . a(k ,k−1) a(k ,k) . . . a(k ,n−1)
...

. . .
...

...
. . .

...
a(n−1,0) . . . a(n−1,k−1) a(n−1,k) . . . a(n−1,n−1)





















So if

M(i , j ) = Mt(ft(i , j )) where t = ch(i , j )

then we can write

Mn×n ! 〈Mk×k
0 ,Mk×(n−k)

1 ,M(n−k)×k
2 ,M(n−k)×(n−k)

3 〉s(k)

where the subscript s(k) denotes the (k , k)-square split.
In Section 6.3.4, we will see that for this split

MT
! 〈M0

T ,M2
T ,M1

T ,M3
T 〉s(k)

or, pictorially,
(

M0 M1

M2 M3

)T

=

(

M0
T M2

T

M1
T M3

T

)

This operation has complexity n×n.
What is the definition of !!! for this split? To access an element of a split

matrix, first we decide which component we need and then what position. We
propose the following definition:

〈M0,M1,M2,M3〉s(k) !!!s(k) (r , c)
∣

∣

∣

∣

∣

∣

∣

∣

r < k ∧ c < k = M0 !!! (r , c)
r < k ∧ c ≥ k = M1 !!! (r , c − k)
r ≥ k ∧ c < k = M2 !!! (r − k , c)
r ≥ k ∧ c ≥ k = M3 !!! (r − k , c − k)

Finally let us consider how we can multiply split matrices. Let

Mn×n ! 〈M0, M1, M2, M3〉s(k)

Nn×n ! 〈N0, N1, N2, N3 〉s(k)

By considering the product
(

M0 M1

M2 M3

)

×

(

N0 N1

N2 N3

)

we obtain the following result:

M ×N ! 〈(M0 ×N0) + (M1 ×N2), (M0 ×N1) + (M1 ×N3),

(M2 ×N0) + (M3 ×N2), (M2 ×N1) + (M3 ×N3)〉s(k)
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The computation of M×N using naive matrix multiplication needs n3 in-
teger multiplications. By adding up the number of multiplications for each
of the components, we can see that split matrix multiplication also needs n3

multiplications.

6.3.2 Modelling the split in Haskell

We now show how to model the (k , k)-square split with Haskell lists and so for
this section, we deal with square matrices. We introduce the following type:

SpMat α = 〈Matrix α, Matrix α, Matrix α, Matrix α 〉

to describe split matrices. Let us suppose that we have a square matrix mss
with dim mss = (n,n). Then the representation

mss ! 〈as, bs, cd , ds〉s(k)

satisfies the invariant

dim as = (k , k) ∧ dim bs = (k ,n − k) ∧
dim cs = (n − k , k) ∧ dim ds = (n − k ,n − k)

(6.1)

for some k :: (0..n). The operation dim returns the dimensions of a matrix and
is defined to be:

dim mss = (|mss|, |head mss|)

If mss represents a matrix with dimensions r×c, then the length of the list
mss is r . Thus, we define

|〈as, bs, cs, ds〉s(k)|s(k)
= |as| + |cs|

Rather than using the choice function ch and the family of functions F , we
will define a splitting function directly for lists. We would like a function

splits(k) :: Matrix α → SpMat α

that operates on square matrices and returns the corresponding split matrix.
Thus splits(k) must satisfy:

mss ! 〈as, bs, cs, ds〉s(k) ⇔ splits(k) mss = 〈as, bs, cs, ds〉s(k)

For this split, we define

splits(k) mss = 〈as, bs, cs, ds〉s(k)

where (xss, yss) = splitAt k mss
(as, bs) = unzip (map (splitAt k) xss)
(cs, ds) = unzip (map (splitAt k) yss)

Since we can undo splitAt by using ++, we define the (left and right) inverse
of splits(k) to be

unsplits(k) 〈as, bs, cs, ds〉s(k) = (as ⊗ bs) ++ (cs ⊗ ds)

Note that this definition is independent of the choice of k . We take unsplits(k)

to be our abstraction function for this split. Thus

mss ! 〈as, bs, cs, ds〉s(k) ⇔

mss = unsplits(k) 〈as, bs, cs, ds〉s(k) ∧









dim as = (k , k) ∧
dim bs = (k ,n − k) ∧
dim cs = (n − k , k) ∧
dim ds = (n − k ,n − k)
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6.3.3 Properties

To make derivations easier we will use some properties about map, ++ and
zipWith. The proofs of some of these properties can in found in [19].

First, two properties of ++:

map f (xs ++ ys) = (map f xs) ++ (map f ys)

(ys, zs) = splitAt k xs ⇒ xs = ys ++ zs

Next, we will need a way of concatenating two zipWiths together.

Property 6. Let (()) be a function () :: List α → List β → List γ and suppose
that we have lists as and cs of type List α and bs and ds of type List β such
that |as| = |bs|. Then:

(zipWith (()) as bs) ++ (zipWith (()) cs ds)
= zipWith (()) (as ++ cs) (bs ++ ds)

Using this property, we can write an alternative definition for unsplit:

unsplit 〈as, bs, cs, ds〉s(k) = (as ++ cs) ⊗ (bs ++ ds)

The next two properties link transpose and ⊗.

Property 7. For matrices mss and nss

transpose (mss ++ nss) = (transpose mss)⊗ (transpose nss)

We can see this property pictorially:

(

mss

nss

)T

=



 mssT nssT





Property 8. For matrices mss and nss where |mss| = |nss|

transpose (mss ⊗ nss) = transpose mss ++ transpose nss

6.3.4 Deriving transposition

Using Equation (3.6) we can produce an equation that enables us to derive
operations for split matrices:

ops(k) = splits(k) · op · unsplits(k) (6.2)

Using this equation, we derive transposes(k) using the properties from Section
6.3.3.

transposes(k) 〈a, b, c, d〉s(k)

= {using Equation (6.2)}

splits(k)(transpose (unsplits(k) 〈a, b, c, d〉s(k)))

= {definition of unsplits(k)}

splits(k) (transpose ((a ⊗ b) ++ (c ⊗ d)))

= {Property 7}
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splits(k) ((transpose (a ⊗ b)) ⊗ (transpose (c ⊗ d)))

= {Property 8}

splits(k) ((transpose a ++ transpose b)⊗ (transpose c ++ transpose d))

= {Property 6, (⊗) = zipWith(++)}

splits(k) ((transpose a ⊗ transpose c)++
(transpose b ⊗ transpose d))

= {definition of unsplits(k)}

splits(k) (unsplit 〈transpose a, transpose c,
transpose b, transpose d〉s(k))

= {splits(k) · unsplits(k) = id}

〈transpose a, transpose c, transpose b, transpose d 〉s(k)

Hence,

(〈a, b, c, d〉s(k))
T = 〈aT , cT , bT , dT 〉s(k) (6.3)

The derivation for transposes(k) is quite short and matches the form given
in Section 6.3.1. Derivations for the other operations can be found in [19].

We could use the Function Splitting Theorem (Theorem 1), by taking g =
transpose, h = id and φ1(i , j ) = (j , i) to define transposition for our split. If we
let

θ1(t) = 2 (t mod 2) + (t div 2)

then we can verify that Equations (4.4) and (4.5) are satisfied to give a definition
that matches Equation (6.3).

We shall show that this operation satisfies the first assertion in Section 6.2,
namely that transposes(k) is self-inverse:

transposes(k) · transposes(k) = id (6.4)

Proof. To prove this, we will need that transpose is self-inverse (Equation (C.1))
— the proof of (C.1) is in Appendix C.

transposes(k) (transposes(k) 〈a, b, c, d〉s(k))

= {definition of transposes(k)}

transposes(k) 〈transpose a, transpose c,
transpose b, transpose d〉s(k)

= {definition of transposes(k)}

〈transpose (transpose a), transpose (transpose b),
transpose (transpose c), transpose (transpose d)〉s(k)

= {Equation (C.1) four times}

〈a, b, c, d〉s(k)

This proof that transposes(k) is self-inverse requires the proof that transpose
is also self-inverse. This means that this obfuscation is an assertion obfuscation.
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The tree for the proof of this assertion is:

(C.1)

(C.1)

(C.1)

(C.1)

transposes(k)

transposes(k)

6.3.5 Problems with arrays

One of the reasons for performing splits on abstract data-types was that we can
use information that might not be clear in the concrete representation. Let us
consider how we could split and transpose a matrix after it had been flattened
to an array. We will consider a flattening where we concatenate each row of the
matrix. Consider the matrix:

E =













a b c d e
f g h i j
k l m n o
p q r s t
u v w x y













Then, using k = 3,

E !

〈





a b c
f g h
k l m



 ,





d e
i j
n o



 ,

(

p q r
u v w

)

,

(

s t
x y

)

〉

s3

Let A be an array which represents E:

A = [a, b, c, d , e, f , . . . , j , . . . , u, v ,w , x , y ]

So if we split A to match how E was split then we obtain:

A ! 〈[a, b, c, f , g , h, k , l ,m], [d , e, i , j ,n, o], [p, q , r , u, v ,w ], [s, t , x , y ]〉

Now we need to perform a matrix transposition on each of the split array com-
ponents. For instance, we would like

transpose ([ d , e, i , j ,n, o ]) = [ d , i ,n, e, j , o ]

transpose ([p, q , r , u, v ,w ]) = [p, u, q , v , r ,w ]

For these two cases, transpose will have to perform different permutations of the
array elements despite the arrays having the same length. So transpose needs
to know the dimensions of the split matrix components which have been lost
by flattening. So to obfuscate the transposition operation for matrices we could
represent matrices by an array and the matrix width.
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6.4 Other splits and operations

This section briefly considers possible extensions to the ideas discussed in the
previous sections.

6.4.1 Other Splits

Let us now consider splitting non-square matrices. We can define a (k , l)-split
which will produce four split components so that the first split component is a
matrix of size (k , l). The choice function is

ch(i , j ) = 2 sgn (i div k) + sgn (j div l)

and the family of functions is

F = {fp = (λ (i , j ) . (i − k (p div 2), j − l (p mod 2))) | p ∈ [0..3]}

The representation

mss ! 〈as, bs, cd , ds〉s(k ,l)

with dim mss = (r , c) satisfies the invariant

dim as = (k , l) ∧ dim bs = (k , c − l) ∧
dim cs = (r − k , l) ∧ dim ds = (r − k , c − l)

(6.5)

for some k :: (0..r) and l :: (0..c).
The definition of !!!s(k ,l) is similar to the definition of !!!k :

〈mss,nss, pss, qss〉(k ,l) !!!s(k ,l) (i , j )
∣

∣

∣

∣

∣

∣

∣

∣

i < k ∧ j < l = mss !!! (i , j )
i < k ∧ j ≥ l = nss !!! (i , j − l)
i ≥ k ∧ j < l = pss !!! (i − k , j )
i ≥ k ∧ j ≥ l = qss !!! (i − k , j − l)

The Function Splitting Theorem (Theorem 1 from Section 4.1.4) immedi-
ately provides the definitions of addition and scalar multiplication for this split.
We are unable give a simple definition for transposes(k ,l) as we cannot apply
Theorem 1. As an example, suppose that k )= l and k < r and l < c. For
transpose, h = id and φ1(i , j ) = (j , i). Consider the matrix positions (0, 0) and
(k−1, l−1). Then ch(0, 0) = 0 and so, by Equation (4.4)

θ1(ch(0, 0)) = ch(φ1(0, 0)) ⇒ θ1(0) = 0

But, if k )= l , then ch(l−1, k−1) )= 0 and ch(k−1, l−1) = 0. So,

ch(φ1(k−1, l−1)) = ch(l−1, k−1)) )= 0

Thus

θ1(ch(k−1, l−1)) = ch(φ1(k−1, l−1)) ⇒ θ1(0) )= 0

So, we cannot find a function θ1 that satisfies Equation (4.4). Also, we have
difficulties defining a multiplication operation for this split; we cannot use our
definition for the (k , k)-square split because the matrices that we would try to
multiply could be non-conformable.
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6.4.2 A more general square splitting

Suppose that we have a matrix Mk×k which we want to split into n2 blocks
with the condition that the blocks down the main diagonal are square. We will
call this the n-square matrix split, denoted by sq(n). For this, we will need a
set of numbers S0,S1, . . . ,Sm such that

0 = S0 < S1 < S2 < . . . < Sn−1 < Sn = k − 1

We require strict inequality so that we have exactly n2 blocks with both dimen-
sions of each block at least 1.

The n-square matrix split is defined as follows: sq(n) = (ch,F) such that

ch :: [0..k)× [0..k) → [0..n2)

ch(i , j ) = p n + q where Sp ≤ i < Sp+1 ∧ Sq ≤ j < Sq+1

and if fr ∈ F then

fr :: [0..k)× [0..k) → [0..Sp − Sp−1)× [0..Sq − Sq−1)

fr (i , j ) = (i − Sp , j − Sq) where r = ch(i , j ) = pn + q

An alternative form for the choice function is

ch(i , j ) =
n

∑

t=1

(

n × sgn(i div St) + (j div St)
)

Note that if ch(i , j ) = pn + q then ch(j , i) = qn + p.
The matrices M and Mr are related by the formula

Mr(fr (i , j )) = M(i , j ) where r = ch(i , j )

As with the (k , k)-square split we can use the Function Splitting Theo-
rem (Theorem 1) to define transposition. For transpose, h = id and φ1 =
λ (i , j ).(j , i). We define a permutation function as follows:

θ1 = λ s.(n × (s mod n) + (s div n))

Suppose that t = ch(i , j ) = pn + q then θ1(t) = qn + p. So,

θ1 (ch(i , j )) = θ1 (pn + q)

= (qn + p)

= ch (j , i)

= ch (φ1 (i , j ))

and thus Equation (4.4) is satisfied. Also,

φ1 (ft (i , j )) = φ1 (fpn+q (i , j ))

= φ1 (i − Sp , j − Sq)

= (j − Sq , i − Sp)

= fqn+p (j , i)

= fqn+p (φ1 (i , j ))

= fθ1(t) (φ1 (i , j ))
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and thus Equation (4.5) is satisfied. Hence the Function Splitting Theorem
applies and so if

M ! 〈M0,M1, . . . ,Mn,Mn+1, . . . ,Mn2−1〉sq(n)

then

MT ! 〈M0
T ,Mn

T , . . . ,M1
T ,Mn+1

T , . . . ,Mn2−1
T 〉sq(n)

Without the Function Splitting Theorem, the derivation of this obfuscation is
much harder.

6.4.3 Extending the data-type of matrices

We may wish to compute the inverse of a square matrix — i.e. given a matrix
M we would like a matrix N such that

M×N = I = N×M

We can derive an inverse for matrices which have been split by the (k , k)-square
split by using the equation for multiplying two split matrices. This then leads
to solving four simultaneous equations. In fact, if

M =

(

M0 M1

M2 M3

)

then M−1 is
(

(M0 − (M1 M3
−1 M2))−1 ((M2 M0

−1 M1)−M3)−1 M0
−1 M1

M3
−1 M2(M1 M3

−1 M2 −M0)−1 (M3 −M2 M0
−1 M1)−1

)

If we wish to extend the data-type of matrices to support the determinant
operation then splitting this data-type proves to very difficult for dense matrices
as the computation of a determinant usually requires knowledge of the entire
matrix.

6.5 Conclusions

We have found that splitting provides a way of obfuscating another data-type.
We are able to obfuscate standard matrix operations producing obfuscations
that we know are correct and whose complexities match the unobfuscated oper-
ations. The Function Splitting Theorem shows us how to produce obfuscations
for scale and add for all splits. We have also used the theorem to help us con-
struct obfuscations for transpose for some obfuscations. Since our data-type
splitting is a generalisation of array splitting we can use the obfuscations devel-
oped here to help us obfuscate matrix operations that are defined imperatively
using arrays.

We showed that our definition for transposes(k) is an assertion obfuscation
with respect to one of the assertions. Further work is needed to establish if
our obfuscated operations are good assertion obfuscations. Another area for
research to see how we can use randomness to create other matrix obfuscations.



Chapter 7

Cultivating Tree

Obfuscations

Many were increasingly of the opinion that they’d all made a big
mistake in coming down from the trees in the first place. And some
said that even the trees had been a bad move, and that no one should
ever have left the ocean.

The Hitchhiker’s Guide to the Galaxy (1979)

For our final data-type, we consider binary trees. We have seen that we can
split arrays, lists and matrices — is splitting a suitable obfuscation for trees?

7.1 Binary Trees

In this section, we state our binary tree data-type — many of the definitions of
the tree operations are taken from [7, Chapter 6]. The kinds of binary tree that
we consider are finite trees which contain a well-defined value of type α at each
node (so we do not allow ⊥). Our data-type for binary trees is shown in Figure
7.1.

The flatten operation takes a tree and returns a list of values:

flatten Null = [ ]
flatten (Fork lt v rt) = (flatten lt) ++ [v ] ++ (flatten rt)

The height operation measures how far away the furthest leaf is from the
root:

heightNull = 0
height (Fork lt v rt)= 1 + (max (height lt) (height rt))

For mktree, we have many ways of making a tree from a list. However, we
impose the following requirement on such an operation:

mktree :: List α → Tree α • xt = mktree ls ⇒
(flatten xt = ls ∧ (∀ yt) (flatten yt = ls ⇒ height yt ≥ height xt))

119
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Tree (α)
USING : List (α)

Tree α ::= Null | Fork (Tree α) α (Tree α)

mktree :: List α → Tree α
flatten :: Tree α → List α
member :: α → Tree α → B

height :: Tree α → N

modify :: α → α → Tree α → Tree α

flatten · mktree = id
member p (mktree xs) = elem p xs

member p t ⇒ member q (modify p q t)
height t ≤ |flatten t |

Figure 7.1: Data-Type for Binary Trees

Bird [7, Page 183] proposes a definition for mktree that builds a binary tree
of minimum height:

mktree [ ] = Null
mktree xs = Fork (mktree ys) z (mktree zs)

where (ys, (z : zs)) = splitAt (div |xs| 2) xs

We can routinely verify that the mktree requirement is satisfied. This definition
of mktree not only builds minimal height trees but also builds balanced trees.
Note that we do not require that the trees in our data-types are balanced.

We can check whether a particular value is contained within a tree using
member:

member p Null = False
member p (Fork lt v rt) = (v == p) ∨ member p lt ∨ member p rt

Finally, modify p q t should replace all occurrences of the value p in the tree
with the value q :

modify p q Null = Null
modify p q (Fork lt v rt)

∣

∣

∣

∣

p == v = Fork (modify p q lt) q (modify p q rt)
otherwise = Fork (modify p q lt) v (modify p q rt)

7.1.1 Binary Search Trees

We now consider a special kind of binary tree — binary search trees. Binary
search trees have the property that the value, of type α, of a node is greater
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∣
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BST (α)
REFINEMENT [id ] : Tree (α)

(Ord α) ⇒ BST α ::= Null | Fork (BST α) α (BST α)
∧ inc (flatten t)

〈[mktree, flatten,member, height,modify ]〉
! 〈[mkBST, flatten,memBST, height,modBST ]〉

insert :: α → BST α → BST α
delete :: α → BST α → BST α

memBST p (insert p t) = True
memBST p (delete p t) = False

Figure 7.2: Data-Type for Binary Search Trees

than the values in the left subtree but less than the values in the right subtree
(this assumes we have an total ordering on α). This property can be stated as:

inc (flatten t) (7.1)

where inc is a Boolean function that tests whether a list is in strictly increasing
order. Our data-type for binary search trees is shown in Figure 7.2. Since
BSTs are binary trees then we can take id as the abstraction function for the
refinement.

The definitions of flatten and height are the same as before (and so we keep
the names the same). For BSTs, memBST is implemented efficiently as follows:

memBST p Null = False
memBST p (Fork lt v rt)

∣

∣

∣

∣

∣

∣

p == v = True
p < v = memBST p lt
p > v = memBST p rt

We cannot use the operation of mktree from before as we need to ensure
that we create a BST. We could define

mkbst = foldr insert Null

but this function does not necessarily build a BST of minimal height. Instead
we define

mkbst = mktree.strict sort
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where the function strict sort sorts a list so that it is strictly-increasing (i.e.
there are no duplicates). But does this operation actually build a binary search
tree? By definition, mktree splits a list in the form:

[left subtree values] ++ (value) : [right subtree values]

If the list is strictly-increasing then so is each sublist and thus Equation (7.1)
is maintained.

We can define insert quite easily as follows:

insert x Null = Fork Null x Null
insert x (Fork lt y rt)

∣

∣

∣

∣

∣

∣

x < y = Fork (insert x lt) y rt
x == y = Fork lt y rt
x > y = Fork lt y (insert x rt)

However, the definition of delete is more complicated:

delete x Null = Null
delete x (Fork lt v rt)

∣

∣

∣

∣

∣

∣

x < v = Fork (delete x lt) v rt
x == v = join lt rt
x > v = Fork lt v (delete x rt)

where the function join satisfies the equation:

flatten (join xt yt) = flatten xt ++ flatten yt

and has the effect of joining two trees together. We need to ensure that the
resulting tree is of minimum height and so we define

join xt yt
∣

∣

∣

∣

yt == Null = xt
otherwise = Fork xt (headTree yt) (tailTree yt)

The functions headTree and tailTree satisfy

headTree = head · flatten (7.2)

flatten · tailTree = tail · flatten (7.3)

and we define

headTree (Fork lt v rt)
∣

∣

∣

∣

lt == Null = v
otherwise = headTree lt

and

tailTree (Fork lt v rt)
∣

∣

∣

∣

lt == Null = rt
otherwise = Fork (tailTree lt) v rt

We can define modBST in terms of insert and delete:

modBST p q t = if memBST p t
then insert q (delete p t)
else t

The membership test ensures that we do not add q to our tree when p does not
occur in the tree.
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7.2 Obfuscating Trees

Now that we have defined our binary tree data-type, we need to consider how we
can obfuscate it. In the previous chapters, we have used splitting to obfuscate
lists, sets and matrices. Can we obfuscate trees in the same way?

We could consider splitting a binary tree at the root node and making the
right subtree one component and the rest of the tree the other. Thus we would
have

Null ! 〈Null ,Null〉

Fork lt v rt ! 〈Fork lt v Null , rt〉

Using this representation, we could rewrite flatten

flattensp 〈Null ,Null〉 = [ ]
flattensp 〈Fork lt v Null , rt〉 = flatten lt ++ [v ] ++ flatten rt

where the subscript sp denotes an operation for split trees. We can write oper-
ations for split binary search trees as well

insertsp x 〈Null ,Null〉 = 〈Fork Null x Null ,Null〉
insertsp x 〈Fork lt y Null , rt〉

∣

∣

∣

∣

∣

∣

x < y = 〈Fork (insert x lt) y Null , rt〉
x == y = 〈Fork lt y Null , rt〉
x > y = 〈Fork lt y Null , insert x rt〉

Using of split trees produces reasonable obfuscations (the proof trees for split
tree operations generally have a greater height and cost) but the definitions of
the obfuscated operations are similar to the unobfuscated versions. To show
that our data-type approach is applicable to more than just splitting, we will
consider a different obfuscation.

Instead of splitting trees, we could consider changing the structure of the
tree. For instance, we could flatten a tree to a list. However, to preserve
correctness, we need to be able to recover the binary tree from the list. Since
many trees flatten to the same list, this recovery will not be possible without
introducing extra information about the shape of the tree.

We would like an obfuscation for binary trees that changes the structure
whilst allowing us to recover both the information and the structure if we so
wish, with minimum overhead. Tree transformations such as rotations and
reflections are suitable obfuscations, but in this chapter, we will consider con-
verting a binary tree into a ternary tree. For its effectiveness, this conversion
is chosen since it gives us the flexibility to add extra information as well as
performing some tree transformations (and preserving the tree structure).

7.2.1 Ternary Trees

We now consider converting a binary tree to a ternary tree by adding an extra
subtree at every node of the binary tree. If a binary tree t2 is represented by a
ternary tree t3, then by Equation (3.1) we need an abstraction function af and
predicate dti such that

t2 = af (t3) ∧ dti(t3)
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Tree3 (α)
REFINEMENT [to2] : Tree (α)

Tree3 α ::= Null3 |Fork3 α (Tree3 α) (Tree3 α) (Tree3 α)

〈[mktree, flatten,member, height,modify ]〉
! 〈[mktree3, flatten3,member3, height3,modify3 ]〉

Figure 7.3: Data-Type for Ternary Trees

In Section 7.2.2, we define a function

to2 :: Tree3 α → Tree α

which serves as an abstraction function. The data-type invariant for binary
trees is True and for search trees is inc (flatten (to2 t3)).

7.2.2 Particular Representation

In this section, we give a particular ternary tree representation of binary trees
with our data-type for ternary trees stated in Figure 7.3. We can represent
search trees by a similar declaration. For demonstration purposes, we assume
that α is the type of integers.

For a representation, we would like to convert the binary tree Fork xt v yt
into the ternary tree Fork3 v lt ct rt . The ternary trees lt , ct and rt will depend
on v , xt and yt . Since a ternary tree can carry more information than a binary
tree, we can add “junk” to the ternary tree which adds to the obfuscation. We
then construct our abstraction function so that this junk is ignored — this gives
us the opportunity to create random junk.

The conversion that we consider is as follows. The tree Fork lt v rt is
converted to

• Fork3 v lt3 rt3 junk1 if v is even

• Fork3 v junk2 rt3 lt3 if v is odd

and the tree Null is converted to Null3. So, the binary tree

et = 7

5

1 2

6

3 4

is converted to a ternary tree of the form
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7

* 6

3

*

4

*

*

5

* 2

*

1

*

where “*” stand for different arbitrary ternary trees.
For data refinement, we need to state an abstraction function that converts

a ternary tree into a binary one. We can easily write the function in Haskell —
for our refinement, we call this function to2:

to2 Null3 = Null
to2 (Fork3 v lt ct rt)

∣

∣

∣

∣

even v = Fork (to2 lt) v (to2 ct)
otherwise = Fork (to2 rt) v (to2 ct)

This means that for our representation, if t2 ! t3 then t2 = to2 t3 with
the data-type invariant True. We do not have a left inverse for this function
as any binary tree can be represented by more than one ternary tree (to2 is
surjective but not injective). However, we can construct a right inverse, to3,
which satisfies the following equation:

to2 · to3 = id (7.4)

and so

t2 ! to3(t2)

In Section 3.2, we called such a function a conversion function (and this is a
conversion with respect to a particular refinement).

To convert a binary tree into a ternary tree, we have many choices of how
to create the junk to be inserted into the tree at the appropriate places. Thus
we can construct many functions that satisfy Equation (7.4). The complexity
of the binary tree operations defined in Section 7.1 depends on the number of
nodes or on the height. Thus if we want our ternary tree operation to have a
similar complexity then we should make sure that the height is similar and we
do not introduce too many extra elements. As an example, we define:

to3 Null = Null3
to3 (Fork lt v rt)

∣

∣

∣

∣

even v = Fork3 v (to3 lt) (to3 rt) (to3’ lt)
otherwise = Fork3 v (to3’ rt) (to3 rt) (to3 lt)

where

to3’ Null = Null3
to3’ (Fork lt v rt) = Fork3 (3 ∗ v + 2) (to3 lt) (to3’ lt) (to3’ rt)

This conversion keeps the height of the tree the same. We chose the function
λv .3v +2 so that the odd and even numbers follow the same distribution and so
that the junk values are not too large (and therefore do not “stand out” from
the “real” values). As an example, the binary tree et above is converted to

7

20

3 1 14

6

3 4 11

5

8 2 1

(7.5)
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(the numbers in bold denote the values from et). We can see that this ternary
tree matches the general ternary form given earlier and has the same height as et .
Although the height is kept the same, the number of nodes increases. Thus this
obfuscation is unsuitable if the number of nodes is an important consideration
and we should ensure that the conversion function restricts the number of new
nodes.

In most of our examples, we state operations (and then prove correctness)
rather than deriving them. We could use the function to3 to derive obfuscated
operations using the equation:

op3 = to3 · op · to2 (7.6)

However, the operations that we would obtain would be specialised to this par-
ticular conversion from binary to ternary since the junk information is built up
in a specific way. We will see that we have a certain degree of freedom in how
we deal with the junk information. Yet, we could use Equation (7.6) to give us
a guide in how an obfuscation might look and so aid us in giving the definition
of a ternary tree operation.

7.2.3 Ternary Operations

Now, we need to define operations for our ternary tree representation. The
definitions of height3 and flatten3 are straightforward:

height3 Null3 = 0
height3 (Fork3 v lt ct rt)

∣

∣

∣

∣

even v = 1 + (max (height3 lt) (height3 ct))
otherwise = 1 + (max (height3 rt) (height3 ct))

flatten3 Null3 = [ ]
flatten3 (Fork3 v lt ct rt)

∣

∣

∣

∣

even v = (flatten3 lt) ++ [v ] ++ (flatten3 ct)
otherwise = (flatten3 rt) ++ [v ] ++ (flatten3 ct)

and we can easily show that these definitions satisfy

op3 = op · to2 (7.7)

We can see that these operations have an extra test which adds an extra condi-
tional and so gives an extra case when proving assertions.

For member3, we can use Equation (7.7) to derive the operation using struc-
tural induction which gives the following definition:

member3 p Null3 = False
member3 p (Fork3 v lt ct rt) =

v == p ∨ (member3 p ct) ∨ (if even v then (member3 p lt)
else (member3 p rt) )
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The details for this proof are in [21]. We can define modify3 as follows:

modify3 p q Null3 = Null3
modify3 p q (Fork3 v lt ct rt)

∣

∣

∣

∣

∣

∣

v == p ∧ mod (p−q) 2 == 0 = Fork3 q lt ′ ct ′ rt ′

v == p ∧ mod (p−q) 2 == 1 = Fork3 q rt ′ ct ′ lt ′

otherwise = Fork3 v lt ′ ct ′ rt ′

where lt ′ = modify3 p q lt
rt ′ = modify3 p q rt
ct ′ = modify3 p q ct

In this definition we have collapsed some cases; for example, we can combine the
predicates even p ∧ even q and odd p ∧ odd q into one predicate: mod (p−q) ==
0. A fuller discussion of modify3 can be found in [21].

7.2.4 Making Ternary Trees

When using binary trees, we defined an operation mktree to convert a list into a
binary tree. We can also define a corresponding operation mktree3 that converts
a list into a ternary tree and satisfies the relationship:

mktree = to2 · mktree3 (7.8)

However as with the definition of a conversion function, we have many choices
of mktree3 that satisfy the above equation. The general form of a function that
satisfies Equation (7.8) is:

mktree3 [ ] = Null3
mktree3 xs

∣

∣

∣

∣

even z = Fork3 z (mktree3 ys) (mktree3 zs) jt
otherwise = Fork3 z kt (mktree3 zs) (mktree3 ys)
where (ys, (z : zs)) = splitAt (div |xs| 2) xs

where the expressions jt and kt represent arbitrary ternary trees.
As an example, we define mktree3 so that

mktree3 = to3 · mktree

where to3 as defined in Section 7.2.2. This equation gives the following defini-
tion:

mktree3 [ ] = Null3
mktree3 xs

∣

∣

∣

∣

even z = Fork3 z (mktree3 ys) (mktree3 zs) (mktree’3 ys)
otherwise = Fork3 z (mktree’3 zs) (mktree3 zs) (mktree3 ys)
where (ys, (z : zs)) = splitAt (div (|xs| 2) xs

mktree’3 [ ] = Null3
mktree’3 xs = Fork3 (3 ∗ z + 2) (mktree3 ys) (mktree’3 ys) (mktree’3 zs)

where (ys, (z : zs)) = splitAt (div (|xs| 2) xs

We can construct this function by using Equation (7.6) and so this function is
specialised to the choice of conversion of binary to ternary. Computing

mktree3 [1, 5, 2, 7, 3, 6, 4]



CHAPTER 7. CULTIVATING TREE OBFUSCATIONS 128

produces the ternary tree (7.5).
Since the input for this operation is a list, we can also perform an obfuscation

on the input list. In Appendix D we use a split list as well as ternary trees to
obfuscate the definition of mktree. We prove an assertion for different versions
of mktree and we find that using ternary trees increases the cost but not the
height of proof trees, but using a split list increases both.

7.2.5 Operations for Binary Search Trees

Now let us consider representing binary search trees with our specific abstraction
function; for a binary search tree t2, t2 ! t3 if

t2 = (to2 t3) ∧ inc (flatten (to2 t3))

We define operations corresponding to memBST and insert routinely:

memBST3 p Null3 = False
memBST3 p (Fork3 v lt ct rt)

∣

∣

∣

∣

∣

∣

∣

∣

p == v = True
p < v ∧ even v = memBST3 p lt
p < v ∧ odd v = memBST3 p rt
p > v = memBST3 p ct

insert3 x Null3 = Fork3 x Null3 Null3 Null3
insert3 x (Fork3 y lt ct rt)

∣

∣

∣

∣

∣

∣

∣

∣

x < y ∧ even y = Fork3 y (insert3 x lt) ct jt
x < y ∧ odd y = Fork3 y kt ct (insert3 x rt)
x == y = Fork3 y lt ct rt
x > y = Fork3 y lt (insert3 x ct) rt

where jt and kt are arbitrary ternary trees. Note that the case x > y does not
require a test to see whether y is even. This is because we chose to always map
the right subtree of a binary tree to the centre subtree of a ternary tree.

7.2.6 Deletion

To define delete for our ternary tree, we first need to define headTree and tailTree
for ternary trees which satisfy analogues of Equations (7.2) and (7.3):

headTree3 = head · flatten3

flatten3 · tailTree3 = tail · flatten3

Using these equations, we obtain:

headTree3 (Fork3 v lt ct rt)
∣

∣

∣

∣

even v = if lt == Null3 then v else headTree3 lt
otherwise = if rt == Null3 then v else headTree3 rt

tailTree3 (Fork3 v lt ct rt)
∣

∣

∣

∣

∣

∣

∣

∣

even v = if lt == Null3 then ct
else Fork3 v (tailTree3 lt) ct rt

otherwise = if rt == Null3 then ct
else Fork3 v lt ct (tailTree3 rt)
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and we can easily verify that:

headTree3 = headTree · to2

to2 · tailTree3 = tailTree · to2

Now we need to define a function join3 that satisfies the equation

flatten3 (join3 xt yt) = flatten3 xt ++ flatten3 yt

We propose the following definition:

join3 xt yt
∣

∣

∣

∣

yt == Null3 = xt
otherwise = Fork3 (headTree3 yt) xt (tailTree3 yt) xt

In this definition we have collapsed two cases into one. Suppose that we let
v = headTree3 yt . When v is even we want to have a tree of the form:

Fork3 v xt (tailTree3 yt) jt

and when v is odd we want:

Fork3 v kt (tailTree3 yt) xt

where jt and kt are junk ternary trees. We can combine these cases by making
both jt and kt equal xt .

This definition can be shown to satisfy:

join (to2 xt) (to2 yt) = to2 (join3 xt yt) (7.9)

using two cases (depending on whether yt is equal to Null3) and the properties
of headTree3 and tailTree3 as stated above.

Now that we have given a correct definition of join3, we propose the following
definition for delete3:

delete3 x Null3 = Null3
delete3 x (Fork3 v lt ct rt)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x < v ∧ even v = Fork3 v (delete3 x lt) ct jt
x < v ∧ odd v = Fork3 v kt ct (delete3 x rt)
x == v ∧ even v = join3 lt ct
x == v ∧ odd v = join3 rt ct
x > v = Fork3 v lt (delete3 x ct) rt

The values jt and kt represent ternary trees — we could in fact choose to write,
for example, delete3 x rt or even insert3 x rt in place of these which would aid
in making the function more obfuscated. To show that this operation is correct,
we need to prove that for a ternary tree t and a value x , delete satisfies Equation
(3.5), i.e.:

delete x (to2 t) = to2 (delete3 x t) (7.10)

This is routine and proved in [21].

7.3 Other Methods

In this section we give some alternatives to the methods and conversions dis-
cussed earlier.
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7.3.1 Abstraction Functions

Consider how we can design a more general abstraction function than to2 given
in Section 7.2.2. We need a function af that satisfies

t2 ! t3 ⇔ t2 = af t3

where t2 is a binary tree and t3 is a ternary tree.
We first define a partitioning function with type

p :: α → [0..n)

for some n :: N, where α is the value type of our binary trees. Then we could
write the abstraction function as

af (Fork3 v lt ct rt)
∣

∣

∣

∣

∣

∣

∣

∣

p(v) == 0 = Fork (af (xt0)) v (af (yt0))
p(v) == 1 = Fork (af (xt1)) v (af (yt1))
. . .
otherwise = Fork (af (xtn−1)) v (af (ytn−1))

We should ensure that p partitions α uniformly — thus a good choice for p
would be a hash function. If we define p = λv .v mod 2 and let xt0 = lt ,
yt0 = ct , xt1 = rt and yt1 = ct then we can write to2 in this form.

Definitions of operations using this more general function will contain oc-
currence of the test for the value of p. This means we can supply the definition
of p separately from the definition of an operation and so our operations do not
depend on the choice of p. Thus we can create a set of suitable partitions and
choose one at random.

Up to now, we have not changed the value at each node. For instance, a
more complicated representation is obtained by using the following conversion
function (assuming that our value type is Z):

toT Null = Null3
toT (Fork lt v rt)

∣

∣

∣

∣

even v = Fork3 (v + 2) (toT rt) jt (toT lt)
otherwise = Fork3 (v × 3) kt (toT lt) (toT rt)

where jt and kt are arbitrary ternary trees.
To create an abstraction function for this conversion, we need to invert the

functions λ i .(i + 2) and λ i .(3i). Thus we can define the abstraction function
as follows:

toB Null3 = Null
toB (Fork3 w lt ct rt)

∣

∣

∣

∣

even w = Fork (toB rt) (w − 2) (toB lt)
otherwise = Fork (toB ct) (div w 3) (toB rt)

Using this abstraction function, the binary tree

4

3

2

6

1

can be represented by trees of the following form:
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6

8

* 3

*

* 9

* 4

*

However, we must be careful when creating this kind of representation. For
instance, if we had changed the function v + 2 in the definition of toT to v + 1
(and changed v − 2 to v − 1 in the abstraction function) then

toB (toT (Fork Null 2 Null)) = toB (Fork3 3 Null jt Null)
= Fork (toB jt) 1 Null
)= Fork Null 2 Null

and would not be the case that toB · toT = id .

7.3.2 Heuristics

Obfuscations are meant, by definition, to be obscure. We have given but one
example here to indicate our method. We discuss points to consider when
creating a representation of binary trees by using ternary trees.

• When creating a partitioning function for the definition of an abstraction
function, we should ensure that each value in the range is equally likely.
In particular, we should not construct a case in the definition of the ab-
straction function which is never considered or else it could be eliminated.
We could use a hashing function for the partitioning function. In fact,
for obfuscation purposes, we could have a set of hashing functions and
randomly choose which function we use (cf. Universal Hashing [8]).

• When defining operations for ternary trees, we need to make sure that
some of these operations act on the “junk”. This is so that it is not
obvious that our junk is not really of interest.

• In the definition of insert3, we saw that the last case did not have to
test whether a value was even. This is because in our representation the
centre subtree of a ternary tree corresponds to the right subtree of our
binary tree. This was done to help obfuscate the definition so that it is
not obvious that we always check the parity of the value of each node.
Therefore we should choose a ternary tree representation so that some of
the cases in our functions simplify.

• When creating our ternary tree junk we could generate the junk randomly
so that the same binary tree will be represented by different ternary trees
in different executions.

• We must ensure that the junk we generate does not “stand out” — this
is so that it is not obvious what is junk and what is “real” data. Thus
we should the keep the junk values within the range of the values of our
binary tree and we could possibly repeat values. This was also a concern
for the padded block split discussed in Section 4.4.2.
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• We could decide to map the null binary tree to something other than
Null3 and we would need to change the abstraction function so that Null
is correctly recovered.

7.4 Conclusions

In this chapter we have discussed a refinement that is suitable for creating tree
obfuscations. The examples given have been made simple in order to demon-
strate the techniques involved. We have also given some heuristics (in Section
7.3.2) that need to be considered when producing obfuscations. We can adapt
the refinement to deal with more complicated obfuscations and also for obfus-
cating other kinds of tree such as red-black trees [13, Chapter 13].

We have demonstrated how to obfuscate binary trees by representing them
as ternary trees. This representation has allowed us to add bogus elements
and so hide the “real” information. We must ensure that we do not adversely
affect the efficiency by adding too much junk which would increase the size of
the trees. This extra information gives us further scope for obfuscation. For
example, when trying to insert an element in a tree we could try to delete it
from the junk part of the tree. We can actually specify a set of operations that
represent the same function and we could choose one operation randomly. In
fact, our approach gives plenty of scope for randomization. On each execution,
we can have a different abstraction function (by choosing a suitable partition
function), different junk values in a ternary tree representation and a different
definition for each operation. Each of these choices can be made randomly
and so we create different program traces which compute the same value. This
randomness provides additional confusion for an adversary and helps to keep
the unobfuscated operations secret.

For our tree obfuscation, we have a trade-off between how much junk we place
in a ternary tree and the complexity of the obfuscated operations. Putting in
too much junk makes building the ternary trees expensive and operating on the
junk can have a severe impact on the efficiency. However, we should ensure that
our operations act on the junk in some way (so that it is not obvious that the
junk is not significant). Thus we should aim to keep the height and size of the
ternary tree roughly the same as that of the binary tree it represents.
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Chapter 8

Conclusions and Further

Work

The Doctor: “It’s the end but the moment has been prepared for”.

Doctor Who — Logopolis (1981)

8.1 Discussion of our approach to Obfuscation

The current view of obfuscation concentrates on obfuscating object-oriented
languages (or the underlying intermediate representations). The obfuscations
given in [10] focus on concrete data-types such as variables and arrays. Proofs
of correctness for imperative obfuscations are hard to construct and require
difficult methods. We would like to have a workable definition of obfuscation
which is more rigorous than the metric-based definition of Collberg et al. [10]
and overcomes the impossibility result of Barak et al. [6] for their strong crypto-
graphic definition. In this thesis, we have aimed to give an alternative approach
to obfuscation. On Page 7, we have stated that we wanted our approach to have
the following objectives:

• to yield proofs of correctness (or even yield derivations) of all our obfus-
cations

• to use simple, established refinement techniques, leaving the ingenuity for
obfuscation

• to generalise obfuscations to make obfuscations more applicable.

For our approach, we have obfuscated abstract data-types and used tech-
niques from data refinement and functional programming. In the rest of this
section, we discuss whether our data-type approach has met the above objectives
and we also provide some benefits of our approach.

8.1.1 Meeting the Objectives

We have proposed a new approach to obfuscation by studying abstract data-
types and considering obfuscation as functional refinement. To demonstrate the

134
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flexibility of our approach, we have presented various case studies for different
data-types and discussed obfuscations for each data-type. We have developed
obfuscations for simple lists and for more complicated types such as matrices
and trees which have a 2-dimensional structure. The example operations and
obfuscations that we have given have been made simple in order to demon-
strate our obfuscation techniques. It seems clear that more intricate, realistic
obfuscations can be developed similarly for other abstract data-types.

It is important to check that an obfuscation is correct — i.e. it does not
change the functionality of an operation. In Section 2.4.3, we have seen that
proving correctness is a challenging task. Considering obfuscation as refinement
has allowed us to set up equations to prove the correctness of all our obfuscations
of data-type operations. Additionally if the abstraction function is injective
then it has a unique inverse with which we can derive obfuscations. Using simple
derivational techniques and modelling our operations in Haskell has allowed us to
establish correctness easily — this is a real strength of our approach. Specifying
operations in Haskell gives us the benefits of the elegance of the functional style
and the consequent abstraction of side-effects. Thus our functional approach
will provide support for purely imperative obfuscations.

We have given a generalisation of the array split [10] by considering a more
general class of data-types. Using this generalisation, we have proved a theorem
in Section 4.1.4 that shows us how to to define obfuscations for certain splits and
operations. In Section 6.4.2 this theorem was used to give a quick derivation
of an obfuscation of transpose for split matrices. In Sections 3.2.2 and 3.2.3
we have given a correctness equation for general operations. For instance, if we
have a non-homogeneous operation and abstraction functions for obfuscations
of the domain and the range then we can construct an obfuscated operation
that has two different obfuscations. For example, in Appendix D, we show how
to obfuscate mktree by splitting the input list and turning the output into a
ternary tree.

To establish a functional refinement, we have to state an abstraction func-
tion. From an obfuscation point of view, the abstraction function acts as a
deobfuscation function. With knowledge of the abstraction function, we could
reconstruct unobfuscated operations and so it is vital that we hide this function
from an attacker.

8.1.2 Complexity

One of the requirements for an obfuscated operation is that the running time
should be at most polynomially more than the original operation. When split-
ting data-types we have been fortunate in that, in general, our obfuscations do
not change the complexity of the operations. For lists and sets, the obfuscated
operations require some extra computations such as evaluating tests. For trees,
we have added junk elements to hide the “real” information. However if we put
too much junk into the trees then the efficiencies of the tree operations will be
compromised. So there is a trade-off between how much junk we put into a
ternary tree and the complexity of our operations.

Further work is needed to see how the complexity changes with more com-
plicated obfuscations and for other data-types. Also we need to consider how
the complexity changes when implementing the operations and obfuscations
imperatively.
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8.1.3 Definition

In Section 1.2 we have stated two definitions of obfuscation and discussed some
problems with the definitions. For data-types we have proposed a new definition
— an assertion obfuscation.

Does our definition actually reflect what it means to be obfuscated? When
trying to find out what a program does we often want to know what properties
the program has (i.e. what the program does). We would expect that if a
program is obfuscated then it should be harder to find out what properties this
program has. Our definition reflects this observation by taking “properties of
a program” as “assertions” and considering how difficult it is to prove these
assertions. Thus we have interpreted “harder to understand” as “making the
proofs of assertions more complicated”. So, our definition tries to measure the
degree of obfuscation by considering the complexity of proofs rather than the
complexity of operations.

For our definition we are required to give a list of assertions when we declare
a data-type. Also we have had to qualify what it means for a proof to be “more
complicated”. We have decided to consider drawing trees for the proofs and
then taking “more complicated” (informally) to mean increasing the height and
number of nodes in the proof tree. For a fair comparison of proofs, we have to
ensure that we prove assertions in a consistent manner and so we have discussed
some of the ways that would help us to be consistent. Some other problems with
the definition were highlighted in Section 3.4.4. One major problem is that to
reflect completely on the effectiveness of an obfuscated operation we have to
construct proofs for all assertions involving the operation. To show how our
definition performs we have proved assertions for each of the data-types in our
case studies and we found that the assertion proofs were quite straightforward
since we chose to model the operations in Haskell. For our case studies, we have
found that a good assertion obfuscation is produced when the structures of the
operation and its obfuscation are quite different.

Our definition does not consider syntactic properties such as variable names
nor whether we use nested conditionals or guarded equations and it also does
not consider how easy it is to undo our obfuscations. How does the assertion
definition match up with the traditional view of obfuscation? In particular, if a
transformation is an assertion obfuscation then is it also an obfuscation under
the definitions of Collberg [10] and Barak [6]?

8.1.4 Randomness

One benefit of considering abstract data-types is that we have been able to
introduce randomness in our obfuscations. In particular, we have shown some
examples of random splits in Chapter 4 and in Chapter 7 we discussed how to
put random junk into trees. Random obfuscations can help confuse an attacker
further by creating different program traces on different executions with the
same input.

For the tree obfuscation, we have plenty of scope for randomization:

• The obfuscation inserts junk into the trees which we can choose randomly.
Though we must ensure that the junk does not “stand out” from the “real”
information.
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• When defining some operations (such as insert and delete) we are free to
choose how the operation acts on the junk. This means that we can have
a set of definitions that act in different ways on the junk. Hence we can
choose randomly which definition we want to execute.

• In Section 7.3.1, we have shown more general abstraction functions in
which we can supply a partitioning function p which has type: α → [0..n).
If we fix the value of n then we can define our tree operations to contain
occurrences of the test for the value of p. Thus we can supply the actual
definition for p separately and so choose a partitioning function at random.

Thus on each execution, we can have different junk, different definitions and
different abstraction functions — all of which can be chosen randomly.

In Chapter 4 we have seen how to create random splits for lists. Further
work is needed to see how to extend these random splits (and other random
obfuscations) to other data-types.

8.1.5 Contributions

We have seen that our approach has met the objectives stated on Page 7 — these
objectives can be hard to achieve in an object-oriented setting. In addition, we
have proposed a new definition of obfuscation, we have some promising results
on the complexity of our obfuscations and we have the ability to create random
obfuscations. Thus considering data-types has made a valuable contribution to
the study of obfuscation.

Can our techniques be applied to help to obfuscate imperative programs?
In Section 3.1.2 we imposed some restrictions on how we used Haskell as a
modelling language. In particular, we specified finite, well-defined data-types
and we did not exploit laziness. We demanded these restrictions so that we
can implement our obfuscations imperatively. In [21] and on Page 8, we have
given examples of how to apply our tree obfuscation from Chapter 7 to obfus-
cate some imperative methods. These obfuscations were achieved by manually
adapting the original imperative methods — further work is needed to automate
this conversion. Using imperative programs provides different opportunities for
obfuscation. For instance, trees can be implemented using pointers and the
difficulty in performing pointer analysis could be exploited to construct obfus-
cations. Binary trees could be changed into ternary trees and in the junk, bogus
pointers that point back up the tree could be added. As well as implementing
lists using arrays, linked lists could be used. So in addition to splitting the lists,
bogus pointers into the list can be added.

Less satisfactory aspects of our approach are that there are some problems
with our definition of obfuscation (discussed in Section 3.4.4) and our abstrac-
tion functions act as deobfuscation functions.

8.2 Further Work

We briefly consider some possible areas for further study.
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8.2.1 Deobfuscation

We have not mentioned how easy it is to undo our obfuscations. Since we have
considered obfuscation to be a functional refinement, we have an abstraction
function which maps the obfuscated data-type back to the original data-type.
So, the abstraction function acts as a “deobfuscation” and therefore it is impor-
tant to keep this function secret from an attacker. In particular, where possible,
traces of the abstraction function from the definition of our obfuscations should
be removed. This is a particular problem with operations that convert an ob-
fuscated data-type to another data-type. For instance, the definition of flatten3

in Section 7.2.3 gives away some knowledge of the abstraction function (to2).
To prevent this, further obfuscations (such as using split lists) should be added.

The resilience of our obfuscation to reverse engineering should be explored.
One simple technique for reverse engineering is to execute the program and then
study the program traces. If random obfuscations (see Section 8.1.4) are used
then different program traces can be created. Another technique is refactoring
[27] which is the process of improving the design of existing code by perform-
ing behaviour-preserving transformations. One particular area to explore is
the refactoring of functional programs — [35] gives a discussion of a tool for
refactoring Haskell called HaRe. What happens to our obfuscations if they are
refactored? Could HaRe be used to specify obfuscations?

8.2.2 Other techniques

In Chapter 2, we have discussed a language with which we can specify obfus-
cations for IL and so can generate obfuscations automatically. Is it possible to
develop such a system for our obfuscations? One possible approach could be
to write operations and abstraction functions as folds or unfolds. As stated in
Section 3.5, an abstraction function can usually be written as an unfold and
a conversion function as a fold. If folds are used then derivations and proofs
can be calculated using fusion and so an automated system, such as the one
described in [15], could be used. A concern of some of the matrix operations in
[19] that were derived using fusion was that traces of the splitting functions can
be seen in the definition.

Functional programming and data refinement have been used to specify ob-
fuscations for abstract data-types. In our objectives (on Page 7), we have stated
that we wanted to use simple, established techniques and to be able to gener-
alise obfuscations. While it is certainly true that our approach has used simple
techniques, is it general enough? For more generality categories could be obfus-
cated and concepts such as hylomorphisms [38] could be used. Barak et al. [6]
provide a formal cryptographic treatment of obfuscation by obfuscating Turing
machines. How does our approach and, in particular, our definition compare
with their approach? In Section 3.2, we restricted ourselves to functional re-
finements. More general notions of refinement [16] could be studied instead and
in doing so partial and non-deterministic operations can be considered. What
would be gained by using these more general methods? To what extent will
these methods support obfuscation of imperative programs?
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Appendix A

List assertion

We want to prove that, for all finite lists xs and ys,

|xs ++ ys| = |xs| + |ys| (A.1)

which is one of our assertions for the list data-type (Figure 4.1). We prove this
assertion for the different concatenation operations defined in Chapter 4.

A.1 Unobfuscated version

For standard lists, we define ++ as follows:

[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

We prove Equation (A.1) by structural induction on xs.

Base Case Suppose that xs = [ ]. Then

|xs ++ ys|

= {definition of xs}

|[ ] ++ ys|

= {definition of ++}

|ys|

= {arithmetic}

0 + |ys|

= {definition of | |}

|[ ]| + |ys|

= {definition of xs}

|xs| + |ys|

Step Case Suppose that xs = t : ts and that ts satisfies Equation (A.1).
Then

|xs ++ ys|

144
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= {definition of xs}

|(t : ts) ++ ys|

= {definition of ++}

|t : (ts ++ ys)|

= {definition of | |}

1 + |ts ++ ys|

= {induction hypothesis}

1 + |ts| + |ys|

= {definition of | |}

|t : ts| + |ys|

= {definition of xs}

|xs| + |ys|

The tree is this proof is:

(A.1)

Base

xs

| |

arith

++

xs

Step

xs

| |

IH

| |

++

xs

For this, C (A.1) = 11 and H (A.1) = 7.

A.2 Alternating Split for Lists

We want to prove that

|xsp ++asp ysp|asp = |xsp|asp + |ysp|asp (A.2)

For the alternating split, we have two operations equivalent to ++.

A.2.1 Version 1

We first define:

〈l0, r0〉asp ++asp 〈l1, r1〉asp =

{

〈l0 ++ l1, r0 ++ r1〉asp if |l0| = |r0|
〈l0 ++ r1, r0 ++ l1〉asp otherwise

To prove (A.2), let xsp = 〈l0, r0〉asp and ysp = 〈l1, r1〉asp and we have two
cases:
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Case 1 Suppose that |l0| = |r0|. Then

|xsp ++asp ysp|asp

= {definitions of xsp and ysp}

|〈l0, r0〉asp++asp〈l1, r1〉asp |asp

= {definition of ++asp}

|〈l0 ++ l1, r0 ++ r1〉asp |asp

= {definition of | |asp}

|l0 ++ l1| + |r0 ++ r1|

= {Equation (A.1)}

|l0| + |l1| + |r0 ++ r1|

= {Equation (A.1)}

|l0| + |l1| + |r0| + |r1|

= {definition of | |asp}

|〈l0, r0〉asp |asp + |l1| + |r1|

= {definition of | |asp}

|〈l0, r0〉asp |asp + |〈l1, r1〉asp |asp

= {definitions of xsp and ysp}

|xsp|asp + |ysp|asp

Case 2 Suppose that |l0| )= |r0|. Then

|xsp ++asp ysp|asp

= {definitions of xsp and ysp}

|〈l0, r0〉asp++asp〈l1, r1〉asp |asp

= {definition of ++asp}

|〈l0 ++ r1, r0 ++ l1〉asp |asp

= {definition of | |asp}

|l0 ++ r1| + |r0 ++ l1|

= {Equation (A.1)}

|l0| + |r1| + |r0 ++ l1|

= {Equation (A.1)}

|l0| + |r1| + |r0| + |l1|

= {definition of | |asp}

|〈l0, r0〉asp |asp + |l1| + |r1|

= {definition for | |asp}

|〈l0, r0〉asp |asp + |〈l1, r1〉asp |asp

= {definitions of xsp and ysp}

|xsp|asp + |ysp|asp
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For this proof, we declare (A.1) as a lemma and so L (A.2) = {(A.1)}. The tree
for this proof is:

(A.2)

Case 1

defs

| |

| |

(A.1)

(A.1)

| |

++

defs

Case 2

defs

| |

| |

(A.1)

(A.1)

| |

++

defs

For this proof,

C (A.2) = 16 + C (A.1) = 27
and H (A.2) = 6 + max(3,H (A.1)) = 13

A.2.2 Version 2

As an alternative, we can define

catasp 〈[ ], [ ]〉asp ysp = ysp
catasp 〈x : r0, l0〉asp ysp = consasp x (catasp 〈l0, r0〉asp ysp)

For this operation, we want to prove

|catasp xsp ysp|asp = |xsp|asp + |ysp|asp (A.3)

Before we prove (A.3), first we prove

|consasp a〈l , r〉asp |asp = 1 + |〈l , r〉asp |asp (A.4)

So,

|consasp a 〈l , r〉asp |asp

= {definition of consasp}

|〈a : r , l〉asp |asp

= {definition of | |asp}

|a : r | + |l |

= {definition of | |}

1 + |r | + |l |

= {definition of | |asp}

1 + |〈l , r〉asp |asp
The tree for this proof is:

(A.4)

| |asp

| |

| |asp

consasp
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For this proof, C (A.4) = 4 and H (A.4) = 4. We are now ready to prove
Equation (A.3) by induction on xsp.

Base Case Suppose that xsp = 〈[ ], [ ]〉asp and so |xsp|asp = 0. Then

|catasp xsp ysp|asp

= {definition of xsp}

|catasp 〈[ ], [ ]〉asp ysp|asp

= {definition of catasp}

|ysp|asp

= {arithmetic}

0 + |ysp|asp

= {definition of | |asp}

|xsp|asp + |ysp|asp

= {definition of xsp}

|xsp|asp + |ysp|asp

Step Case Suppose that xsp = consasp x 〈l0, r0〉asp , (and then xsp = 〈x :
r0, l0〉asp) and 〈l0, r0〉asp satisfies (A.2). Then

|catasp xsp ysp |asp

= {definition of xsp}

|catasp 〈x : r0, l0〉asp ysp|asp

= {definition of catasp}

|consasp x (catasp 〈l0, r0〉asp ysp)|asp

= {Equation (A.4)}

1 + |catasp 〈l0, r0〉asp ysp |asp

= {induction hypothesis}

1 + |〈l0, r0〉asp |asp + |ysp|asp

= {Equation (A.4)}

|cons x 〈l0, r0〉asp |asp + |ysp|asp

= {definition of xsp}

|xsp|asp + |ysp|asp
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The tree for this proof is:

(A.3)

Base

xsp

| |asp

arith

catasp

xsp

Step

xsp

(A.4)

IH

(A.4)

catasp

xsp

We declare (A.4) as a lemma and so L(A.3) = {(A.4)}. So, for this proof:

C (A.3) = 11 + C (A.4) = 15
and H (A.3) = 6 + max(1,H (A.4)) = 10

A.3 Block Split for Lists

We want to prove that

|xsp ++b(k) ysp|
b(k)

= |xsp|b(k) + |ysp|b(k) (A.5)

The definition of ++b(k) is

〈[ ], [ ]〉b(k) ++b(k) ysp = ysp
〈a : l , [ ]〉b(k) ++b(k) ysp = consb(k) a (〈l , [ ]〉b(k) ++b(k) ysp)
〈a : l , r〉b(k) ++b(k) ysp = consb(k) a (〈l ++ [head r ], tail r〉b(k) ++b(k) ysp)

We first need to prove that

|consb(k) a〈l , r〉b(k)|b(k)
= 1 + |〈l , r〉b(k)|b(k)

(A.6)

We have two cases:

Case 1 If |l | < k then

|consb(k) a 〈l , r〉b(k)|b(k)

= {definition of consb(k) with |l | < k}

|〈a : l , r〉bk |b(k)

= {definition of | |b(k)}

|a : l | + |r |

= {definition of | |}

1 + |l | + |r |

= {definition of | |b(k)}

1 + |〈l , r〉b(k)|b(k)
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Case 2 If |l | ≥ k then

|consb(k) a 〈l , r〉b(k)|b(k)

= {definition of consb(k) with |l | ≥ k}

|〈a : (init l), (last l) : r〉b(k)|b(k)

= {definition of | |b(k)}

|a : (init l)| + |(last l) : r |

= {definition of | |}

1 + |init l | + |last l | + |r |

= {init l ++ [last l ] = l and (A.1)}

1 + |l | + |r |

= {definition of | |b(k)}

1 + |〈l , r〉b(k)|b(k)

The tree for this proof is:

(A.6)

Case 1

| |b(k)

| |

| |b(k)

cons

Case 2

| |b(k)

++ (A.1)

| |

| |b(k)

cons

Since (A.1) is only used once, we do not declare it as a lemma. So, for this
proof,

C (A.6) = 9 + C (A.1) = 20
and H (A.6) = 5 + max(1,H (A.1)) = 12

Now, we prove Equation (A.5) by induction on xsp.

Base Case Suppose that xsp = 〈[ ], [ ]〉b(k) and so |xsp|b(k) = 0. Then

|xsp ++b(k) ysp|
b(k)

= {definition of xsp}

|〈[ ], [ ]〉b(k) ++b(k) ysp|
b(k)

= {definition of ++b(k)}

|ysp|b(k)

= {arithmetic}

0 + |ysp|b(k)

= {definition of xsp}

|xsp|b(k) + |ysp|b(k)
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Step Case Suppose that xsp = 〈x0, x1〉b(k) (and so |xsp|b(k) = |x0| + |x1|).
Then we have two subcases depending on whether x1 is empty.

Subcase 1 Suppose that x0 = a : l , x1 = [ ] and 〈l , [ ]〉b(k) satisfies Equation
(A.5). Then

|xsp ++b(k) ysp|
b(k)

= {definition of xsp}

|〈a : l , [ ]〉b(k) ++b(k) ysp|
b(k)

= {definition of ++b(k)}

|consb(k) a (〈l , [ ]〉b(k) ++b(k) ysp)|
b(k)

= {Equation (A.6)}

1 + |〈l , [ ]〉b(k) ++b(k) ysp|
b(k)

= {induction hypothesis}

1 + |〈l , [ ]〉b(k)|b(k)
+ |ysp|b(k)

= {definition of | |b(k)}

1 + |l | + |[ ]| + |ysp|b(k)

= {definition of | |}

|a : l | + |[ ]| + |ysp|b(k)

= {definition of | |b(k)}

|〈a : l , [ ]〉b(k)|b(k)
+ |ysp|b(k)

= {definition of xsp}

|xsp|b(k) + |ysp|b(k)

Subcase 2 Now suppose that x0 = a : l , x1 = r (where r )= [ ]) and 〈l ++
[head r ], tail r〉b(k) satisfies (A.5). Then

|xsp ++b(k) ysp|
b(k)

= {definition of xsp}

|〈a : l , r〉b(k) ++b(k) ysp|
b(k)

= {definition of ++b(k)}

|consb(k) a (〈l ++ [head r ], tail r〉b(k) ++b(k) ysp)|
b(k)

= {Equation (A.6)}

1 + |〈l ++ [head r ], tail r〉b(k) ++b(k) ysp|
b(k)

= {induction hypothesis}

1 + |〈l ++ [head r ], tail r〉b(k)|b(k)
+ |ysp|b(k)

= {definition of | |b(k)}

1 + |l ++ [head r ]| + |tail r | + |ysp|b(k)

= {Equation (A.1)}
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1 + |l | + |[head r ]| + |tail r | + |ysp|b(k)

= {Equation (A.1)}

1 + |l | + |[head r ] ++ tail r | + |ysp|b(k)

= {[head r ] ++ (tail r) = r}

1 + |l | + |r | + |ysp|b(k)

= {definition of | |}

|a : l | + |r | + |ysp|b(k)

= {definition of | |b(k)}

|〈a : l , r〉b(k)|b(k)
+ |ysp|b(k)

= {definition of xsp}

|xsp|b(k) + |ysp|b(k)

The tree for the proof of (A.5) is:

(A.5)

Base

xsp

arith

++

xsp

Step 1

defs

| |b(k)

| |

| |b(k)

IH

(A.6)

++

xsp

Step 2

xsp

| |b(k)

| |

++

(A.1)

(A.1)

| |b(k)

IH

(A.6)

++

xsp

We declare (A.1) and (A.6) as lemmas and so L (A.5) = {(A.1), (A.6)}. Note
that C (A.6) = 9 + C (A.1) and so

C (A.5) = 23 + 9 + C (A.1) = 43
and H (A.5) = 4 + max(7,H (A.6), 4 + H (A.1)) = 16

A.4 Augmented Split

We want to prove that

|catA xsp ysp|A = |xsp|A + |ysp|A (A.7)

The definition of catA is

catA 〈n, [ ], [ ]〉A ysp = ysp
catA xsp ysp = consA b h (catA t ysp)

where (b, h, t) = headTailA xsp

We first need to prove

|consA m x 〈d , l , r〉A|A = 1 + |〈d , l , r〉A|A (A.8)

We have two cases depending on whether m = 0.
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Case 1 Suppose that m = 0.

|consA m x 〈d , l , r〉A|A
= {definition of consA}

|〈(2d + m), (x : l), r〉A|A
= {definition of | |A}

|x : l | + |r |

= {definition of | |}

1 + |l | + |r |

= {definition of | |A}

1 + |〈d , l , r〉A|A

Case 2 Suppose that m )= 0.

|consA m x 〈d , l , r〉A|A
= {definition of consA}

|〈(2d + m), l , (x : r)〉A|A
= {definition of | |A}

|l | + |x : r |

= {definition of | |}

1 + |l | + |r |

= {definition of | |A}

1 + |〈d , l , r〉A|A

The tree for this proof is:

(A.8)

Case 1

| |A

| |

| |A

cons

Case 2

| |A

| |

| |A

cons

For this proof, C (A.8) = 8 and H (A.8) = 5. We now prove (A.7) by
induction on xsp.

Base Case Suppose that xsp = 〈n, [ ], [ ]〉A. Then |xsp|A = 0 and so

|catA xsp ysp|A
= {definition of xsp}

|catA 〈n, [ ], [ ]〉A ysp|A
= {definition of catA}

|ysp|A
= {arithmetic}
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0 + |ysp|A
= {definition of | |A}

|〈n, [ ], [ ]〉A|A + |ysp|A
= {definition of xsp}

|xsp|A + |ysp|A

Step Case Suppose that xsp = consA b h tsp and then by Equation (4.25)
(b, h, tsp) = headTailA xsp. Also suppose that tsp satisfies Equation (A.7). So

|catA xsp ysp|A
= {definition of catA}

|consA b h (catA tsp ysp)|A
= {Equation (A.8)}

1 + |catA tsp ysp|A
= {induction hypothesis}

1 + |tsp|A + |ysp|A
= {Equation (A.8)}

|consA b h tsp|A + |ysp|A
= {definition of xsp}

|xsp|A + |ysp|A

The tree for the proof of (A.7) is:

(A.7)

Base

xsp

| |A

arith

cat

xsp

Step

xsp

(A.8)

IH

(A.8)

cat

We declare (A.8) as a lemma (then L(A.7) = {(A.8)}) and so:

C (A.7) = 10 + C (A.8) = 18
and H (A.7) = 5 + max(1,H (A.8)) = 10

A.5 Augmented Block Split

We want to prove that

|xsp ++B ysp|B = |xsp|B + |ysp|B (A.9)

The definition of ++B is

〈k , [ ], [ ]〉B ++B 〈k ′, l ′, r ′〉B = 〈k ′, l ′, r ′〉B
〈k , l , r〉B ++B 〈k ′, l ′, r ′〉B = 〈|l ++ r |, l ++ r , l ′ ++ r ′〉B

We have two cases to prove.
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Case 1 Suppose that xsp = 〈k , [ ], [ ]〉B . Then |xsp|B = 0 and

|xsp ++B ysp|B
= {definition of xsp}

|〈k , [ ], [ ]〉B ++B ysp|B
= {definition of ++B}

|ysp|B
= {arithmetic}

0 + |ysp|B
= {definition of | |B}

|〈k , [ ], [ ]〉B |B + |ysp|B
= {definition of xsp}

|xsp|B + |ysp|B

Case 2 Suppose that xsp = 〈k , l , r〉B and ysp = 〈k ′, l ′, r ′〉B . Then |xsp|B =
|l | + |r | and |ysp|B = |l ′| + |r ′| and so

|xsp ++B ysp|B
= {definitions of xsp and ysp}

|〈k , l , r〉B ++B 〈k ′, l ′, r ′〉B |B
= {definition of ++B}

|〈|l ++ r |, l ++ r , l ′ ++ r ′〉B |B
= {definition of | |B}

|l ++ r | + |l ′ ++ r ′|

= {Equation (A.1)}

|l | + |r | + |l ′ ++ r ′|

= {Equation (A.1)}

|l | + |r | + |l ′| + |r ′|

= {definition of | |B}

|〈k , l , r〉B |B + |l ′| + |r ′|

= {definition of | |B}

|〈k , l , r〉B |B + |〈k ′, l ′, r ′〉B |B
= {definitions of xsp and ysp}

|xsp|B + |ysp|B
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The tree for the proof of (A.9) is:

(A.9)

Case 1

xsp

| |B

arith

++

xsp

Case 2

defs

| |B

| |B

(A.1)

(A.1)

| |B

++

defs

We declare (A.1) as a lemma (then L (A.9) = {(A.1)}) and so for this proof,

C (A.9) = 13 + C (A.1) = 24
and H (A.9) = 6 + max(3,H (A.1)) = 13

A.6 Padded Block Split

We want to prove that

|xsp ++P ysp|P = |xsp|P + |ysp|P (A.10)

The definition of ++P is

〈0, l , [ ]〉P ++P 〈m, l ′, r ′〉P = 〈m, l ′ ++ l , r ′〉P
〈n, l , r〉P ++P 〈m, l ′, r ′〉P = 〈|lt | + |r |, lt ++ r ++ ld ′ ++ ld , lt ′ ++ r ′〉P

where lt = take n l
ld = drop n l
lt ′ = take m l ′

ld ′ = drop m l ′

By the definition of take then

|take n l | = max (|l |,n)

Let ysp = 〈m, l ′, r ′〉P with |l ′| ≥ m (and so |ysp|P = m + |r ′|) and we prove
Equation (A.10) by considering two cases.

Case 1 Let xsp = 〈0, l , [ ]〉P (and so |xsp|P = 0). Then

|xsp ++P ysp|P
= {definitions of xsp and ysp}

|〈0, l , [ ]〉P ++P 〈m, l ′, r ′〉P |P
= {definition of ++P}

|〈m, l ′ ++ l , r ′〉P |P
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= {definition of | |P}

m + |r ′|

= {arithmetic}

0 + m + |r ′|

= {definition of | |P}

|〈0, l , [ ]〉P |P + m + |r ′|

= {definition of | |P}

|〈0, l , [ ]〉P |P + |〈m, l ′, r ′〉P |P
= {definitions of xsp and ysp}

|xsp|P + |ysp|P

Case 2 Suppose that xsp = 〈n, l , r〉P with |l | ≥ n (so |xsp|P = n + |r |) and
let

lt = take n l
ld = drop n l
lt ′ = take m l ′

ld ′ = drop m l ′

Then

|xsp ++P ysp|P
= {definitions of xsp and ysp}

|〈n, l , r〉B ++P 〈m, l ′, r ′〉P |P
= {definition of ++P}

|〈|lt | + |r |, lt ++ r ++ ld ′ ++ ld , lt ′ ++ r ′〉P |P
= {definition of | |P}

|lt | + |r | + |lt ′ ++ r ′|

= {Equation (A.1)}

|lt | + |r | + |lt ′| + |r ′|

= {definitions of lt and lt ′}

|take n l | + |r | + |take m l ′| + |r ′|

= {property of take}

|n| + |r | + |take m l ′| + |r ′|

= {property of take}

|n| + |r | + |m| + |r ′|

= {definition of | |P}

|〈n, l , r〉P |P + |m| + |r ′|

= {definition of | |P}

|〈n, l , r〉P |P + |〈m, l ′, r ′〉P |P
= {definitions of xsp and ysp}

|xsp|P + |ysp|P
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The tree for the proof of (A.10) is:

(A.10)

Case 1

defs

| |P

| |P

arith

| |P

++P

defs

Case 2

defs

| |P

| |P

take

take

defs

(A.1)

| |P

++

defs

We do not declare (A.1) as a lemma and so

C (A.10) = 16 + C (A.1) = 27
and H (A.10) = 5 + max(6,H (A.1)) = 12

A.7 Comparing the proofs

Below is a table which summarises the results for each of the proof trees:

Operation C H
++ 11 7
++asp 27 13
catasp 15 10
++b(k) 43 16
catA 18 10
++B 24 13
++P 27 12

We can see that for this assertion ++b(k) produces the best obfuscation and catasp
produces the worst. Considering the two operations for the alternating split we
find that for this assertion, the operation ++asp produces the best obfuscation.
There are two reasons for this:

• The definition of catasp follows a similar pattern to the definition of ++
and so the proofs for ++ and catasp will have a similar structure.

• The definition of ++asp uses the operation ++ so the proof of the assertion
for ++asp uses the assertion for ++.

Likewise, as the structure of catA is similar to that of ++, the proof is only
slightly more complicated and since ++B uses ++ in its definition then it has a
longer proof. The definition of ++b(k) is the only operation to have three distinct
cases and so produces the longest proof.



Appendix B

Set operations

In this appendix, we prove that the operation insertasp from Section 5.3.1 is
correct.

B.1 Span Properties

Before we show the proof of correctness, we will need results about span, where
span is defined to be:

span p [ ] = [ ]
span p (x : xs) = if p x then (x : ys, zs) else ([ ], xs)

where (ys, zs) = span p xs

Property 9. If (ys, zs) = span p xs then xs = ys ++ zs.

Proof. We prove this by induction on xs.

Base Case Suppose that xs = [ ] then by the definition of span, ([ ], [ ]) =
span p [ ] and the result is immediately true.

Step Case Suppose that xs = v : vs and for the induction hypothesis, we
suppose that if (ys, zs) = span p vs then vs = ys ++ zs. Now let us consider
span p (v : vs)

If ¬p v then

span p (v : vs) = ([ ], v : vs)

and so the result is immediate.
If p v then by the definition of span then

(v : ys, zs) = span p (v : vs)

Now (v : ys) ++ zs = v : (ys ++ zs) = v : vs

159
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Now let us draw the proof tree for this property (this proof tree is needed
in Section 5.4).

(Prop 9)

Base

++

Step ¬p v

++

Step p v

IH

++

For this proof, C (Prop 9) = 4 and H (Prop 9) = 3.

Property 10. Suppose that xs ! 〈l , r〉asp , where xs is a strictly-increasing
list. So

(ly , lz ) = span (< a) l

(ry , rz ) = span (< a) r

for some a. Then

(i) if |ly | = |ry | then (B.1)

span (< a) xs = (unsplitasp 〈ly , ry〉asp , unsplitasp 〈lz , rz 〉asp)

(ii) if |ly | )= |ry | then (B.2)

span (< a) xs = (unsplitasp 〈ly , ry〉asp , unsplitasp 〈rz , lz 〉asp)

Proof. First let us prove (i) by induction on xs and we suppose that |ly | = |ry |

Base Case If xs = [ ], l = [ ] and r = [ ]. Since span (< a) [ ] = ([ ], [ ]) then
the result holds immediately.

Step Case We have two subcases.

Subcase 1 Suppose that ly = [ ], ry = [ ] and so lz = l and rz = r . Since xs
is an increasing list and by the definition of span either l = [ ] or head l ≥ a.
Since head xs = head l then,

span (< a) xs

= {definition of span}

([ ], xs)

= {definitions}

(unsplitasp 〈[ ], [ ]〉asp , unsplitasp(〈l , r〉asp))

= {definitions}

(unsplitasp 〈ly , ry〉asp , unsplitasp 〈lz , rz 〉asp)

Subcase 2 Now suppose that ly )= [ ]. Since ry )= [ ] there must be s < t < a
such that xs = s : t : xs ′. Then xs ′ ! 〈l ′, r ′〉asp where l = s : l ′ and r = t : r ′.
Suppose that (ly ′, lz ) = span (< a) l ′ and (ry ′, rz ) = span (< a) r ′. For the
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induction hypothesis, we suppose that xs ′ (and ly ′ and ry ′) satisfy Equation
(B.1).

span (< a) xs

= {definition of xs}

span (< a) (s : t : xs ′)

= {definition of span with s < t < a}

(s : ys ′′, zs ′′) where (ys ′′, zs ′′) = span (< a) (t : xs ′)

= {definition of span with t < a}

(s : t : ys ′, zs ′) where (ys ′, zs ′) = span (< a) xs ′

= {induction hypothesis}

(s : t : (unsplitasp 〈ly
′, ry ′〉asp), unsplitasp (〈lz , rz 〉asp))

= {definition of unsplitasp}

(s : (unsplitasp 〈t : ry ′, ly ′〉asp), unsplitasp (〈lz , rz 〉asp))

= {definition of unsplitasp}

unsplitasp (〈s : ly ′, t : ry ′〉asp), unsplitasp (〈lz , rz 〉asp)

= {(s : ly ′, lz ) = span (< a) (s : l ′) and l = s : l ′ so ly = s : ly ′}

unsplitasp (〈ly , t : ry ′〉asp), unsplitasp (〈lz , rz 〉asp)

= {similarly ry = t : ry ′}

unsplitasp (〈ly , ry〉asp), unsplitasp (〈lz , rz 〉asp)

We can draw the proof tree as follows:

(B.1)

Base

span

Step 2

ry

ly

unsplitasp

unsplitasp

IH

span

span

xs

Step 1

def

def

span

Thus for this proof, C (B.1) = 12 and H (B.1) = 9.
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Proof of (B.2) We can use the previous result to prove (B.2). This gives us
a shorter (text) proof but the tree for this proof contains the tree for the proof
of (B.1). So if we want to use or compare this proof then we should prove the
result directly.

Proof. Suppose that |ly | )= |ry | and since we have strictly-increasing lists, |ly | =
1 + |ry |. Thus we can find some s < a and lists l ′ and ly ′ such that ly = s : ly ′

and l = s : l ′ and then |ly ′| = |ry |. By the definition of span (and s < a),
span (< a) l ′ = (ly ′, lz ). Consider xs ′ where xs = s : xs ′. Then by the definition
of splitasp , xs ′ ! 〈r , l ′〉asp and since |ry | = |ly ′|, xs ′ satisfies (B.1). So

span (< a) xs

= {definition of xs ′}

span (< a) (s : xs ′)

= {definition of span and s < a}

(s : ys ′, zs ′) where (ys ′, zs ′) = span (< a) xs ′

= {Equation (B.1)}

(s : (unsplitasp 〈ry , ly ′〉asp), unsplit 〈rz , lz 〉asp)

= {definition of unsplitasp}

(unsplitasp 〈s : ly ′, lz 〉asp , unsplit 〈rz , lz 〉asp)

= {ly = s : ly ′}

(unsplitasp 〈ly , lz 〉asp , unsplit 〈rz , lz 〉asp)

Property 11. With xs ! 〈l , r〉asp and ly and ry as above. If member xs a
then

(i) member l a ⇔ |ly | = |ry | (B.3)

(ii) member r a ⇔ |ly | )= |ry | (B.4)

Proof. Let (ys, zs) = span (< a) xs.

Proof of (i) (⇒) Since member l a then by the definition of splitasp , (∃k) such
that xs !! 2k = a. Since xs is an increasing list then the number of elements of
xs that are less than a is 2k . So,

member l a

⇒ {definition of asp, xs is increasing}

|takeWhile (< a) xs| = 2k

⇒ {definition of span}

|ys| = 2k

⇒ {Property (B.1)}

|unsplit 〈ly , ry〉asp | = 2k

⇒ {definition of | |asp}

|ly | + |ry | = 2k

⇒ {invariant (5.3), arithmetic}
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|ly | = |ry |

Proof of (i) (⇐) If member xs a then head zs = a and

|ly | = |ry |

⇒ {Property (B.1)}

unsplit 〈lz , rz 〉asp = zs

⇒ {applying head to both sides (which are finite non-empty lists)}

head (unsplit 〈lz , rz 〉asp) = head zs

⇒ {member xs a}

head (unsplit 〈lz , rz 〉asp) = a

⇒ {property of headasp}

headasp 〈lz , rz 〉asp = a

⇒ {definition of headasp}

head lz = a

⇒ {property of member}

member l a

Proof of (ii) We can prove this result in the same way as we proved (i) or
we can note that:

¬(member l a)⇔ ¬(|ly | = |ry |)

Since member xs a then ¬(member l a) ≡ member r a and so (ii) holds.

The tree for (i) (⇒) is

(B.3⇒)

inv (5.3) arith

| |asp

(B.1)

span

asp xs

Since (B.1) is only used once for this proof we do not declare it as a lemma (note
that if we wanted the tree for the entire proof then (B.1) would be declared as
a lemma). Thus

C (B.3 ⇒) = 6 + C (B.1) = 18

H (B.3 ⇒) = 3 + max(2,H (B.1)) = 12
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B.2 Insertion for the alternating split

To prove the correctness of insertasp , we need to show that Equation (3.6) holds
for insertasp . Therefore, we are required to prove:

unsplitasp(insertasp a (splitasp xs)) = insert a xs

We will need the properties from Sections 4.3.2 and B.1 and use the definition
of ++asp . The definition of insertasp is

insertasp a 〈l , r〉asp =
〈ly , ry〉asp ++asp (if member lz a then 〈lz , rz 〉asp

else if |ly | == |ry | then 〈a : rz , lz 〉asp
else if member rz a then 〈rz , lz 〉asp
else 〈a : lz , rz 〉asp )

where (ly , lz ) = span (< a) l
(ry , rz ) = span (< a) r

Suppose that xs ! 〈l , r〉asp and consider insertasp a 〈l , r〉asp . Let (ly , lz ) =
span (< a) l , (ry , rz ) = span (< a) r and (ys, zs) = span (< a) xs. We have
four cases corresponding to the conditions in the definition of insertasp .

Case (i) Suppose that member a lz and head zs = a. Since member a l then
by Equation (B.3), |ly | = |ry |. So,

unsplitasp (insertasp a (splitasp xs))

= {xs ! 〈l , r〉asp}

unsplitasp (insertasp a 〈l , r〉asp)

= {definition of insertasp}

unsplitasp (〈ly , ry〉asp ++asp 〈lz , rz 〉asp)

= {property of ++asp}

(unsplitasp 〈ly , ry〉asp) ++ (unsplitasp 〈lz , rz 〉asp)

= {Property (B.1)}

ys ++ zs

= {definition of insert with head zs = a}

insert a xs

Case (ii) Now suppose that ¬(member a lz ) and |ly | = |ry |. By Equation
(B.3), ¬(member a xs). Then,

unsplitasp (insertasp a (splitasp xs))

= {xs ! 〈l , r〉asp}

unsplitasp (insertasp a 〈l , r〉asp)

= {definition of insertasp}

unsplitasp (〈ly , ry〉asp ++asp 〈a : rz , lz 〉asp)

= {property of ++asp}

(unsplitasp 〈ly , ry〉asp) ++ (unsplitasp 〈a : rz , lz 〉asp)
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= {definition of unsplitasp}

(unsplitasp 〈ly , ry〉asp) ++ (a : unsplitasp 〈lz , rz 〉asp)

= {Property (B.1)}

ys ++ (a : zs)

= {definition of insert}

insert a xs

Case (iii) Now suppose that member rz a and then head zs = a. Since
member r a then by Equation (B.4), |ly | )= |ry |. So,

unsplitasp (insertasp a (splitasp xs))

= {xs ! 〈l , r〉asp}

unsplitasp (insertasp a 〈l , r〉asp)

= {definition of insertasp}

unsplitasp (〈ly , ry〉asp ++asp 〈rz , lz 〉asp)

= {property of ++asp}

(unsplitasp 〈ly , ry〉asp) ++ (unsplitasp 〈rz , lz 〉asp)

= {Property (B.2)}

ys ++ zs

= {definition of insert with head zs = a}

insert a xs

Case (iv) Now suppose that ¬(member xs a) and |ly | )= |ry |. Then

unsplitasp (insertasp a (splitasp xs))

= {xs ! 〈l , r〉asp}

unsplitasp (insertasp a 〈l , r〉asp)

= {definition of insertasp}

unsplitasp (〈ly , ry〉asp ++asp 〈a : lz , rz 〉asp)

= {property of ++asp}

(unsplitasp 〈ly , ry〉asp) ++ (unsplitasp 〈a : lz , rz 〉asp)

= {definition of unsplitasp}

(unsplitasp 〈ly , ry〉asp) ++ (a : unsplitasp 〈rz , lz 〉asp)

= {Property (B.2)}

ys ++ (a : zs)

= {definition of insert}

insert a xs
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Matrices

We prove the assertion that tranpose is an involution, i.e.

transpose · transpose = id (C.1)

Note that this equation is only valid for lists of lists that represent matrices.

C.1 Rewriting the definition

To prove Equation (C.1), we give alternative formulations of the definition of
transpose. First, we can write the definition of transpose using foldr instead of
foldr1:

transpose mss = foldr (zipWith (++)) blanks (map (map wrap) mss)

where we define blanks to be repeat [ ] (i.e. blanks = [ [ ], [ ], , . . .]). By the Fold
Map Fusion (Property 3) for lists, we get:

transpose = foldr ((zipWith (++)) · (map wrap)) blanks

Can we simplify this definition? Let

f1 = (zipWith (++)) · (map wrap)

and so f1 has type List α → List (List α) → List (List α). Then consider
f1 xs yss where xs :: List α and ys :: List (List α). If xs = [ ] then f1 xs yss = [ ].
However if yss = [[ ]] and xs = v : vs then f1 xs yss = [[v ]].

Now suppose that xs = v : vs and yss = ws : wss. Then

f1 (v : vs) (ws : wss)

= {definitions}

((zipWith (++)) . (map wrap)) (v : vs) (ws : wss)

= {definition of map}

zipWith (++)((wrap v) : (map wrap vs)) (ws : wss)

= {definition of wrap}

zipWith (++)([v ] : (map wrap vs)) (ws : wss)

= {definition of zipWith}

166
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([v ] ++ ws) : (((zipWith (++)) . (map wrap)) vs wss)

= {property of : and ++}

(v : ws) : (((zipWith (++)) . (map wrap)) vs wss)

= {definition of f }

(v : ws) : (f1 vs wss)

Now if we let f2 = zipWith (:) then

f2 (v : vs) (ws : wss) = (v : ws) : (f2 vs wss)

which is the same pattern as above. Note that f2 [ ] yss = [ ] and f2 (v : vs) [[ ]] =
[[v ]]. Thus

(zipWith (++)) · (map wrap) = zipWith (:)

and so we can write

transpose = foldr (zipWith (:)) blanks

C.2 Using fold fusion

We need to prove Equation (C.1) and, by the results above, we need to prove
that

transpose (foldr (zipWith (:)) blanks mss) = mss

Note that this result only holds if valid mss is true, i.e. when mss represents
a matrix. We prove this result by using the Fold Fusion Theorem (Property 1)
taking f = transpose, g = zipWith (:) and a = blanks. So, f is strict and f a = [ ]
and so we take b = [ ]. Now we need a function h that f (g x y) = h x (f y).
Since (C.1) is only true for matrices we need to ensure that |x | = |y |. Before
we prove that transpose is self-inverse we need a property involving f and g .

Property 12. With the definitions of f and g above: f (x : xs) = g x (f xs).

Proof.

f (x : xs)

= {f = transpose}

transpose (x : xs)

= {foldr definition of transpose}

foldr (zipWith (:)) blanks (x : xs)

= {definition of foldr}

(zipWith (:)) x (foldr (zipWith (:)) blanks xs)

= {definitions of f and g}

g x (f xs)

For the fold fusion, we propose that h = (:) (note that foldr (:) [ ] = id) and
we prove this by induction, i.e. that if |xs| = |yss| then

f (g xs yss) = xs : (f yss) (C.2)

Proof. We prove Equation (C.2) by induction on |xs|.



APPENDIX C. MATRICES 168

Base Case Suppose that xs = [x ] and let yss = [ys] so that |xs| = 1 = |yss|

f (g xs yss)

= {definitions of xs, yss and g}

f [x : ys]

= {foldr1 definition of f }

foldr1 (zipWith (++)) (map (map wrap) [x : ys])

= {definitions of map and wrap}

foldr1 (zipWith (++)) [[x ] : (map wrap ys)]

= {definition of foldr1}

[x ] : (map wrap ys)

= {[definition of foldr1}

[x ] : (foldr1 (zipWith (++)) [map wrap ys])

= {definition of map}

[x ] : (foldr1 (zipWith (++)) (map (map wrap) [ys]))

= {foldr1 definition of f }

[x ] : (f [ys])

= {definitions}

xs : (f yss)

Step Case Suppose that xs = v : vs and yss = ws : wss where |vs| = |wss|.
For the induction hypothesis, we suppose that vs and wss satisfy Equation (C.2).

f (g xs yss)

= {definitions}

f (g (v : vs) (ws : wss))

= {definition of g (g is an instance of zipWith)}

f ((v : ws) : (g vs wss))

= {Property 12}

g (v : ws) (f (g vs wss))

= {induction hypothesis}

g (v : ws) (vs : (f wss))

= {g is an instance of zipWith}

(v : vs) : (g ws (f wss)))

= {Property 12}

(v : vs) : (f (ws : wss))

= {definitions}

xs : (f yss)
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Proving a tree assertion

The operation mktree takes a list and produces a binary tree and so we can
obfuscate the input (a list) and the output (a tree). Suppose that mktreeO is
an obfuscation of mktree with unsplit the abstraction function which converts
split lists back to lists and to2 the abstraction function for the conversion from
ternary to binary trees. Then mktreeO will satisfy Equation (3.7), i.e.

mktree · unsplit = to2 · mktreeO

This equation allows us to prove the correctness of mktreeO .
We will consider the original operation mktree and three obfuscations of

this operation. We will prove that each of the operations satisfies the following
assertion:

member p (mktree xs) = elem p xs (D.1)

and we will discuss how obfuscated each operation is.

D.1 Producing a binary tree from a list

First, we consider the unobfuscated operation and so our operation for making
trees has the following type

mktree :: [α] → Tree α

and is defined to be:

mktree [ ] = Null
mktree xs = Fork (mktree ys) z (mktree zs)

where (ys, (z : zs)) = splitAt (div |xs| 2) xs

D.1.1 Operations

We now state some operations that we will need. First, we define a membership
operation for trees as follows:

member p Null = False
member p (Fork lt v rt) = (v == p) ∨ member p lt ∨ member p rt

169
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and a membership operation for lists:

elem p [ ] = False
elem p (x : xs) = p == x ∨ elem p xs

Some list functions that we will need:

splitAt 0 xs = ([ ], xs)
splitAt [ ] = ([ ], [ ])
splitAt n (x : xs) = (x : ys, zs)

where (ys, zs) = splitAt (n − 1) xs

[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

|[ ]| = 0
|x : xs| = 1 + |xs|

D.1.2 Proving Properties

First, we prove some properties of the list operations.

• |ts ++ ys| = |ts| + |ys| (D.2)

The proof for this is in Section A.1 which produces the following tree:

(D.2)

Base

xs

| |

arith

++

xs

Step

xs

| |

IH

| |

++

xs

For this tree, C (D.2) = 11 and H (D.2) = 7.

• ts = ys ++ zs where (ys, zs) = splitAt n ts (D.3)

Case for zero If n = 0 then splitAt 0 ts = ([ ], ts). By the definition of
++ then ts = [ ] ++ ts.

Positive case Let n > 0 and prove by structural induction on ts

Base Case Suppose that ts = [ ], then splitAt n [ ] = ([ ], [ ]) and so
[ ] = [ ] ++ [ ]
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Step Case Suppose that ts = x : xs and, for the induction hypothesis,
that xs satisfies (D.3). Let (x : ys, zs) = splitAt n (x : xs) where (ys, zs) =
splitAt (n − 1) xs.

(x : ys) ++ zs

= {definition of ++}

x : (ys ++ zs)

= {inductive hypothesis}

x : xs

(D.3)

Zero

++

Pos

Base

++

Step

IH

++

For this tree, C (D.3) = 4 and H (D.3) = 4.

• Suppose that (ys, z : zs) = splitAt n xs where 0 ≤ n < |xs|. Then

|xs|

= {Equation (D.3)}

|ys ++ (z : zs)|

= {Equation (D.2)}

|ys| + |z : zs|

= {definition of | |}

|ys| + 1 + |zs|

and so (by arithmetic)

(ys, z : zs) = splitAt n xs ⇒ |ys| < |xs| ∧ |zs| < |xs| (D.4)

(D.4)

arith

| |

(D.2)

(D.3)

For this tree,

C (D.4) = 2 + C (D.3) + C (D.2) = 17

H (D.4) = 1 + max(H (D.3), 1 + H (D.2), 3) = 9

• elem p (ts ++ ys) = elem p ts ∨ elem p ys (D.5)

We prove this by structural induction on ts.
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Base Case Suppose that ts = [ ].

elem p ([ ] ++ ys)

= {definition of ++}

elem p ys

= {property of ∨}

False ∨ elem p ys

= {definition of elem}

elem p [ ] ∨ elem p ys

Step Case Suppose that ts = x : xs and, for the induction hypothesis,
that xs satisfies (D.5).

elem p ((x : xs) ++ ys)

= {definition of ++}

elem p (x : (xs ++ ys))

= {definition of elem}

p == x ∨ elem p (xs ++ ys)

= {induction hypothesis}

p == x ∨ elem p xs ∨ elem p ys

= {definition of elem}

elem p (x : xs) ∨ elem p ys

(D.5)

Base

elem

∨

++

Step

elem

IH

elem

++

For this tree, C (D.5) = 7 and H (D.5) = 5.

D.1.3 Proving the assertion

Now, we are able to prove Equation (D.1) by induction on |xs|.

Base Case Suppose that |xs| = 0, by the definition of | | this means that
xs = [ ]

member p (mktree [ ])

= {definition of mktree}

member p Null

= {definition of member}
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False

= {definition of elem}

elem p [ ]

Step Case Now, consider a list xs. For the induction hypothesis, we suppose
that (D.1) is true (∀ts) • |ts| < |xs|. Let (ys, (z : zs)) = splitAt n xs

member p (mktree xs)

= {definition of mktree}

member p (Fork (mktree ys) z (mktree zs))

= {definition of member}

z == p ∨member p (mktree ys) ∨member p (mktree zs)

= {induction hypothesis, using (D.4)}

z == p ∨ elem p ys ∨ elem p zs

= {commutativity and associativity of ∨}

elem p ys ∨ (z == p ∨ elem p zs)

= {definition of elem}

elem p ys ∨ elem p (z : zs)

= {Equation (D.5)}

elem p (ys ++ (z : zs))

= {definition of xs, Equation (D.3)}

elem p xs

(D.1)

Base

elem

member

mktree

Step

xs (D.3)

(D.5)

elem

∨

IH (D.4)

member

mktree

For this tree it seems that we only use (D.3) once. But in fact, we use it
twice: once in the tree above and once in the proof of (D.4). This means that
we must declare (D.3) as a lemma and so we obtain

C (D.1) = 10 + C (D.4) + C (D.5) = 34

H (D.1) = 4 + max(H (D.4), 3 + H (D.5), 4 + H (D.3)) = 13
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D.2 Producing a binary tree from a split list

Now we use the alternating split to obfuscate mktree. Thus our operation for
making trees has the following type

mktreeasp :: 〈[α], [α]〉asp → Tree α

and is defined to be

mktreeasp 〈[ ], 〉asp = Null
mktreeasp 〈l , r〉asp = Fork (mktreeasp ysp) z (mktreeasp 〈zr , zl〉asp)

where (ysp, 〈z : zl , zr〉asp) = breakAt |r | 〈l , r〉asp

D.2.1 Operations

We use the tree membership operation from Section D.1. Here is a membership
operation for split lists:

elemasp p 〈[ ], [ ]〉asp = False
elemasp p 〈x : l , r〉asp = p == x ∨ elemasp p 〈r , l〉asp

and a split list operation corresponding to splitAt:

breakAt 0 xsp = (〈[ ], [ ]〉asp , xsp)
breakAt 〈[ ], [ ]〉asp = (〈[ ], [ ]〉asp , 〈[ ], [ ]〉asp)
breakAt n 〈x : l , r〉asp = (consasp x ys, zs)

where (ys, zs) = breakAt (n − 1) 〈r , l〉asp

Other split list operations that we need:

consasp x 〈l , r〉asp = 〈x : r , l〉asp

〈l0, r0〉asp ++asp 〈l1, r1〉asp =

{

〈l0 ++ l1, r0 ++ r1〉asp if |l0| = |r0|
〈l0 ++ r1, r0 ++ l1〉asp otherwise

|〈l , r〉asp |asp = |l | + |r |

Thus the assertion that we want to prove is:

member p (mktreeasp xs) = elemasp p xs (D.6)

D.2.2 Preliminaries

First, we prove some properties of the split list operations. Note that for struc-
tural induction on split lists, we have two cases — 〈[ ], [ ]〉asp and lists of the
form 〈x : l , r〉asp .

• |xsp ++asp ysp|asp = |xsp|asp + |ysp|asp (D.7)
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This is proved in Section A.2.1 and the tree for this proof is:

(D.7)

Case 1

defs

| |

| |

(D.2)

(D.2)

| |

++

defs

Case 2

defs

| |

| |

(D.2)

(D.2)

| |

++

defs

For this proof, we declare (D.2) as a lemma and so

C (D.7) = 16 + C (D.2) = 27
and H (D.7) = 6 + max(3,H (D.2)) = 13

• (ysp, zsp) = breakAt n xsp ⇒ xsp = ysp ++asp zsp (D.8)

Zero case Let n = 0. From the definition,

breakAt 0 xsp = (〈[ ], [ ]〉asp , xsp)

and so

(〈[ ], [ ]〉asp) ++asp xsp

= {definition of ++asp}

xsp

Positive Case Suppose that n > 0, we prove Equation (D.8) by struc-
tural induction on xsp.

Base Case Suppose that xsp = 〈[ ], [ ]〉asp . From the definition

breakAt n 〈[ ], [ ]〉asp = (〈[ ], [ ]〉asp , 〈[ ], [ ]〉asp)

and so

(〈[ ], [ ]〉asp) ++asp (〈[ ], [ ]〉asp)

= {definition of ++asp}

〈[ ], [ ]〉asp

Step Case Suppose xsp = consasp x 〈l , r〉asp = 〈x : l , r〉asp . Let

(consasp x 〈yl , yr〉asp , 〈zl , zr〉asp) = breakAt n 〈x : l , r〉asp
where (〈yl , yr〉asp , 〈zl , zr〉asp) = breakAt (n − 1) 〈r , l〉asp

For the induction hypothesis, we suppose that 〈l , r〉asp satisfies Equation
(D.8). We have two cases depending on the lengths of yl and yr .
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Subcase 1 Suppose that |yl | = |yr |. Then

(consasp x 〈yl , yr〉asp) ++asp 〈zl , zr〉asp
= {definition of consasp}

〈x : yr , yl〉asp ++asp 〈zl , zr〉asp
= {definition of ++asp with |x : yr | )= |yl |}

〈x : yr ++ zr , yl ++ zl〉asp
= {definition of consasp}

consasp x 〈yl ++ zl , yr ++ zr〉asp
= {definition of ++asp with |yl | = |yr |}

consasp x (〈yl , yr〉asp ++asp 〈zl , zr〉asp)

= {induction hypothesis}

consasp x 〈l , r〉asp

Subcase 2 Suppose that |yl | )= |yr |. Then by invariant (4.11), |yl | =
|yr | + 1 and so

(consasp x 〈yl , yr〉asp) ++asp 〈zl , zr〉asp
= {definition of consasp}

〈x : yr , yl〉asp ++asp 〈zl , zr〉asp
= {definition of ++asp with |x : yr | = |yl |}

〈x : yr ++ zl , yl ++ zr〉asp
= {definition of consasp}

consasp x 〈yl ++ zr , yr ++ zl〉asp
= {definition of ++asp with |yl | )= |yr |}

consasp x (〈yl , yr〉asp ++asp 〈zl , zr〉asp)

= {induction hypothesis}

consasp x 〈l , r〉asp

(D.8)

Zero

++asp

Pos

Base

++asp

Step 1

IH

++asp

consasp

++asp

consasp

Step 2

IH

++asp

consasp

++asp

consasp

For this tree, C (D.8) = 12 and H (D.8) = 7.

•
|ysp|asp + |zsp|asp = |xsp|asp

where (ysp, zsp) = breakAt n xsp
(D.9)
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Then

|xsp|asp

= {Equation (D.8)}

|ysp ++asp zsp|asp

= {Equation (D.7)}

|ysp|asp + |zsp|asp

(D.9)

(D.7)

(D.8)

For this tree, (we do not declare the two results in the tree as lemmas):

C (D.9) = C (D.7) + C (D.8) = 39

H (D.9) = 1 + max(1 + H (D.7),H (D.8)) = 15

•
elemasp p ysp ∨ elemasp p zsp = elemasp p xsp

where (ysp, zsp) = breakAt n xsp
(D.10)

We prove this by structural induction on xsp.

Base Case Suppose xsp = 〈[ ], [ ]〉asp . From the definition

breakAt n 〈[ ], [ ]〉asp = (〈[ ], [ ]〉asp , 〈[ ], [ ]〉asp)

and then

elemasp p 〈[ ], [ ]〉asp ∨ elemasp p 〈[ ], [ ]〉asp
= {definition of elemasp}

False

= {definition of elemasp}

elemasp p 〈[ ], [ ]〉asp

Step Case Suppose xsp = 〈x : l , r〉asp and

(consasp x 〈yl , yr〉asp , zsp) = breakAt n 〈x : l , r〉asp
where (〈yl , yr〉asp , zsp) = breakAt (n − 1) 〈r , l〉asp

For the induction hypothesis, we suppose that 〈r , l〉asp satisfies (D.10) and
so

elemasp p (consasp x 〈yl , yr〉asp) ∨ elemasp p zsp

= {definition of consasp}

elemasp p 〈x : yr , yl〉asp ∨ elemasp p zsp

= {definition of elemasp}
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p == x ∨ elemasp p 〈yl , yr〉asp ∨ elemasp p zsp

= {induction hypothesis}

p == x ∨ elemasp p 〈r , l〉asp
= {definition of elemasp}

elemasp p 〈x : l , r〉asp

(D.10)

Base

elemasp

elemasp

Step

elemasp

IH

elemasp

consasp

For this tree, C (D.10) = 6 and H (D.10) = 5.

• For a non-empty split list xsp and 0 ≤ n < |xsp|asp

If (ysp, 〈z : zl , zr〉asp) = breakAt n xsp
then |ysp|asp < |xsp|asp ∧ |〈zr , zl〉asp |asp < |xsp|asp

(D.11)

The proof is as follows:

|xsp|asp

= {Equation (D.9)}

|ysp|asp + |〈z : zl , zr〉asp |asp

= {definition of | |asp}

|ysp|asp + |z : zl | + |zr |

= {definition of | |}

1 + |ysp|asp + |zl | + |zr |

= {definition of | |asp}

1 + |ysp|asp + |〈zr , zl〉asp |asp

and thus we can conclude |ysp|asp < |xsp|asp and |〈zr , zl〉asp |asp < |xsp|asp .

(D.11)

| |asp

| |

| |asp

(D.9)

For this tree,

C (D.11) = 3 + C (D.9) = 42

H (D.11) = 1 + max(H (D.9), 3) = 16
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D.2.3 Proof of the assertion

Now, we prove Equation (D.6) by induction on |xsp|asp .

Base Case Suppose that |xsp|asp = 0. So xsp = 〈[ ], [ ]〉asp .

member p (mktreeasp 〈[ ], [ ]〉asp)

= {definition of mktreeasp}

member p Null

= {definition of member}

False

= {definition of elem}

elemasp p 〈[ ], [ ]〉asp

Step Case Let xsp = 〈l , r〉asp and we suppose that Equation (D.6) is true for
all split lists which have length less than |xsp|asp . Let (ysp, 〈z : zl , zr〉asp) =
breakAt |r | 〈l , r〉asp .

member p (mktreeasp 〈l , r〉asp)

= {definition of mktreeasp}

member p (Fork (mktreeasp ysp) z (mktreeasp 〈zr , zl〉asp))

= {definition of member}

z == p ∨member p (mktreeasp ysp)
∨member p (mktreeasp 〈zr , zl〉asp)

= {induction hypothesis using Equation (D.11)}

z == p ∨ elemasp p ysp ∨ elemasp p 〈zr , zl〉asp
= {associativity and commutativity of ∨}

elemasp p ysp ∨ (z == p ∨ elemasp p 〈zr , zl〉asp)

= {definition of elemasp}

elemasp p ysp ∨ elemasp p 〈x : zl , zr〉asp
= {Equation (D.10)}

elemasp p 〈l , r〉asp

(D.6)

Base

elem

member

mktreeasp

Step

(D.10)

elemasp

∨

IH (D.11)

member

mktreeasp
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For this tree,

C (D.6) = 8 + C (D.10) + C (D.11) = 56

H (D.6) = 4 + max(H (D.11), 3 + H (D.10)) = 20

D.3 Producing a ternary tree from a list

In this section, our operation for making trees has the following type:

mktree :: [α] → Tree3 α

and is defined to be:

mktree3 [ ] = Null3
mktree3 xs

∣

∣

∣

∣

even z = Fork3 z (mktree3 ys) (mktree3 zs) jt
otherwise = Fork3 z kt (mktree3 zs) (mktree3 ys)

where (ys, (z : zs)) = splitAt (div |xs| 2) xs

D.3.1 Operations

Membership operation for ternary trees is defined as follows:

member3 p Null3 = False
member3 p (Fork3 v lt ct rt) =

v == p ∨ (member3 p ct) ∨
(if even v then (member3 p lt) else (member3 p rt))

and we use the list operations from Section D.1. Thus the assertion that we
want to prove is

member3 p (mktree3 xs) = elem p xs (D.12)

D.3.2 Proof

We prove the assertion by induction on length of xs.

Base Case Suppose that |xs| = 0 (i.e. xs = [ ]).

member3 p (mktree3 [ ])

= {definition of mktree3}

member3 p Null3

= {definition of member3}

False

= {definition of elem}

elem p [ ]

Step Case Consider a list xs and for the induction hypothesis, we sup-
pose that Equation (D.12) is true (∀ts) • |ts| < |xs|. Let (ys, (z : zs)) =
splitAt (div |xs| 2) xs.
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Subcase 1 Suppose that z is even:

member3 p (mktree3 (x : xs))

= {definition of mktree3}

member3 p (Fork3 z (mktree3 ys) (mktree3 zs) jt)

= {definition of member3, with z even}

z == p ∨member3 p (mktree3 zs) ∨member3 p (mktree3 ys)

= {induction hypothesis, using (D.4)}

z == p ∨ elem p ys ∨ elem p zs

= {commutativity and associativity of ∨}

elem p ys ∨ (z == p ∨ elem p zs)

= {definition of elem}

elem p ys ∨ elem p (z : zs)

= {Equation (D.5)}

elem p (ys ++ (z : zs))

= {definition of xs, Equation (D.3)}

elem p xs

Subcase 2 Suppose that z is odd:

member3 p (mktree3 (x : xs))

= {definition of mktree3}

member3 p (Fork3 z kt (mktree3 zs) (mktree3 ys))

= {definition of member3, with z odd}

z == p ∨member3 p (mktree3 zs) ∨member3 p (mktree3 ys)

= {induction hypothesis, using (D.4)}

z == p ∨ elem p ys ∨ elem p zs

= {commutativity and associativity of ∨}

elem p ys ∨ (z == p ∨ elem p zs)

= {definition of elem}

elem p ys ∨ elem p (z : zs)

= {Equation (D.5)}

elem p (ys ++ (z : zs))

= {definition of xs, Equation (D.3)}

elem p xs

The basic structure of the proof tree is:

(D.12)

Base

elem

member3

mktree3

even odd
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The tree for the case when z even is:

even

xs (D.3)

(D.5)

elem

∨

IH (D.4)

member3

mktree3

The case for z odd produces an identical proof tree. We declare (D.3), (D.4)
and (D.5) as lemmas. So (remembering that (D.4) uses (D.3)):

C (D.12) = 3 + (2× 9) + C (D.4) + C (D.5) = 45

H (D.12) = 4 + max(H (D.4), 3 + H (D.5), 4 + H (D.3)) = 13

D.4 Producing a ternary tree from a split list

In this section, our operation for making trees has the following type:

mktree :: 〈[α], [α]〉asp → Tree3 α

and is defined to be:

mktree3asp 〈[ ], 〉asp = Null3
mktree3 asp 〈l , r〉asp

∣

∣

∣

∣

∣

∣

∣

∣

even z = Fork3 z (mktree3asp ysp)
(mktree3asp 〈zr , zl〉asp) jt

otherwise = Fork3 z kt
(mktree3 〈zr , zl〉asp) (mktree3 ysp)

where (ysp, 〈z : zl , zr〉asp) = breakAt |r | 〈l , r〉asp

We use the definition of member3 from Section D.3 and the split list opera-
tions from Section D.2. Thus the assertion that we want to prove is

member3 p (mktree3asp xsp) = elemasp p xsp (D.13)

D.4.1 Proof

We prove the assertion by induction on |xsp|asp .

Base case Suppose that |xsp|asp = 0 (and so xsp = 〈[ ], [ ]〉asp).

member3 p (mktree3asp 〈[ ], [ ]〉asp)

= {definition of mktreeasp}

member3 p Null3

= {definition of member3}
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False

= {definition of elemasp}

elemasp p 〈[ ], [ ]〉asp

Step Case Let xsp = 〈l , r〉asp and we suppose that Equation (D.13) is true
for all split lists which have length less than |xsp|asp . Let (ysp, 〈z : zl , zr〉asp) =
breakAt |r | 〈l , r〉asp .

Subcase 1 Suppose that z is even:

member3 p (mktree3asp 〈l , r〉asp)

= {definition of mktree3asp}

member3 p (Fork3 z (mktree3asp ysp)
(mktree3asp 〈zr , zl〉asp) jt)

= {definition of member3 with z even}

z == p ∨ (member3 p (mktree3asp ysp))
∨ (member3 p (mktree3asp 〈zr , zl〉asp))

= {induction hypothesis using (D.11)}

z == p ∨ elemasp p ysp ∨ elemasp p 〈zr , zl〉asp
= {associativity and commutativity of ∨}

elemasp p ysp ∨ (z == p ∨ elemasp p 〈zr , zl〉asp)

= {definition of elemasp}

elemasp p ysp ∨ elemasp p 〈x : zl , zr〉asp
= {Equation (D.10)}

elemasp p 〈l , r〉asp

Subcase 2 Suppose that z is odd:

member3 p (mktree3asp 〈l , r〉asp)

= {definition of mktree3asp}

member3 p (Fork3 z kt (mktree3asp 〈zr , zl〉asp))
(mktree3asp ysp)

= {definition of member3 with z odd}

z == p ∨ (member3 p (mktree3asp ysp))
∨ (member3 p (mktree3asp 〈zr , zl〉asp))

= {induction hypothesis using (D.11)}

z == p ∨ elemasp p ysp ∨ elemasp p 〈zr , zl〉asp
= {associativity and commutativity of ∨}

elemasp p ysp ∨ (z == p ∨ elemasp p 〈zr , zl〉asp)

= {definition of elemasp}

elemasp p ysp ∨ elemasp p 〈x : zl , zr〉asp
= {Equation (D.10)}

elemasp p 〈l , r〉asp
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The structure of the proof tree is:

(D.13)

Base

elemasp

member3

mktree3asp

even odd

The tree for z even is:

even

(D.10)

elemasp

∨

IH (D.11)

memberasp

mktreeasp

and the proof for z odd produces the same tree. We declare (D.10) and (D.11)
as lemmas and so

C (D.13) = 3 + (2× 7) + C (D.10) + C (D.11) = 65

H (D.13) = 4 + max(H (D.11), 3 + H (D.10)) = 20

D.5 Comparing the proofs

Below is a table which summarises the results for each of the proof trees:

Obfuscation C H
None 34 13
Split List 56 20
Ternary Tree 45 13
Split List and Ternary Tree 65 20

From this table we can see that introducing a split list increases both the
cost and the height of the proof. Making a ternary tree increases the cost but
the height remains the same. As the definition of mktree3 has two cases with
each case similar is to the definition of mktree, the cost increases but the height
does not.



Appendix E

Obfuscation Example

On Page 8, we gave an example obfuscation and we asked what the method
start does to the elements of an (integer) array. In fact, start sorts the array
elements into ascending order by creating a BST and then flattening the tree.
The original program is shown in Figure E.1.

The method start takes an integer valued array and then places all elements
of this array into a tree by using the method insert . The tree that is constructed
by insert is a BST (so it satisfies Equation (7.1)). Next, the method sort is used
to put all elements of the tree into an array in such a way that the elements are
in ascending order.

The program was obfuscated by changing binary trees to ternary trees, per-
forming a variable transformation and renaming variables.

For the variable transformation, we take

f = λn.3n + 1
g= λn.(n−1) div 3

We store f (v) in the tree instead of v and when retrieving the values, we use
the function g to recover the correct value. Note that (∀v :: Z) • g(f (v)) = v .

The next step is to perform the tree transformation. Each node in the binary
tree is transformed as follows:

v

L R

!











































v

L junk R

if p(v)

v

junk L R

otherwise

We can choose the predicate p at runtime.
For further confusion, we add in the extra predicate h which is used on the

junk values in the tree. Also we change the names of the variables and methods
but we cannot change the names of b and start as they are public methods.

185
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public class class1
{ tree t1 = new tree();

public int [ ] b;
int r ;

class tree
{ public tree left ;

public tree right ;
public int val ;

}

public int [ ] start(int [ ] b)
{ t1 = null;

r = 0;
while (r < b.Length) { insert(ref t1, b[r ]);

r + +;
}

r = 0;
sort(t1);
return b;

}

void sort(tree t2)
{ if (t2 == null) return;

sort(t2.left);
b[r ] = t2.val ;
r + +;
sort(t2.right);

}

void insert(ref tree t2, int key)
{ if (t2 == null){ t2 = new tree();

t2.val = key ;
}

else { if (key < t2.val) { insert(ref t2.left , key); }
else { insert(ref t2.right , key); }

}
}

}

Figure E.1: Original Program


