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Abstract Team oriented plans have become a popular tool for operators to control teams
of autonomous robots to pursue complex objectives in complex environments. Such plans
allow an operator to specify high level directives and allow the team to autonomously deter-
mine how to implement such directives. However, the operators will often want to interrupt
the activities of individual team members to deal with particular situations, such as a danger
to a robot that the robot team cannot perceive. Previously, after such interrupts, the operator
would usually need to restart the team plan to ensure its success. In this paper, we present an
approach to encoding how interrupts can be smoothly handled within a team plan. Building
on a team plan formalism that uses Colored Petri Nets, we describe a mechanism that al-
lows a range of interrupts to be handled smoothly, allowing the team to efficiently continue
with its task after the operator intervention. We validate the approach with an application of
robotic watercraft and show improved overall efficiency. In particular, we consider a situa-
tion where several platforms should travel through a set of pre-specified locations, and we
identify three specific cases that require the operator to interrupt the plan execution: i) a boat
must be pulled out; ii) all boats should stop the plan and move to a pre-specified assembly
position; iii) a set of boats must synchronize to traverse a dangerous area one after the other.
Our experiments show that the use of our interrupt mechanism decreases the time to com-
plete the plan (up to 48% reduction) and decreases the operator load (up to 80% reduction in
number of user actions). Moreover, we performed experiments with real robotic platforms to
validate the applicability of our mechanism in the actual deployment of robotic watercraft.
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1 Introduction

Robotics technology has matured sufficiently to make the idea of building robot teams for
real environments a serious possibility. For applications ranging from disaster response [2,
30,16] to environmental monitoring [8,27] to surveillance [9], approaches are emerging to
allow small numbers of humans to control teams of robots to achieve complex objectives.
An effective way of doing this is via team plans [24,11,32], which allow an operator to
interact via high level objectives and use automation to work out the details. For example, a
plan for environmental monitoring might tell robots to collect a certain type of information
in a certain area, leaving the robots to work out who goes where to collect the information.

However, in most real domains, human operators will occasionally need to directly con-
trol a robot for some purpose, perhaps to protect a robot from a danger it cannot perceive
or to achieve some specific objectives that the robot is not capable of understanding. Typ-
ically, when a robot plan is interrupted, any team plan that the robot was participating in
will be terminally impacted. In some cases, the rest of the team can reorganize without the
interrupted robot and then reorganize when the interruption is over, but this depends on the
plan, the particular situation, and nature of the interruption. In general, how to respond to an
external interruption is very sensitive to the specific context of the plan and if the context is
not taken into account when dealing with the interruption, overall performance will be poor.

In this paper, we are specifically looking at a domain of teams of robotic boats collect-
ing information on bodies of water [19]. In such applications, one or a small number of
experienced operators, perhaps water scientists, are managing between five and twenty five
boats on a body of water. Large manned boats and water phenomena are external dangers to
the robots that the human operators might be able to help mitigate. In other cases, operators
might have some external knowledge about what is going on in the water that allows them
to direct resources in a very specific way to get very specific information. Hence, while it is
necessary to utilize team plans to make use of multiple assets, interruptions are an inevitable
and important part of operations.

For example, consider a situation where the team of boats is instructed to acquire mea-
surements in a set of pre-specified locations. Each boat is assigned to a subset of such loca-
tions and all boats execute their plan in parallel. If one of the boats must be pulled out from
the plan (e.g., to recharge the battery), the other boats should continue their plan without
stopping. In another situation, the operators might want to slightly change the course of ac-
tions of the entire team (e.g., reassign tasks to all available boats when one is pulled out) or
even drastically change the current plan of all boats to handle a dangerous situation (e.g., a
manned boat suddenly enters the area of operation). The key focus of this paper is to provide
a general mechanism to handle all the above situations without aborting and restarting the
current plan

To realize these sophisticated interactions, we adopt an approach for creating team plans
with Petri Nets that allow specification of complex, parallel, and hierarchical plans. To deal
with external interruptions, we add functionality used to indicate the start of two categories
of interruptions without providing knowledge of the nature of the interruption. The approach
allows transitions to be created from any place in the Petri Net to a place that waits for the
interruption handling to be completed before sending the plan back to an appropriate place.
Depending on the nature and timing of the interaction, relative to the specific context of the
plan, the expressive approach allows for a range of possibilities to be encoded, including
restarting the plan, directly resuming, or going through some intermediate steps to restart
effectively. The key is that the plan designer can work out in advance how to handle inter-
ruptions at a particular place in the plan and encode efficient and effective resumptions.
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In some interesting plans, there are specific features for specific assets. Such features
could be capabilities of the robots (e.g., a boat equipped with particular sensing devices) or
roles that the robots play for the team plan (e.g., a set of boats exploring a specific area). Our
team plan approach captures this by using a Colored Petri Net formalism that differentiates
the various assets by using colored tokens. In this way, we can precisely control which
assets should be interrupted when specific incidents occur and the plan can be designed to
react differently to different assets being interrupted. For example, an operator might want
to interrupt plan execution only for a specific subset of the robots, e.g., the ones that are
entering a dangerous area, while leaving the plan for the rest of the platforms unchanged.
The key is that the design approach provides the representational power to handle such
interruption effectively.

To evaluate the approach, we use a simulator of the robot boats and a novel technique
for determining the value of the concept. The simulator is used for all development and test-
ing of algorithms on the real robots, hence it is an accurate simulator of their capabilities.
However, it is very difficult to design an experiment with real human operators where inter-
rupts would be distributed over the whole length of the plan and vary in length in non-trivial
ways. Moreover, this would require a proper evaluation of the operator interface which falls
outside the scope of this contribution. Instead, our experimental approach simulates all pos-
sible interrupts multiple times. While in practice interrupts at some times might be more
common than others, the concept of the approach is that any interrupt is handled smoothly
hence the experimental setup provides a significant indication of the power offered by the
interrupt mechanism without considering the skills of the human operators. In more detail,
we consider a cooperative location visit plan, where a set of interesting locations, selected by
the user, must be visited by a set of platforms to perform point measuring tasks. We identify
three typical incidents that require the operator to interrupt the normal execution of the team
oriented plan: i) a boat must be pulled out (e.g., because it is running out of battery); ii) all
boats should stop the plan an reach a pre-specified assemble position (e.g., to avoid colliding
with a manned boat that entered the area of operation); iii) a set of boats must synchronize
to traverse a dangerous area one after the other, so that the human operator can closely mon-
itor the behavior of each single boat and tele-operate the platform if necessary. For each of
these incidents we compared the execution of team plans without specific interrupt handling
to plans where interrupt handlers were explicitly encoded by using our framework and we
found significant improvement in overall efficiency, i.e., up to a 48% reduction in time to
complete a plan and up to a 80% reduction in operator load. Moreover, to validate the use of
our interrupt mechanism when deploying robotic watercraft, we performed various experi-
ments with real platforms. Such experiments indicate that our mechanism can be effectively
used in actual operations.

The rest of the paper is organized as follows, Section 2 provides necessary background
on Colored Petri Net (CPN) and plan monitoring for multi-agent systems. Section 3 de-
scribes the robotic boat system we considered here and the plan specification language used
in such system. Section 4 describes the interrupt mechanism we propose and Section 5 de-
tails our empirical methodology discussing obtained results. Finally, Section 6 concludes
the paper.

2 Background and Related Work

In this section we will first provide necessary mathematical background on Petri Net and
Colored Petri Net and then discuss related work on plan monitoring in multi-agent systems.
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2.1 Petri Net

Petri Net (PN) is a widely used mathematical and graphical modeling tool for describing
concurrency and synchronization in distributed systems. Graphically, a PN is represented by
a directed bipartite graph, in which nodes could be either places or transitions, arcs connect
places to transitions and vice versa. Places in a Petri net contain a discrete number of marks
called tokens. A particular allocation of tokens to places is called a marking and it defines a
specific state of the system that the Petri Net represents.

Formally, a PN is a tuple PN = (P, T, F,W,M0), where P = {p1, p2, . . . , pm}, is a
finite set of places; T = {t1, t2, . . . , tn}, is a finite set of transitions; F ⊆ (P×T )∪(T×P ),
is a set of arcs; W : F → N, is a weight function; M0 : P → N0 is an initial marking.

The marking of a PN evolves based on the firing behavior of the transitions. A transition
t can fire whenever it is enabled (e.g., when each input place pi of the transition is marked
with at least W (pi, t) tokens) and if the transition fires W (pi, t) tokens are removed from
each input places pi and W (t, pj) tokens are added to each output place pj .

Colored Petri Nets (CPN) [10] extend Petri Nets where tokens become more informative
and each of them has attached a data value called the token color. The firing behaviors of
transitions and consequently the evolution of the markings now depend on the colors of
the tokens. In particular, tokens can now be identified and related to specific agents, thus
providing a compact and convenient modeling language for team oriented plans.

Moreover, similar to PN, CPN can be analyzed and verified either by means of simu-
lation or formal analysis methods1, thus allowing validation of team oriented plans before
their execution.

2.2 Plan monitoring in multi-agent systems

The problem of monitoring plan execution in agents and multi-agent systems is a key issue
when such systems must be deployed in real-world applications where the environment is
typically dynamic and action execution is non deterministic. Consequently, over the years
plan monitoring has become a crucial research topic that has been addressed from several
different perspectives [28,21,29]. However, here we focus on approaches that are most rel-
evant to our work as they are explicitly designed for multi-agent or multi-robot systems.
Hence, we discuss architectures for Human-Robot coordination [30,16] and plan specifica-
tion [24,11], approaches for Adjustable Autonomy in Multi-Agent Systems, and plan moni-
toring approaches based on Petri Nets [12,32].

Human-Robot coordination and mission control are crucial topics for the effective de-
ployment of Multi-Robot Systems in practical applications such as Urban Search And Res-
cue (USAR) [16,30] or surveillance [9]. Consequently there has been a significant amount
of work targeted at developing software tools and architectures that allow few human op-
erators to command and control a team of (possibly heterogeneous) robots. For example,
[16] focuses on methodologies to facilitate teamwork between humans and robots involved
in USAR applications. Specifically, they propose the application of a general Multi-Agent
System architecture (i.e., RETSINA [23]) to a Multi-Robot System. Similar to our work
they focus on a methodology to allow a few human operators to monitor the activities of
a team of robots that operate with a high degree of autonomy. In contrast, our focus is on
a specific approach for plan specification (i.e., CPN) and on an interrupt mechanism that

1 See for example CPN Tools [18]
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allows human operators to smoothly change the behavior of a team plan without terminally
impacting the whole plan execution.

Two successful BDI-based frameworks for plan specification are STEAM and BITE,
which enable a coherent teamwork structure for multiple agents. The key aspect of STEAM
[24] is team operators, which are based on the Joint Intentions Theory introduced by [3].
In STEAM, agents can monitor the team’s performance and reorganize the team based on
the current situation. BITE, which was introduced by Kaminka & Frenkel [11], specifies a
library of social behaviors and offers different synchronization protocols that can be used
interchangeably and mixed as needed. However, while both these works provide key contri-
butions for building team oriented plans, they do not provide any specific mechanism for a
human operator to interrupt the execution of such plans.

In this perspective, an important strand of research focuses on the concept of Adjustable
Autonomy, where agents can vary their level of autonomy and transfer decision-making
control to humans (or other agents) [4,22,20]. The main focus for adjustable autonomy
approaches is to facilitate teamwork when autonomous agents must cooperate with them-
selves and with humans: a key issue in this setting is to devise effective techniques to de-
cide whether a transfer of control should occur and when this should happen. For example,
Scerri and colleagues in [20] propose the use of transfer of control strategies which are
conditional sequences of two types of actions: transfer of decision making control (e.g., an
agent giving control to a user) and coordination changes (i.e., an agent delaying the execu-
tion of a joint task). The authors propose an approach based on Markov Decision Processes
to select an optimal strategy and evaluate their method in a deployed Multi-Agent System
where autonomous agents assist a group of people in daily activities (e.g., scheduling and
re-scheduling meetings, ordering meals, and so forth). Similar to our work, adjustable au-
tonomy techniques (and transfer of control strategies in particular) focus on the interaction
between human users and Multi-Agent Systems, where agents have a high degree of au-
tonomy. However, rather than providing a general framework to devise transfer of control
strategies, our approach focuses on a specific, important case of transfer of control, where
a human decides to intervene and change the execution of a team oriented plan. Our con-
tribution is then to propose a plan representation framework (based on Colored Petri Nets)
and a specific interrupt mechanism to maximize efficiency and reduce operator load in this
specific setting.

There is substantial literature on the topic of using Petri Nets [17] and variants such
as Colored Petri Nets [10] as the basis for representing team plans. Similar to state ma-
chines and other directed graphs, Petri Nets give an intuitive view of the plan, but provide
additional power useful for multi-robot teams, such as synchronization and concurrency.
Moreover, there are several analysis methods for Petri Nets [15] [1] which can test differ-
ent properties, such as reachability, boundedness, liveness, reversibility, coverability, and
persistence. These methods allows for finding errors before the testing phase on simulated
or physical platforms hence providing a significant help to the system designers. Conse-
quently, there are several approaches proposing the use of Petri Nets for representing team
plans, such as Petri Net Plans [32], task plan representation by Petri Nets [5], Task Petri Nets
[26], Agent Petri Nets [14], and PrT nets [31]. In addition, Colored Petri Nets have also been
considered for representing multi-robot plans [13]. These approaches can represent complex
team plans that include coordination and synchronization among the robots. However they
do not explicitly consider the involvement of human operators and their intervention in case
of possible robot failures or unexpected events.

In more detail, one of the first approaches based on Petri Net for multi-agent plan mon-
itoring was proposed by King et al. [12]. In particular they propose the use of automated
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planning methods to generate plans for multiple agents. Such plans are then compiled into
Petri Nets for analysis, execution and monitoring. The approach handles possible failures
during plan execution by re-planning at run-time. In particular, the agent which experienced
a problem/failure informs the human operator, who starts the re-planning process. Hence, the
human operator intervention happens only after receiving a request from the agent; more-
over, re-planning at run-time might be problematic for applications that must operate within
real-time constraints.

Recently, Ziparo et al. proposed an approach for plan monitoring called Petri Net Plan
(PNP) [32]. PNP takes inspiration from action languages and offers a rich collection of
mechanisms for dealing with action failures, concurrent actions and cooperation in a multi-
robot context. One important functionality offered by the formalism of PNP is the possibility
to modify the execution of a plan at run-time using interrupts. Our work also focuses on in-
terrupting multi-robot plans; however, here we are mainly interested in human operators
interrupting the normal execution of a team-plan rather than action failures and plan syn-
chronization. In more detail, here we take a different approach for plan representation as
we encode team plans by using Colored Petri Nets in contrast to what is proposed in [32]
where a team-plan is a collection of several single-agent plans represented with standard
Petri Nets. This is a significant difference as it allows us to represent plans involving several
agents with a very compact structure as agents are represented by the colored tokens and
not explicitly in the network. Moreover, by using CPN we can represent different types of
interrupts, i.e., team-level and platform specific (see Section 4) thus providing a rich model
to allow sophisticated interactions between the human operators and team plans.

Note that an initial version of this paper appeared in [7]. However, here we provide more
results on the performance of our approach by considering a new situation where boats must
synchronize their behaviors to traverse a dangerous area one at a time. Moreover, we validate
our interrupt mechanism by performing experiments with real robotic platforms.

3 The cooperative robotic watercraft framework

This work focuses on a system of robotic boats developed as part of the Cooperative Robotic
Watercraft project [19]. In this section we describe the team plan specification language used
in the system and provide a brief overview of the whole system.

3.1 SAMI Petri Net

SAMI Petri Nets (SPN) are based on Colored Petri Nets and Hierarchical Petri Nets, with
various extensions to add the capability to send and receive commands and information
from team members, to perform and reference task allocations, and to capture situational
awareness and mixed initiative (SAMI) directives. In more detail, SPNs are based on the
CPN modelling language defined in [10], which supports hierarchical CPN and the use of
variables.

We define an SPN structure as the following tuple 〈P, T, F,E,R, SM〉, where:

– P = {p1, p2, ..., pi} is a finite set of places.
– T = {t1, t2, ..., tj} is a finite set of transitions.
– F ⊆ (P × T ) ∪ (T × P ) is a set of edges.
– E = {e1, e2, ..., ek} is a set of events.
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– R = F → {r1, r2, ..., rm} is a mapping of edges to a set of edge requirements.
– SM = P → {sm1, sm2, ..., sml} is a mapping of places to a set of sub-missions.

The SPN models the execution of a team plan by representing the current state of the
system (i.e., the markings of the places), the evolution of system states over time, and the
interactions between the different components of the systems. In more detail, the SPN im-
plementation defines a plan manager, which is an execution engine responsible for all inter-
actions among the different components of the robotic platforms. All interactions take the
form of commands (or requests) sent from the plan manager to the robotic platforms (or to
the operators) and information received from human operators/robotic platforms.

While we will use the SPN framework in our application domain (i.e., cooperative
robotic watercraft), we make no context specific assumptions for the team plan specifica-
tion language (and for the interrupt mechanism we will define in Section 4). Hence our
approach can be use in other scenarios where human operators should design and monitor
team plans for multi-robot systems.

In what follows, we describe each of the main elements of the SPN and then provide
operational semantics in the form of firing rules for the transitions.

Events: events fall under two categories: output events and input events.
Output events are associated to places in the Petri Net (using the mapping EO = P →
{oe1, oe2, ..., oeq} ⊆ E, which maps each place to a set of output events) and represent
commands or requests that are sent to human operators, robot proxies2, or agents. When
a token(s) enters a place, all the output events on the place, EO(p), are processed. The
registered handler for that class of output event is sent the output event oe along with the
tokens that just entered the place (Algorithm 3).

For output event classes that contain data fields, there are 3 ways to specify the informa-
tion, which are listed here with example usage in our outlined scenario: (1) Value defined
offline by the Petri Net developer (the battery voltage threshold to send a low-energy alert
to the operator). (2) Value defined by the operator at run-time (a safe temporary position for
robots to move to in order to avoid an incoming manned boat). (3) Variable name whose
value is written by an input event at run-time (a variable to retrieve the path returned from a
path planning agent via a “Path Planning Response” input event). Variables are explained in
more depth later in this section.
Input events are associated to transitions (using the mapping EI = T → {ie1, ie2, ..., ieh}
⊆ E, which maps each transition to a set of input events) and contain information received
from human operators, robot proxies, or agent services, which perform assistive functions
such as path planning, task allocation, and image processing. The set of input events on a
transition, EI(t), are responses to an output event on a place preceding the transition. For an
input event ie that will contain information at run-time (such as a generated path or selec-
tion from an operator), a variable name is used so the information can be accessed by output
events.

Input events contain “relevant proxy” and “relevant task” fields, which contain the iden-
tities of the proxy(s) or task(s) (if any) that sent or triggered the input event.

Events in SPN have a function that is very similar to actions in the PNP framework
[32]: the PNP framework describes the evolution of a robotic system where states change
due to actions and SPN describes the evolution of a team plan where the states change
due to events. However, an important structural difference is that in PNP actions are asso-
ciated to transitions, while in SPN we associate output events to places and input events

2 With the term proxy we refer to a software-service that connects a specific boat with the rest of the system
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to transitions. The rationale behind this choice is twofold: first, we have a more compact
SPN, second, this results in a more efficient implementation. To see this, consider the place
with output event “ProxyExecutePath” in Figure 1 which is connected to a transition with
“ProxyPathCompleted”. This path execution sequence is captured with one place and one
transition. If we instead associate output events with transitions, we would need a place rep-
resenting the precondition for starting ProxyExecutePath, a transition that actually sends the
ProxyExecutePath, a second place that represents that the proxies are executing the path, and
a second transition with the ProxyPathCompleted input event. This extra place and transition
for each action sequence results in a much less compact network. In addition, we use the out-
put event instance’s unique id as criteria for matching a received input event to a transition
in the SPN. This is necessary in the common case where an input event is used in multi-
ple transitions, such as having instances of ProxyExecutePath and ProxyPathCompleted, so
that the correct transition’s firing requirements are updated. In contrast, associating output
events to transitions would make the pre-conditions and post-conditions for the events more
visible in the CPN representation. This could be a valuable feature for a designer and would
be more in line with traditional PN specifications of control systems. However, a precise as-
sessment of this trade-off requires further investigations while our focus here is to provide a
mechanism for smoothly handling interrupts in the SPN plan specification language. Hence,
we leave the analysis of this issue to future work.

When an input event is received by the system and matched to its corresponding transi-
tion in a Petri Net, it is marked as being “received” (Algorithm 1). When a transition fires,
its input events’ “received” statuses are reset (Algorithm 2).

Variables: Similar to the model for CPN proposed in [10], SPNs support a variable database,
where variables are typed and scoped globally or locally. The use of variables is a key el-
ement to keep the network compact and to make the plan specification framework flexible
and easy to use. Global scope variables allow plans to share information, such as a sensor
mapping density, while local scope variables allow multiple copies of a plan to run simul-
taneously without overwriting instance specific data, such as locations to visit. ifferent vari-
ables can be defined for each input event. Fields in output events can refer to these variables,
provided they are of the corresponding type and within scope.

Tokens: In general, the CPN modeling language allows to define a variety of color sets for
tokens in order to support different data types such as list, structure, enumeration, etc. We
now explains our data types for SPN. The SPN tokens have four pieces of information: a
name (String), a token type (TokenType), a proxy (ProxyInt), and a task (Task). Each token
tk is one of three TokenTypes: Generic tokens have no defined proxy nor task and are used
as counters. Proxy tokens contain a proxy but no task. These are created whenever a robot
proxy is added to the system at run-time. Task tokens contain a task and might contain a
proxy. Task tokens are created by the Petri Net execution engine when a plan is started, cre-
ating one for each task in the plan. When the task is allocated to a proxy, the proxy field of
the task’s corresponding token is set to the proxy assigned to the task. The data within the
token (ProxyInt for proxy tokens, Task for task tokens) can be used by events to address spe-
cific resources in the team (e.g., tell Proxy A to go to a location or tell Task A it is complete).
The data can also be used in edge requirements to require specific proxy or task tokens to be
in a place in order for a transition to fire (equivalent to arc inscriptions in CPN Tool). In this
sense, the proxy token for Proxy A and the proxy token for Proxy B are of different color
sets. The full color set would thus be generic, the list of all proxies, and the list of all tasks.
Representing proxies and tasks in this manner allows for multi-robot plans with arbitrary
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numbers of team members that must execute the same actions (i.e., the Proxy Execute Path
in the CLV plan reported in Figure 1) to be constructed and visualized compactly, compared
to having an individual Petri Net for each member of the team.

Edge Requirements: Edges fall under two categories: incoming edges if ∈ F , which
connect a place to a transition, and outgoing edges of ∈ F , which connect a transition to a
place. Similarly, Edge Requirements have two categories: incoming requirements ir, which
are mapped by R from incoming edges, and outgoing requirements or, which are mapped
by R from outgoing edges. In a standard Petri Net, incoming edges have a weight which
specifies the number of tokens required for a transition to fire, which are then consumed, and
outgoing edges have weights which specify the number of tokens to add to the connected
place.

Colored Petri Nets allow edges to specify different quantities for different colors of
tokens. SPN edge requirements have additional options to maintain the network as compact
as possible.

Each incoming requirement ir on an incoming edge if , R(if), specifies tokens that
must be present or absent in the connected place in order for the connected transition to
fire. However, when a transition fires, these tokens are not always removed as this could
cause undesired interruption of behavior controlled by output events in the connected place.
Instead, each outgoing requirement or on an outgoing edge of ,R(of), specifies tokens that
should be removed from the incoming places (the places preceding the connected transition)
and tokens that should be added to the connected place.

This is achieved by having each outgoing requirement specify a set of tokens and an
action to perform on those tokens: take, consume, or add. Taking a token removes it from
incoming places and adds it to the outgoing place. Consuming a token removes it from in-
coming places. Adding a token adds a copy of the token to the connected place. The take
action represents the standard operation that is executed on PN and CPN when a transition
fires. However, consume and add are extensions to the standard semantics of PN used in SPN
only to maintain the network’s compactness. Specifically, the motivation for using these ac-
tions is that since we have output events associated to places, we need a way to move a
token from a preceding place to a following place without removing it from the initial place.
If we expand the network as described above (i.e., adding two places and one transition) we
would not need this extension. Furthermore, while we could use standard PN structures to
implement these actions (e.g., we could add a specific transition without outgoing edges to
consume a token from a place) this would defeat the purpose of having a compact network.
Similar to Colored Petri Nets, the set of tokens specified by an edge requirement can be
generic tokens or specific task tokens. Edge requirements can also refer to “relevant tokens”
which are defined by the input events on the transition being evaluated. The list could con-
tain proxy token(s), in the case of a “Path Completed” input event which specifies the proxy
token for the robot that finished, so that at run-time that proxy token can be moved forward
in the Petri Net. It could also contain task token(s), in the case of a “Task Completed” input
event signaling that a particular task has been completed.

Sub-missions: The SPN language supports hierarchical team plans, allowing a place (called
a sub-mission place) to have a set of “sub-missions”, SM(p). Sub-missions in SPN provide
a specific implementation of hierarchical CPN [10]. Each sub-mission sm is an SPN which
is run in either dynamic or static mode. For dynamic sub-missions, when tokens enter the
sub-mission place of the parent plan a new instance of the sub-mission SPN is started and
the initial marking is defined as those tokens in the sub-mission’s start place (Algorithm 3).
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Fig. 1 SAMI Petri Net “Cooperative Location Visit” plan (without the interrupts). The starting place is col-
ored green and the end place is colored red

In contrast, static sub-missions are instantiated only once, when the parent plan is instanti-
ated, and have an empty initial marking. They share their start place with the parent plan:
tokens that enter the parent sub-mission place are also added to the start place of the sub-
mission.
All sub-missions can return values and tokens as well as write to variables shared with their
parent plan. When a token(s) enters an end place in a sub-mission, the sub-mission is marked
as being “complete.” Until then, transitions in the parent plan leaving the sub-mission place
are prevented from firing (Algorithm 1). When a transition fires, the completion status of any
sub-mission in an incoming place is reset (Algorithm 2). Sub-missions allow developers to
reduce repeated creation of common sequences and increase readability of the plan.

Markup: Each event e has a set of markup (using the mapping MK = E → {mk1,mk2,
...,mkn}, which maps each event to a set of markup). Markup are context clues associated to
events which can provide several types of information: which GUI components and widgets
are most appropriate for operator interaction, which set of priorities an agent service should
consider when choosing from multiple algorithms, and which level of mixed-initiative au-
tonomy to employ in making decisions.

Markups are an addition to the CPN model we consider here [10], which can be ex-
ploited to support situational awareness and mixed initiative control, making the model more
flexible. We discuss markups here for completeness, however we do not use this concept in
our empirical analysis nor in the definition of the interrupt mechanism that is the main focus
of this paper.

Each markupm ∈MK(e) has a number of options and variables that the SPN developer
must specify. GUI components and agent services correspondingly indicate which markup
options they support, allowing the most appropriate ones to be retrieved automatically at
run-time.

For example, the “relevant proxy” markup indicates to the GUI that the locational data
of certain proxies should be displayed to the operator in addition to any other information
contained within the event. Settings include the proxy selection criteria (the event’s relevant
proxies or all proxies) and which data to visualize (including pose, current path, future
paths, and past paths). The “mixed initiative trigger” markup is used to indicate when system
autonomy should make a decision and if the operator should be informed. Options range
from never using system autonomy, using autonomy after a timer expires, or using autonomy
immediately without consulting the operator.

The main components of an SPN are illustrated in a sample plan in Figure 1. When a
plan is selected to run, an initial marking is applied to the plan’s start place, pS ∈ P (the
leftmost place, colored green). When a token enters an end place, PE ⊂ P, pS /∈ PE , the
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plan terminates (the rightmost place, colored red). The initial marking is a generic token and
a proxy token for each boat, which triggers Algorithm 3 when applied to pS .

Operator Select Robot List is triggered asking the operator to select the boats that will
participate in the plan from the list of corresponding proxy tokens it received. When the
operator performs this action, an Operator Selected Boat List input event will be generated
and matched to its transition in the SPN. Its received status is set to true and Algorithm 1
will be called. The transition will be enabled and fired via Algorithm 2, taking the relevant
tokens (i.e., the tokens corresponding to the selected boat proxies) to the next place. The
plan progresses in a similar way until the tokens reach the last place (i.e., all selected boats
have completed their path).

When this happens the plan reaches the end place and is no longer active.
To illustrate how the concept of color is used for modelling a multi robot team in SPN,

two consecutive markings of the CLV plan execution are shown in figures 2(a) and 2(b).
The figures display the same SPN reported in Figure 1. These markings illustrate how the
colored tokens (related to different boats) progress through the SPN. Figure 2(c) reports the
state of the SPN where all proxy tokens are inside the Proxy Execute Path place. In this
state of the SPN the related output event instructs the three platforms to execute the their
path (shown in the rightmost image). The path that each platform must execute is specified
by the task assignment algorithm which was selected by the operator in the preceding place
(Task Assignment Request). In contrast to a plan specified with a non-colored PN, a single
SPN defines the entire team plan, instead of representing one PN for each robotic platform.

Algorithm 1 Checks if a transition should be enabled
1: procedure CHECK TRANSITION
2: for ie ∈ EI(t) do . Check that all input events have been received
3: if ie.received == false then return false
4: end if
5: end for
6: for if ∈ t.inEdges do . Check that all incoming edge’s in requirements have been satisfied
7: for ir ∈ R(if) do
8: if ir.satisfied == false then return false
9: end if

10: end for
11: p = if.start
12: for sm ∈ SM(p) do . Check that any sub-missions on an incoming place are at a goal state
13: if sm.complete == false then return false
14: end if
15: end for
16: end for
17: return true
18: end procedure

3.2 Assisted plan designed and analysis for SAMI Petri Nets

In order to assist the SPN developer, we created an intelligent plan editing tool. The edi-
tor was designed with two potential limitations of the plan language in mind: overwhelming
visual clutter and developer errors resulting in an invalid SPN or unexpected run-time behav-
ior. The editor contains different visualization modes which selectively hide and compress
sections of nets based on different tasks the developer may be performing. “Assistant agents”
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Algorithm 2 Fires an enabled transition
1: procedure FIRE TRANSITION
2: t ∈ T . t is the transition we are executing
3: TKA = ∅ . TKA is a map associating tokens to add to outgoing places (initially empty)
4: TKR = ∅ . TKR is a map associating tokens to remove to incoming places (initially empty)
5: for of ∈ t.outEdges do . Fill in TKA and TKR

6: for or ∈ R(of) do
7: for p ∈ t.outP laces do
8: TKA.put(p, getTokensToAdd(or))
9: end for

10: for p ∈ t.inP laces do
11: TKR.put(p, getTokensToRemove(or))
12: end for
13: end for
14: end for
15: for p ∈ t.outP laces do
16: enterPlace(p, TKA(p))
17: end for
18: for p ∈ t.inP laces do
19: leavePlace(p, TKR(p))
20: end for
21: for p ∈ t.inP laces do . Reset completion status of all sub-missions on incoming places
22: for sm ∈ SM(p) do
23: sm.complete = false
24: end for
25: end for
26: for ie ∈ EI(t) do . Reset receipt status of all input events on the transition
27: ie.received = false
28: end for
29: Tcheck = ∅ . Tcheck is a list of transitions we could have affected and should now check (initially

empty)
30: for p ∈ t.outP laces do . Fill in Tcheck
31: for t2 ∈ p.outTransitions do
32: if t2 /∈ Tcheck then
33: t2→ Tcheck
34: end if
35: end for
36: end for
37: for p ∈ t.inP laces do
38: for t2 ∈ p.outTransitions do
39: if t2 /∈ Tcheck then
40: t2→ Tcheck
41: end if
42: end for
43: end for
44: for t2 ∈ Tcheck do
45: if checkTransition(t2) == true then
46: fireTransition(t2)
47: end if
48: end for
49: end procedure
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(a) Initial marking of the CLV plan, with 3 tokens (associated to boats) and 1 generic token (a generic token
is always included in the initial SPN marking to start the plan).

(b) This marking shows the state of the SPN after the operator selected the boats for executing the mission.
At this point the 3 tokens representing the boats are moved to the next place in the SPN.

(c) This marking shows the state of the SPN when the proxy tokens are inside the Proxy Execute Path place.
At this point each boat will execute its related path based on the task assignment algorithm which was selected
by the operator in the previous place Task Assignment Request. The paths for the three boats are reported in
the rightmost image

Fig. 2 SAMI Petri Net showing a partial execution of the “CLV” plan (without the interrupts)

Algorithm 3 Handles tokens entering a place
1: procedure ENTERPLACE
2: TK = {tk1, tk2, ..., tkn} . TK is a list of tokens being added to the place
3: for oe ∈ EO(p) do
4: processEvent(oe, TK)
5: end for
6: for sm ∈ SM(p) do
7: beginSubMission(sm, TK)
8: end for
9: if p ∈ PE then

10: finishPlan(p, TK)
11: end if
12: end procedure
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check for violations of SPN rules and flag errors, such as incomplete graphs and unlabeled
start/end places, and warnings, such as suspicious edge labels.

In addition to these checks that verify syntactic properties of the SPN, we can consider
typical properties for PN and CPN such as the liveness and home properties [10].

In more detail, as discussed in [32], some properties are particularly interesting for plan
monitoring frameworks. Specifically, in [32] the authors state that a PNP must be minimal
(i.e., all transitions can be fired at least once), effective (i.e., the goal marking is a home
state), and safe (i.e., the Petri Net is 1-bounded).

For what concerns our framework, SPNs that specify valid team plans should also be
minimal and effective. Specifically, SPN should be minimal as they should not contain tran-
sitions that will never fire. Moreover, SPNs should be effective, because they encode team
plans and as such they explicitly have a goal marking that must be reachable from all possi-
ble markings of the SPN (i.e., the goal marking should be a home state). However, the safety
property does not apply to our framework. PNP tokens define execution threads for atomic
actions, hence there should not be two tokens in the same place.

In contrast, an SPN place could have many tokens, and the tokens are not necessarily of
different colors; several tokens of the same color set (for example, proxy tokens for Boat A)
could exist in the same place simultaneously. A motivation for this would be knowing how
many times a particular proxy has triggered a contingency behavior by counting the number
of proxy tokens for that proxy which are in a particular place.

The above described properties (i.e., an SPN being minimal and effective) can be checked
with standard reachability analysis performed on CPN. However, this requires to transform
SPN plans to standard CPN (e.g., by removing output events from places and by associat-
ing them to new transitions, as mentioned above). We performed this analysis on the plans
we consider here using CPN Tool [10] and our analysis reports that all plans we consider
are both effective and minimal. Nonetheless, this does not imply that all SPN plans can be
directly translated to an equivalent CPN and analysed using CPN Tools. This would require
further investigations which fall outside the scope of the current contribution.

3.3 The cooperative robotic watercraft system

Figure 3(a) shows a differential drive propeller boat. In addition to a battery based propul-
sion mechanism, each boat is equipped with an Android OS smartphone, custom electron-
ics board, and sensor payload. The Android smartphone provides communication, either
through a wireless local area network or 3G cellular network, GPS, compass, and multi-core
processor. An optional prism can be mounted to the transparent lid of the waterproof elec-
tronics bay to use the phone’s camera for stationary obstacle avoidance and imaging. The
Arduino Mega based electronics board receives commands from the Android phone over
USB OTG and interfaces with the propulsion mechanism and sensor payload, as shown
in Figure 3(b). The electronics board supports a wide variety of devices including acous-
tic doppler current profilers and sensors that measure electroconductivity, temperature, dis-
solved oxygen, and pH level. All sensor data is logged with time and location.

The robot team is controlled from a nearby base station via a high power wireless an-
tenna or remotely using 3G connectivity. The operator uses a SAMI compatible GUI to
instantiate SPN plans, monitor their execution, and provide input as necessary. In this case,
compatibility means the GUI contains a library of UI components listing which data classes
and SAMI markup they support, allowing a custom “interaction panel” to be constructed for
each event requiring operator input.
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(a) The Lutra-T Platypus robotic platform (b) System architecture

Fig. 3 A Platypus robotic platform with twin propeller and a diagram of the system architecture

State A

State B

Interrupt Place

End of State AInterrupt Handler

End Interrupt

Return to State A

Fig. 4 Interrupt implementation with Petri Net.

4 The Interrupt Mechanism

In this section, we describe the basic ideas of the interrupt mechanism for Petri Nets and
how we realize such mechanism in SAMI. Then we discuss an exemplar multi-agent plan
that makes use of such interrupt mechanism (i.e., the Cooperative Location Visit plan).

4.1 Modeling the interrupt Mechanism in Petri Net

The Petri Net paradigm does not offer a special construct to implement interrupts, but it is
possible to replicate the behavior of an interrupt through a specific sequence of places and
transitions [6].

Figure 4 reports an example of an interrupt realized in the Petri Net framework. Es-
sentially, the normal execution flow can be interrupted when the system is in state A. The
interrupt can be triggered by the human operator simply placing a token in the Interrupt
Place. This will enable the Interrupt Handler transition, hence changing the execution flow
of the plan. If the Interrupt Handler transition fires, the system will place a token in the
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End Interrupt place, and, when the execution of such behavior is completed (i.e., when the
Return to State A transition fires), the system resumes the normal execution by placing a
token back to the State A place. Notice that during the execution of the interrupt behavior,
the transition End of State A is not enabled, therefore the flow of execution can not progress
to State B until the interrupt handler behavior is completed.

4.2 Modeling the Interrupt mechanism in SAMI

Following the interrupt implementation idea described in Figure 4, we use three key ele-
ments to model the interrupt mechanism in the SAMI framework: i) a place (called Interrupt
place) ii) a transition that starts the interrupt handling procedure (Start interrupt transition)
and, iii) a transition that determines the end of the interrupt procedure (End interrupt tran-
sition). Now, consider a generic plan that we represent with a Source place, indicating the
state of the system that could receive an interrupt, a transition, indicating some part of a
plan, and a Destination place, indicating the state of the system that should be reached when
the interrupt handling procedures terminates (consider that the source and destination places
could be the same).

Figures 5(a) and 5(b) show the CPN structures we propose to add interrupts to. We
consider two types of interrupts: a proxy interrupt (see Figure 5(a)) and a general interrupt
(see Figure 5(b)). As the figures show, the structure to realize these two types of interrupts is
the same; however, the events attached to the places/transitions and the requirements on the
edges of the net are different. In both structures, the Start interrupt transition and the End
interrupt transition are connected by a Sub-mission interrupt place which represents a sub-
mission that models the appropriate interrupt handling behavior. After the execution of the
sub-mission all the tokens returned by the sub-mission (i.e., the tokens which completed the
sub-mission) move to the destination place of the interrupt, and restore the normal behavior
of the plan. Below we describe these two interrupt types in more detail.

Proxy Interrupt The proxy interrupt relates to a specific subset of the platforms, and
affects the execution flow of those platforms only (while the others continue the normal
execution of the plan). This type of interrupt typically represents a procedure that should be
activated in response to some proxy-level events, e.g., the battery of a boat reaches a critical
level and the boat should stop the current plan to go to a recharge area.

In particular, the interrupt place generates a Proxy Interrupt, which is an output event3.
The Proxy Interrupt Received input event encapsulates the information regarding which
proxies should be involved in the event. Such information is used by the Start interrupt
transition to take only the relevant tokens from the Source place and move them to the
Sub-mission interrupt place. Consequently, only the tokens specified by Proxy Interrupt
Received will stop their current plan to execute the interrupt sub-mission. Such relevant
tokens are selected with a plan specific procedure, and this often requires a user interaction
(i.e., the user directly selects which platforms should execute the interrupt sub-mission).

General Interrupt The general interrupt is a team-level interrupt that is not specific
to a particular platform. The general interrupt represents a situation where all robotic-boats
should perform a particular procedure, e.g., stop all current plans and go to a safe position
as a manned boat is approaching.

3 Recall from Section 3.1 that output events are associated to places and contain commands or requests for
other modules. Input events are associated to transitions and encapsulate information that should be consumed
by the module that receives such event
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In contrast to the proxy interrupt, the general interrupt will remove all tokens present
in the Source place and transfer them to the sub-mission. Hence, the event generated by the
Interrupt place is a different output event, named General Interrupt. Such event is generated
to trigger the interrupt mechanism but does not contain any specific information regarding
the relevant proxies (as all proxies are relevant in this case). Consequently, the Start inter-
rupt transition requires a generic token (and not a proxy token) and it will transfer all the
proxy tokens from the Source place to the Sub-misison interrupt place. Note that, unlike a
proxy interrupt, a general interrupt has no input event on the start interrupt transition, as it
always moves all tokens and thus does not require any additional information. A general
interrupt is essentially a compact way of representing an interrupt for all proxies. Such com-
pact representation is crucial for team level plans that must be designed and monitored by
human operators.

The interrupt parts of the SPN are not logically different from non-interrupt parts. Hence,
since SPN supports sub-missions, we can also have nested interrupts.

(a) Proxy Interrupt (b) General Interrupt

Fig. 5 Types of interrupt implemented in the SPN framework.

4.3 Using interrupt in multi-agent plans

Here we provide an exemplar multi-agent plan, discussing the possible use of both inter-
rupt types described above. In particular we consider a Cooperative Location Visit (CLV)
plan where the operator selects a group of boats to visit a set of locations to perform point
measuring tasks. The boats should navigate to each location and acquire a specific mea-
sure (e.g., pH level, oxygen level, temperature). In this work, we assume that each boat is
equipped with the same sensors, hence visiting the same location with different boats does
not provide more information and should be avoided, in contrast, each boat can visit several
locations (i.e., executing a path that goes through all such locations in sequence). The sys-
tem offers various techniques to assign boats to locations and in this work we used a method
which is based on Sequential Single Item auctions [25]. The method assigns locations to
boats sequentially, and for each location the system selects the boat that can provide the
lowest path cost. Such path cost is computed as the minimum path cost that the boat can
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achieve when inserting the current location in the set of locations that are already assigned
to such boat4.

The CLV plan is reported in Figure 6. In such a plan, the general interrupt handles a
situation where the user decides to temporarily stop the current plan of all the boats to avoid
a dangerous situation, i.e., a manned boat that enters the area where the boats are operating.
The general interrupt starts from the Proxy Execute Path place and goes back to the same
place. When the interrupt triggers, all the tokens present in the Proxy Execute Path place
are transferred to the sub-mission place. This token transfer requires the presence of at least
one Proxy token in the Proxy Execute Path place and is performed by using the take action
(see Section 3.1) on all Proxy tokens that are present in such place. As mentioned in Section
3.1 the take action will remove the specified tokens from the incoming place and will add
them to the outgoing place, which in this case is the Assemble sub-mission (SPN not shown).
Hence the effect of this token transfer is that all proxies will stop executing the current action
and will start the Assemble sub-mission. Such sub-mission, sends all the boats to a specific
safe assemble position and then waits for operator input to end the plan, allowing the parent
plan to continue. When the operator decides that the dangerous situation is over, the End
general interrupt transition fires and boats are sent back to the Proxy Execute Path place,
where they resume executing the plan, maintaining their previous location assignments. This
token transfer is triggered by the End general interrupt event and is performed with the take
action on all sub-mission tokens. The sub-mission tokens are the set of tokens which reached
the end place in the sub-mission; in this case, these are the proxy tokens for the boats which
were station keeping to avoid the danger. The take action means that the proxy tokens will
be removed from the Start sub-mission place and added to the Proxy Execute Path place.

In contrast, the proxy interrupt allows the operator to stop the execution of a selected
subset of the boats without interfering with the plan execution of the other boats. This is
useful when the human operator should handle an event that influences the behavior of a
specific group of boats, i.e., a boat that reaches a critically low battery level. The proxy in-
terrupt moves the set of selected proxies to the sub-mission place while the others will con-
tinue their execution. In our exemplar plan, the sub-mission associated with the interrupt,
Recharge, pauses the current plans of the provided proxies and sends them to a recharge
station, where batteries are replaced with fully charged ones. The sub-mission then ends,
allowing End proxy interrupt to fire, which moves the proxies back to Proxy Execute Path
where they resume visiting locations. Similar to the general interrupt, we use the take ac-
tion to transfer tokens from the Proxy Execute Path place to the Recharge sub-mission and
then the take action to transfer them back. However, in this case we take from the Proxy
Execute Path place only the Relevant tokens, i.e. the tokens associated to proxies that must
be recharged. As mentioned in Section 4.2, the information regarding which tokens are rel-
evant is specified by the input event Proxy Interrupt Received associated to the Start Proxy
Interrupt transition.

Depending on the specific plan and on the desired behavior for the interrupt sub-mission,
we might need to insert extra elements into the basic plan. An example of this is the plan
to handle the traverse dangerous area event, shown in Figure 7 and discussed in detail in
Section 5.

By combining the team-level and proxy-level interrupts our approach provides a power-
ful and general model to allow sophisticated interactions between the human operators and

4 Since computing the minimum path cost given a sequence of visit locations is in general NP-Hard here
we use a simple nearest neighbor heuristic: the path is built incrementally by always selecting the next location
as the one that is closest to the current location. At the beginning the current location is the boat position.
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the robotic system. As the empirical evaluation shows, this results in a significant perfor-
mance gain for the system.

Fig. 6 The Cooperative Location Visit plan specified in the SPN framework, with both general and proxy
interrupts.

5 Empirical Results

In this section we present a quantitative evaluation of our approach to team plan monitoring
in the CRW domain. We first describe our empirical methodology, then we present and
discuss the results we obtained.

5.1 Empirical Methodology

The main goals of the empirical evaluation are: i) to validate the applicability of the interrupt
mechanism to team-level plans that represent realistic use cases, ii) to evaluate the gain
achieved by such a mechanism, in terms of task specific performance as well as operator
load, with respect to aborting the plan when an incident arises.

As a first step, we consider two versions of the CLV plan discussed in Section 4.3:
the “interrupt” version which encodes interrupts within the plan (reported in Figure 6) and
the “standard” version without any interrupts (reported in Figure 1). Next, we define three
possible incidents: i) general alarm, ii) temporary boat pull-out and iii) traverse a dangerous
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area. We then simulate the execution of both versions of the CLV plan for each incident,
measuring indicators of task specific performance and operator work load. When we execute
the standard plan and one of the incidents takes place, the human operator must abort the
entire plan’s execution, execute the plan that can resolve the incident, and then start a new
instance the original plan once the resolution plan has finished.

In more detail, the incidents and the co-related team behaviors have been defined as fol-
lows:

General alarm represents a danger that may significantly interfere with the plan execution
of all the boats. An example of this could be a manned boat that enters the operative areas of
the robotic boats. If this happens the human operator should signal to all the platforms that
all plans should be suspended to avoid collisions. When the manned boat leaves the scene
the human operator can then instruct the boats to recover the execution of their plans (i.e.,
execute the remaining tasks). This situation can be handled with a general interrupt as all the
boats will have to execute the same specific sub-mission (i.e., reach a safe position) before
recovering their plans. In our empirical evaluation we simulate the occurrences of several
general alarm incidents while a CLV plan is running. In particular, we fix the number of
incidents to happen and distribute them randomly during the plan execution.

Temporary boat pull out represents an incident that interferes with a specific subset of
robotic platforms and that will not directly hinder the plan execution for the rest of the
team. An example of this could be the need to recharge the battery for one robotic boat.
Specifically, we simulate a discharge process for the boats, where the battery level is re-
duced based on distance traveled. The discharge process includes a random element that
increases or decreases the units of battery consumed to simulate possible not-modeled sit-
uations (such as currents) that impact the amount of energy required to traverse a given
distance. In more detail, if we indicate with bi(t) the level of battery at time t for boat i, we
have that bi(t+ τ) = bi(t) −Kdi(τ)(1 + R), where τ is a positive value that represents a
time interval, di(τ) represents the distance (in meters) traveled by boat i in the time inter-
val τ , K is a constant that expresses the units of battery required to travel one meter, and
R ∼ U(−0.1, 0.1) is a random variable drawn from a uniform probability distribution.

Traverse dangerous area represents an incident where several boats must traverse an area
that is problematic for navigation. For example consider a scenario where a part of the
intervention area is cluttered with objects (e.g., vegetation, pieces of wood, etc.) or presents
strong currents. In this situation, we require a human operator to constantly monitor the
operation of the platforms to be able to promptly intervene (i.e., teleoperating the boats) if
necessary. Since it is impossible for a single operator to effectively monitor and teleoperate
multiple boats at the same time, a key element for this plan is to synchronize the execution
of the boats making sure that only one boat is actively navigating in the dangerous area,
while other boats that might need to traverse the same area will wait for the availability of
the human operator.

In the standard plan without interrupts, the operator should abort the plan, which means
all boats should stop what they were doing. The human operator can then monitor the boats
inside the area sequentially. Boats outside the area will be stopped until there is only one
boat inside the area, then the plan will resume which means that all remaining tasks will be
reassigned. If we execute the plan with the interrupt mechanism, the operator can choose to
monitor one platform while all other boats that are inside the area will be stopped until the
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human operator becomes available for close monitoring. Meanwhile other boats outside the
area will continue their paths.

Figure 7 reports the CLV plan with a proxy interrupt to handle the traverse dangerous
area incident. Specifically we report the parent plan in Figure 7(a) and the traverse dangerous
area sub-mission plan in Figure 7(b). Notice that in the parent plan (Figure 7(a)) proxy
tokens can follow two different branches to reach the end place of the plan, depending on
whether they enter a dangerous area or not. Since in this case the plan should terminate only
when all boats have finished their paths (i.e., boats that never entered the dangerous area
in addition to boats that did), as mentioned in Section 4.3 we must insert extra transitions
and places to make sure that the plan will terminate only when all boats have visited their
assigned locations. This is the role of the place labeled Consume generic for each boat. In
more detail, this place will accumulate one generic token for each platform that is selected by
the operator (this is done through the loop in the upper part of the plan). Then when the proxy
tokens representing the platforms reach this place, such generic tokens will be consumed
(this is done through the loop in the left part of the plan). The plan will then terminate only
when all such generic tokens have been removed. This is done through the last transition (All
boats finished) which effectively represents an inhibitor arc (it will fire when there are no
tokens in the preceding place).5 Notice that the structure of the interrupt is the same as the
one reported in Figure 5(a), i.e., we have a place that enables the interrupt associated to the
output event Proxy Interrupt and a start transition for the interrupt (associated to the input
event Proxy Interrupt Received) that moves only relevant proxy tokens (i.e., only boats that
are inside the dangerous area) to the interrupt sub-mission.

The “Traverse Dangerous Area” sub-mission reported in Figure 7(b) is used as static
sub-mission (see Section 3.1) in the Start sub-mission place. Thus, when the transition hold-
ing the input event Operator Selected Boat List in the CLV plan fires, the generic token
added to the Start sub-mission place is also added to the start place of the single instance
of the sub-mission. In the sub-mission, the generic token will then be moved to the Generic
holder place. This place is crucial to synchronize the behaviors of the platforms: if a proxy
token enters the sub-mission, the corresponding boat will be stopped and it will not be al-
lowed to execute the remaining path unless there is a token in the Generic holder place.
Since the transition Move single boat takes that generic token, only one boat at a time will
be allowed to execute the path inside the dangerous area. The next boat will start the path
execution only when the boat currently traversing the dangerous area has completed its path
(i.e., when the Path done, start next boat transition fires) or it is out of the dangerous area
(i.e., when the Out of danger, start next boat transition fires). That is because both these tran-
sitions put a generic token back in the Generic Holder place. Note that these two transitions
are mutually exclusive, so it is not possible for both of them to trigger, which would result
in two generic tokens being place in Generic holder. Overall this plan represents a complex
team oriented plan that requires a sophisticated synchronization between the boats, however
the interrupt mechanism and the use of advanced features of the SPN framework (such as
the static sub-mission) allows us to realize such a plan in a fairly compact structure.

Execution model for the system In our experiments we adopt the following execution
model for the system: when we execute the interrupt version of a plan, with interrupt mech-
anisms in place, we assume that whenever an incident requiring intervention arises, the
operator will trigger the corresponding interrupt. For example, when we execute the CLV

5 While in our case the number of proxy / generic tokens is always finite, we might not know this number
before the plan starts. Hence we use the inhibitor arc to check whether a place is empty.
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(a) The parent plan

(b) The (static) sub-mission for the traverse dangerous area

Fig. 7 CLV plan with the interrupt for traverse dangerous area

plan and the battery level of a boat reaches a critical level, in our simulation the correspond-
ing proxy interrupt will always be triggered and the correct boat will be selected. In other
words, we assume the human operator will always do the correct actions that the framework
offers to respond to an incident. This is because our intent here is to evaluate the interrupt
mechanism and not the human interface. As mentioned in the intro, a proper evaluation of
the human interface falls outside the scope of this contribution.

When we execute the standard version of the plan, which lacks interrupts, we assume
that the human operator will abort the current plan, start a new plan(s) to handle the incident
and, finally, when the incident has been resolved (e.g., a low battery has been swapped),
they will start a new instance of the original plan to complete its objectives. Note that, when
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the operator starts the new instance of the original plan, all required information must be
re-inserted, such as the locations to visit. In our experiments, we assume the operator can
keep track of which locations have been visited and re-start the plan only with the locations
yet to be visited (reducing the number of interactions in favor of the standard approach).
Moreover, we assume that the operator will start the new instance of the original plan only
after the plan(s) used to resolve the incident has been completed. For incidents which do not
affect the entire team (e.g., a boat with a low battery requiring a pull out and a subset of the
team needing to traverse a dangerous area), this means that some of the team will remain
idle when the original plan is aborted, even though they are not involved in the incident. We
further investigate this with a second set of plans for the temporary boat pull out scenario.
In these “reassignment strategy” versions of the standard and interrupt plans, when a boat
leaves to swap its battery, the rest of the team continues with its tasks. Furthermore, we
reassign the locations that boat was responsible for to the other members of the team. When
the battery swap is finished, we reassign all tasks that must still be accomplished to all
boats. Note that, while the commands sent to the boat team are identical for the standard and
interrupt versions of the plan for the reassignment strategy, the actual SPNs and the way the
operator interacts with them to respond to the low battery incident are different.
Metrics The metrics we extract from the simulation combine task dependent metrics and
metrics to evaluate the operator load. Specifically, the task dependent metric is the time to
complete a plan while the load metric is the number of user actions required to start/abort
the plan, trigger the interrupt, provide information to the boats (e.g., the locations to visit). In
our experiments such interactions always take the form of a click (on a map or on a button),
hence we measure the number of clicks that the operator performs. Since the main goal of
the empirical evaluation is to compare the use of the interact mechanism with the standard
execution model, we compute and report the percentage gain of the interrupt mechanism for
both metrics. In particular, we compute (vStd−vInt)

max {vInt,vStd} ∗ 100, where vStd is the value of
the metric obtained with the standard execution model and vInt is the value of the metric
obtained with the interrupt mechanism. Since for both metrics the lower the better, a positive
value indicates superior performance of the interrupt mechanism over the standard execution
model.

In all the following experiments, the interrupt mechanism does not provide additional
domain knowledge with respect to the standard plan execution. In particular, the recov-
ery procedure for handling the incidents is the same when using interrupt and when abort-
ing plans. Overall, our goal here is to provide a domain-independent interrupt mechanism,
for the SPN plan specification language, which can select the most appropriate domain-
dependent recovery procedure when an incident happens. Moreover, we aim at doing this in
a smooth way (i.e., without stopping and restarting the plan that is currently running). While
one could potentially devise a different domain-specific mechanism to select the most suit-
able recovery procedure this would defeat the purpose of using a general plan specification
language such as SPN.

In this perspective, the gain we obtain is due to the presence of the interrupt mechanism
that smoothly changes plan execution instead of aborting and restarting. Consequently, in
most situations the interrupt mechanism will require fewer interactions, because we need at
least the same number of user interactions to stop and re-start the plan compared to inter-
rupting it. However, for completion time there might be situations where having the interrupt
mechanism does not help (e.g., see results for Table 1).

In the next section we report and discuss the results obtained with our empirical evalua-
tion.
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5.2 Quantitative results in simulation environment

Configurations Std Int. % Gain (Interrupt vs Standard)
#boat,#loc.,r.t. #rec. #rec. Total Time # interactions

3, 20, 10 6 6 6.3% 73%
5, 20, 10 5 5 23% [± 0.5] 68%
3, 20, 20 6 6 26% [± 2.5] 72% [± 0.8]
5, 20, 20 5 5 27% [± 6.6] 64% [± 3.7]
3, 30, 10 11 12 26% [± 1.2] 69% [± 9.5]
5, 30, 10 10 12 21% 75%
3, 30, 20 11 12 48% [± 0.8] 80% [± 0.1]
5, 30, 20 10 12 27% [± 2.9] 75% [± 0.5]

Table 1 Results for the CLV plan and boat pull out event. Each configuration specifies the number of boats,
the number of locations, the time required to recharge the boat’s battery (in seconds). The number of recharge
(#rec) represents the number of times a boat required a recharge action for the standard execution (Std.) and
for the plan with the interrupt (Int.)

Configurations % Gain (Interrupt vs Standard)
#boat,#loc.,#alarms # interactions

3, 20, 1 44% [± 0.6]
5, 20, 1 40% [± 1.4]
3, 20, 3 65% [± 0.6]
5, 20, 3 61% [± 1]
3, 30, 1 46% [± 0.3]
5, 30, 1 16% [± 1.9]
3, 30, 3 68% [± 0.23]
5, 30, 3 66% [± 0.4]

Table 2 Results for the CLV plan and the general alarm event. Each configuration specifies the number of
boats, the number of locations and the number of alarms.

Configurations % Gain (Interrupt vs Standard)
#boat,#loc.#boats inside area Total Time # interactions

3, 20, 2 5.2% [± 2.9] 40.2% [± 2.16]
5, 20, 2 6.9% [± 2.2] 39.1% [± 0.5]
3, 20, 3 10.4% [± 1.7] 42.5% [± 0.6]
5, 20, 3 9.8% [± 1.8] 42.9% [± 1.1]
3, 30, 2 (4.3% [± 2]) 45.3% [± 1.6]
5, 30, 2 9.9% [± 2.4] 43.6% [± 1.3]
3, 30, 3 5.4% [± 1.3] 43.6% [± 0.5]
5, 30, 3 15.9% [± 1.7] 44.4% [± 0.5]

Table 3 Results for the CLV plan and enter dangerous area event. Each configuration specifies the number
of boats, the number of locations and the number of boats that are inside the dangerous area at the same time
(the value between parenthesis is not statistically significant according to a t-test with α = 0.05, all others
are).
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Simple Strategy Reassignment Strategy
Configurations % Gain (Interrupt vs Standard) % Gain (Interrupt vs Standard)

#boat,#loc.,#rec,r.t. Total Time #interactions # interactions
3, 20, 3,10 11% 65% 80%
5, 20, 3,10 16% 65.4% 81%
3, 20, 3, 20 14.8% 64% 79.6%
5, 20, 3, 20 13.4% 63.4% 78.7%
3, 30, 5,10 13% 75.6% 86%
5, 30, 5,10 17% 73% 85%
3, 30, 5, 20 16.8% 76% 86%
5, 30, 5, 20 11% 76.6% 83%

Table 4 Results for the CLV plan and boat pull out incident for the previous simple strategy (do not reassign
tasks) and reassignment strategy. Each configuration specifies the number of boats, the number of locations,
the time required to recharge the boat’s battery (in seconds). The number of recharge (#rec) represents the
number of times a boat required a recharge action which is assumed to be 3 for 20 locations and 5 for 30
locations in these experiments.

Table 1 reports results obtained for the CLV plan and the boat pull out incident. In
particular, we consider a set of configurations, where each configuration is defined by three
elements: i) the number of boats involved in the plan (3,5), ii) the number of locations to be
visited (20,30) and iii) the time required to exchange a boat’s battery expressed in seconds
(10,20). For each configuration we executed 10 repetitions. We report the average values
of the gain for both metrics and the standard error of the mean (shown in square brackets).
In the tables, we report only the percentage gain for configurations that show a statistically
significant difference between the values of the means6.

As it is possible to see, for all configurations the plan with the interrupts achieves better
performance both in terms of time to complete the plan as well as for the operator workload.
In more detail, focusing on the time to complete the plan, we can see that the gain of the
interrupt mechanism with respect to the standard mechanism increases when the recharge
time increases, because in the standard execution model all plans must be aborted when a
boat must recharge, while in the interrupt model the other boats can continue with their plan
execution. As for the operator work load, the interrupt mechanism requires far fewer user
actions than the standard plan. This is due to the fact that, in the standard execution model,
the user must re-insert the locations that the boats must visit when the CLV plan is re-started.
Notice that the number of recharge actions is higher when using the interrupts model. This
is because the standard mechanism re-starts the whole plan each time a boat must be re-
charged, consequently the remaining locations to be visited will be re-allocated among the
currently available platforms. This provides solutions of higher quality for the allocation
process (i.e., shorter paths), compared to the interrupt mechanism, which uses the same so-
lution throughout the entire plan execution. Therefore, when using the interrupt mechanism
boats might end up traveling more, and since the battery discharge process depends on the
traveled distance, this results in more recharge actions. However, as results clearly show, this
is compensated by a significant reduction in time to complete the plan and operator load.

Table 2 reports results achieved for the CLV plan and the general alarm incident. We
considered the same number of boats and number of tasks, and we vary the number of alarm
incidents that will appear during the plan (1,3). As before, we report the average values of
the gain and the standard error of the mean.

6 To check whether results are statistically significant we run a t-test with α = 0.05.
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Concerning the operator work load, these results confirm the superior performance of
the approach that encodes interrupts in the plan. However, in this case, the difference in time
to complete the plan does not show a statistical significance, consequently we do not report
such values. This is because the procedure to handle the general alarm requires all boats to
stop and wait until the original plan can be safely re-started. Hence, the actions that the boats
perform when aborting a plan are very similar to the interrupt handling procedure. In all the
simulations we do not consider the time required by a human operator to perform the click
actions but we simply count the number of clicks. This is because a proper evaluation of
such time would be highly dependent on the skills of the operator. However, in practice this
time will not be negligible and would significantly increase the gain in favor of the interrupt
mechanism.

Table 3 presents results for the CLV plan with the traverse dangerous area incident.
Again we consider the same number of boats and tasks and we vary the number of boats
that simultaneously enter the dangerous area during the plan (2,3). In this case, if a single
boat is inside the dangerous area there is no need for interrupting the plan. This is because
the plan monitoring framework allows the operator to override boat autonomy at any time,
directly teleoperating a single platform without aborting the current plan. Hence, if a single
boat is traversing the dangerous area the operator can focus his/her attention on such a boat
without changing the behaviors of the other platforms. However, if more than one platform
are traversing the dangerous area at the same time, the plan must be changed to stop all boats
inside the area so to focus operator attention on a single one. Hence, in our experiments, we
consider only situations where at least two boats are simultaneously inside the dangerous
area.

Results shows that also for this type of incident the interrupt mechanism provides an
important gain (about 40%) in operator load and that such a gain does not vary significantly
across the considered configurations. This is reasonable as the number of interactions that
the operator must perform does not depend on number of boats and only marginally on the
number of visit locations: in the standard version of the plan the operator will have to re-
insert a higher number of locations when re-starting the plan, this is confirmed by a small
increase in the gain when there are 30 locations to visit. As for completion time, the gain is
less significant and there is no clear trend with respect to the configurations we considered.
In fact, in this case, the gain depends on how tasks are placed with respect to the dangerous
area. In any case, the use of our interrupt mechanism is providing a positive gain in all the
configurations we considered.

Table 4 shows the results obtained for the CLV plan and the boat pull out incident us-
ing two different incident handling strategies, as described above. The goal of this set of
experiments is to assess the flexibility of our interrupt mechanism and investigate whether
the efficiency of the interrupt structure is dependent on the use of particular sub-missions.
We consider the set of configurations used in Table 1, but to better compare the two plans
we now assume a fixed number of recharge incidents during the plan (i.e. 3 boat pull out
incidents for 20 locations and 5 incidents for 30 locations). The first two columns present
the results using the same handling strategy and plans as in Table 1, while the third column
shows the results for number of interactions for the reassignment strategy version of the
standard and interrupt plans7. As mentioned previously, in the reassignment strategy ver-
sions of the plans, whenever the boat pull out incident occurs, the related boat will go to the
base station for recharging while the remaining tasks are reassigned to the other boats, which

7 According to a t-test with α = 0.05, the total time gain for the reassignment versions of the interrupt
versus standard plan is not statistically significant, so we do not report such metric in the table.
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continue visiting their assigned locations. When the boat is recharged, all the locations that
must still be visited will be reassigned to all boats (including the recharged one).

Results show that the the total time gain for the reassignment sub-mission interrupt
mechanism according to this metric is not significant. This is expected as in both the standard
and interrupt plans, the boats are never idle, unlike the simple strategy version of the standard
plan. However, the gain for number of interactions (clicks) significantly increases. This is
because, when the interrupt mechanism is not used, the operator needs to reassign the tasks
when the recharging boat goes to the base station and when it comes back. In contrast, when
the interrupt mechanism is used everything is handled through the sub-mission hence there
are fewer interactions. In summary, the key point is that the interrupt mechanism helps in
terms of completion time and interactions, and it is a flexible and general approach that can
be easily used with different sub-missions.

Finally, a video showing an exemplar execution of the CLV plan presented in Figure
6 is reported here8. The video shows that, when the general interrupt is triggered all the
boats move through the interrupt branch and enter a recovery sub-mission that sends them
all to a safe assembly location. When the alarm is over, the boats resume their previous
plan. In contrast, when the proxy interrupt is triggered, the selected boat proceeds to the
recharge area while the execution of the other boats progresses unchanged. When such boat
completes the recharge plan, it returns to finish executing its previous plan.

The video shows how our mechanism allows the human operator to smoothly handle
different types of interrupts during the execution phase of complex team-level plans.

5.3 Validation on robotic platforms

We validated the use of our approach for interacting with team oriented plans on real robotic
platforms. Specifically, we performed several experiments where a single operator was in
charge of monitoring and interacting with the operation of several boats (up to nine). Here
we discuss a specific experiment where platforms are sequentially inserted into the water
and, as they are added, they start to execute a Connect and station keep plan to maintain a
specific predefined position. A video of an exemplar run for the connect and station keep
experiment can be found here9 while Figure 8 reports a picture of the same run.

The experiment has been conducted in a marine coastal area, and as it is possible to see,
currents would make the boats float away when motors are shut down. To avoid this, when
executing the connect and station keep plan, the boats will periodically turn on their motors
to move toward a assembly positions specified when the plan is invoked (left of the screen).
This is a crucial behavior to effectively deploy a large team of platforms. The video shows
the boats executing the plan, the evolution of the CPN representation for this plan, and a few
screen-shots of the graphical interface that the operator uses to monitor the plan.

In this experiment the interrupt mechanism is used to re-define the points where boats
should perform station keeping. This is a general interrupt as all boats will change their
behavior. The operator activates the interrupt at minute 1:50 of the video, and it is possible
to see how all boats change their plan and perform the station keep behavior in a different
position (center of the screen).10 This behavior is used in field deployments when large speed
boats approach the current station keeping location, risking a collision with the robots.

8 http://profs.sci.univr.it/˜farinelli/videos/CLV.mp4
9 https://youtu.be/l5Qhp1JSoNI

10 This video was accepted to the IJCAI 2015 video competition.
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Fig. 8 A picture of the connect and station keep experiment. The image shows a subset of the platforms and
the current state of the CPN representing the connect and station keep plan. The interrupt portion of the plan
is visible in the top part of the picture and the current enabled transition (highlighted in the picture) is the one
that starts the interrupt to change the position where boats should perform station keeping.

These experiments confirmed that our interrupt mechanism helps human operators to
easily control the deployment of real robotic platforms.

6 Conclusions and future work

We consider the problem of handling human interrupts in team oriented plans. Team oriented
plans are a key tool for allowing human operators to specify high level directives for teams
of autonomous agents. However, in many scenarios an operator might need to interrupt the
activities of individual team members to deal with particular situations (i.e., a danger that
the team can not perceive). Previous to this work, after such an interruption the operator
would usually need to restart the team plan manually to ensure its success.

Here, we proposed a mechanism that allows a range of interrupts to be handled smoothly,
allowing the team to efficiently continue with its tasks after an operator intervention. In
particular, we built on the SPN framework, which proposes the use of Colored Petri Nets
for specifying team plans, and we defined two types of interrupts: a proxy interrupt that
affects the execution flow of a subset of the platforms, and a general interrupt that specifies
a particular recovery procedure for all the platforms.

We validated our approach considering an application of robotic watercraft. In more de-
tail, we provided a quantitative evaluation of our interrupt mechanism by simulating the plan
execution with and without the interrupts in a set of selected use cases. The empirical results
show that, by combining the team-level and proxy-level interrupts, our mechanism provides
a powerful and general model to allow sophisticated interactions between the human oper-
ators and team plans, resulting in a significant performance gain for the system. Moreover,
we validated our approach on real platforms performing various experiments where a hu-
man operator should monitor and control the evaluation of several boats. Such experiments
indicate that our mechanism can be of practical use in the actual deployment of robotic
watercraft.

Many possible future directions stem from this work. A first interesting direction is to
extend the current plan specification framework to perform the analysis described in Section
3.2 (e.g., reachability analysis) directly on the SPN. Moreover, we are currently working
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on mechanisms to analyse whether the introduction of an interrupt makes an SPN effective
even in face of possible action failures. These would be two important additions to assist the
human operators in the design phase of the SPN plans.

Another interesting direction that touches upon similar issues is to evaluate how difficult
is it for a human designer to learn and use the SPN plan specification framework and the
associated interrupt mechanism. A possibility, is to perform a user study to evaluate whether
human operators (possibly with different backgrounds and education) can design SPN plans
that are both efficient and effective.
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