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Abstract— Multi-Robot Systems (MRS) are, nowadays, an im-
portant research area within Robotics and Artificial Intelligence
and a growing number of systems has been recently presented in
the literature. Since application domains and tasks that are faced
by MRS are of increasing complexity, the ability of the robots
to cooperate can be regarded as a fundamental feature. In this
paper, we present a survey of the recent work in the area by
specifically examining the forms of cooperation and coordination
realized in the MRS. In particular, we propose a new taxonomy
for classification of the approaches to coordination in MRS and
we describe some systems, which we consider representative in
our taxonomy. We finally discuss the outcomes of our analysis
and try to highlight future trends of the research on MRS.

I. INTRODUCTION

Multi-Robot Systems (MRS) have been proposed in the
last decade in a variety of settings and frameworks, pursuing
different research goals, and successfully applied in many
application domains. Special attention has been given to
MRS developed to operate in dynamic environments, where
uncertainty and unforeseen changes can happen due to the
presence of robots and other agents that are external to the
MRS itself.

Generally speaking, a Multi-Robot System can be charac-
terized as a set of robots operating in the same environment.
However, robotic systems may range from simple sensors, ac-
quiring and processing data, to complex human-like machines,
able to interact with the environment in fairly complex ways.
Moreover, it is not easy to give a definition of the level of
autonomy that is required for a robot in order to be considered
an entity acting in the environment, as opposed to a simple
machine that provides services to the operator (a printer or a
even a light switch). While we discuss several different settings
of Multi-Robot Systems, we primarily focus on fairly complex
mobile platforms, equipped with sophisticated sensors and
actuators, able to execute complex tasks. We can further
characterize the subset of MRS, that is addressed in the present
work, by considering three main aspects: (i) the rationale
for the design of the MRS, (ii) the basic functionalities and
technologies (both hardware and software) used in the MRS
development and (iii) the tasks that the robots should perform
and the intended application domains. In the sequel we explain
and discuss each of these characteristics in further details.

A significant body of work on MRS has been originated
from motivations that are essentially of engineering nature,
where MRS are designed and realized in order to improve

the effectiveness of a robotic system. From an engineering
stand point, the MRS can improve the effectiveness of a
robotic system either from the viewpoint of the performance in
accomplishing certain tasks, or in the robustness and reliability
of the system, which can be increased by modularization
[4]. In fact, MRS are useful not only when the robots can
accomplish different functions, but also when they have the
same capabilities [31]. Moreover, even when a single robot
can achieve the given task, the possibility of deploying a
team of robots can improve the performance of the overall
system. Another significant development of MRS stems from
the studies on biological systems or complex models arising
in cognitive science and economics (see for example [19]).
In this work we take an engineering perspective, although we
also look at a few biologically inspired approaches.

Technological improvements both in the hardware and in
the associated software are two of the key reasons beyond the
growing interest in MRS [8], [81]. The increased availability of
complex sensor devices and robotic platforms in the research
laboratories favored their development and customization, re-
sulting in robots equipped with reliable and effective hardware
that improves their basic capabilities (laser range finders,
cameras, infrared sensors, robotic arms, gripping devices etc.).
In addition, the software techniques developed for the robotic
applications take advantage of the hardware improvements and
provide complex and reliable solutions for the basic tasks that
a robot should be able to perform, while acting in real world
environments: localization, path planning, object transporta-
tion, object recognition and tracking, etc. Although several
problems faced in single robot applications are not solved in
a general and effective way, under specific assumptions, some
of them can be tackled reliably. Moreover, the effectiveness
of a solution to a single robot task could be, in some cases,
improved using coordination among several robotic agents
[86], [37], [83]. Therefore, the study and development of
MRS applications is particularly relevant and significant at
this stage.

MRS are well suited for several application domains, which
require high complexity coordinated tasks to be performed.
Examples of these applications can be found both in industrial
environments (see for example [97]), and in hostile and
dangerous environments, such as space [47], military [82],
[63], and rescue operations [77]. In order to be used in such
applications, the MRS should fulfill several requirements: long
term autonomy and robustness are two of the main features
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required to a MRS. In fact, space and security applications
may require robots to work without human interaction for a
long time. Therefore, the system should be able to handle
unpredictable situations and execute complex tasks while
maintaining the power level of its own members. Moreover,
in order to reduce the development cost of the overall ap-
plication, the proposed solutions often involve heterogeneous
team members. Heterogeneity in the team composition often
entails complex coordination strategies, in order to exploit
the characteristics of all the team members and to obtain
efficient solutions. A significant boost to the work on MRS
has recently been given also by Robotics competitions, such
as AAAI robotic contests1 and RoboCup2 [61]. In fact, the
design and the realization of MRS is regarded as one of the
major scientific challenges and robotic contests are extremely
useful for comparing and analyzing different strategies and
techniques by providing a common test-bed for experiments.
Moreover, these competitions offer new challenges in the
design of MRS: for example in the RoboCup soccer domain,
as compared with other domains for MRS, the environment is
highly dynamic and includes an opponent team.

Even considering only the subset of MRS we are addressing,
a common framework for the technical solutions that are
being developed for MRS is difficult to identify. Moreover,
a MRS cannot be simply regarded as a generalization of
the single robot case and the proposed approaches need to
be precisely characterized in terms of assumptions about the
environment and in terms of the internal system organization
[69], [70]. Neither a MRS can be simply considered as a
special case of a Multi-Agent System (MAS), because of the
issues arising when dealing with a physical environment, such
as uncertainty and incompleteness on information acquired
from the environment. In fact, the need to cope with the
acquisition of knowledge from a real environment, makes
the experimental evaluation of MRS much more challenging.
In addition, the forms of cooperation used in MRS need to
take into account the uncertainty, the limitations, and the
mistakes arising from the processing of sensor information.
The large amount of work in MRS has been the subject of
a few survey papers that provide interesting characterizations
and perspectives of the research in the area. In [19] several
dimensions for characterizing a MRS are proposed, while
in [31] a classification of MRS, that is more focused on
the communication and computation aspects, is presented.
In [110] an introduction to the field of MAS and MRS is
presented along with a conceptual framework to organize the
possible systems, while the research topics in the MRS field
are discussed in [81].

Although cooperation and coordination are central in many
works on MRS and they are addressed in the above cited
surveys, a detailed analysis that specifically looks at these
aspects can be interesting in at least two respects. First, the
complexity of the systems and of the application domains
requires more and more sophisticated forms of coordination.
Consequently, a systematic analysis of the proposals that

1See for example http://www.andrew.cmu.edu/ � tlauwers/robohost/
2See http://www.robocup.org/

appeared in the recent literature can help the designer of MRS
to choose the approach to coordination that is best suited for
the application at hand. Second, focusing on coordination it
is possible to further analyze the relationship between MAS
and MRS: highlighting differences and similarities between
the two can lead to new insights that stem from the cross
fertilization of the two fields.

The aim of the present work, which is an extended and
revised version of [36], is to address the most recent de-
velopments of MRS by classifying the proposed approaches,
specifically focusing on the coordination aspects of the MRS.
To this end, we present a new taxonomy for classifying MRS
approaches to coordination and a set of system dimensions that
address those aspects of the system organization that influence
coordination: team size, team composition, communication
and architecture. Moreover, we identify the tasks that are
faced by MRS in various application domains. Based on the
above sketched framework, we provide a precise and fine
classification of a large body of recent works in the field and
discuss the trends of the research on MRS.

The remainder of the paper is organized as follows: in
Section II we present the taxonomy we propose for classifying
the approaches to coordination in MRS; in Section III we give
an overview of the typical tasks and application domains for
MRS; in Section IV we describe several works in MRS and
classify them according to our taxonomy; finally, in Section
V we discuss the trends emerging in this research field.

II. A TAXONOMY FOR MRS

As already remarked there are several motivations for ad-
dressing the design of MRS and, consequently, the work in the
area can be classified from several points of view. Our main
motivation is the study and evaluation of the ability to take
advantage of coordination to improve the system performance.
Therefore, the classification we propose is focused on the
coordination aspects and thus inspired by the relationship with
the field of multi-agent systems (MAS).

In order to provide a classification of recent works on MRS,
we first propose a new taxonomy and then put it in perspective
with respect to other classifications and recent surveys on
MRS. Following the literature, we use the term dimension
to refer to specific features that are grouped together in the
classification.

The taxonomy that we propose for classifying the works on
MRS is characterized by two groups of dimensions: Coordina-
tion Dimensions and System Dimensions. Generally speaking,
the former aim at characterizing the type of coordination that
is achieved in the MRS, while the latter include the system
features that influence team development. More specifically,
for the Coordination Dimensions of our taxonomy, a hierar-
chical structure is given in Figure II.

For a suitable classification of the works it is important to
clearly define the dimensions that are used. In the following of
this section we define our classification dimensions and discuss
the main differences that arise when we consider MRS instead
of MAS.
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Fig. 1. MRS Taxonomy
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TABLE I
CLASSIFICATION DIMENSIONS

Cooperation Level: The first level is concerned with the
ability of the system to cooperate in order to accomplish
a specific task. At the Cooperation Level we distinguish
cooperative systems from not cooperative ones. A cooperative
system is composed of “robots that operate together to perform
some global task” [80]. In this work we are interested only
in cooperative MRS. Therefore, in the following, the term
MRS will refer to a team of cooperative robots. This notion of
cooperation is very similar to the ones used for MAS; however,
in MAS, cooperation is often compared and merged with
competition, which, up to now, has received little attention in
the recent works on MRS. A remarkable exception is the work
[28] where a free market base approach is used to coordinate
multiple robots (see section IV for further details).

Knowledge Level: The second level of the proposed
hierarchical structure is concerned with the knowledge that
each robot in the team has about its team mates. Aware robots
have some kind of knowledge of their team mates, while
Unaware robots act without any knowledge of the other robots
in the system. The interest in cooperating unaware MRS (that
is not as common in MAS) is motivated from an engineering
point of view by the simplicity of such systems, with respect to
aware ones. Observe also that the notion of knowledge is not
equivalent to communication: in fact, using a communication
mechanism does not entail awareness and vice versa, a MRS
can be aware even though there is no direct communication
among the robots.

Coordination Level: The third level is concerned with
the mechanisms used for cooperation. Following the literature
on MAS [38], we consider Coordination as: “cooperation in
which the actions performed by each robotic agent take into
account the actions executed by the other robotic agents in
such a way that the whole ends up being a coherent and high-
performance operation”. However, there are different ways a
robot can take into account the actions of the other members of
the team. The underlying feature is the coordination protocol,
that is defined as a set of rules that the robots must follow
in order to interact with each other in the environment.
Therefore, we can further classify the coordinated MRS based
on the type of coordination protocol. We consider Strong
(Weak) coordination as a form of coordination that relies (does
not rely) on a coordination protocol. As a difference with
MAS, the approaches based on weak coordination are more
interesting in MRS, since in some cases the effective use of a
coordination protocol may be difficult.

Organization Level: The fourth level of our hierarchical
structure is concerned with the way the decision system is
realized within the MRS. The Organization Level introduces
a distinction in the forms of coordination, distinguishing
centralized approaches from distributed ones. A precise char-
acterization of this issue is given for example in [32], where
distribution is regarded as the autonomy of each component in
the system to take decisions about the actions to perform. In
particular, a Centralized system has an agent (leader) that is in
charge of organizing the work of the other agents; the leader is
involved in the decision process for the whole team, while the
other members can act only according to the directions of the
leader. On the other hand, a Distributed system is composed
of agents which are completely autonomous in the decision
process with respect to each other; in this class of systems a
leader does not exist. The classification of centralized systems
can be further refined depending on the way the leadership
of the group is played. Specifically, Strong centralization is
used to characterize a system in which decisions are taken by
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the same pre-defined leader agent during the entire mission
duration, while in a weakly centralized system more than one
agent is allowed to take the role of the leader during the
mission.

Along with the classification introduced to characterize the
form of coordination, there are a number of system features
that are relevant to the development of the system. We have
grouped them in the System dimensions, which include: com-
munication, team composition, system architecture and team
size.

Communication: Cooperation among robots is often ob-
tained by a communication mechanism that allows the robots
to exchange messages. A detailed analysis of the various
technical problems related to communication in MAS is given
for example in [38]. However, when MRS are considered
the communication mechanisms are very different; in addition
most of the MRS that we consider in this article operate with
a limited number of robots (i.e. less than 10), except for a
few recent projects for large-scale MRS that take into account
about 100 robots, while in large-scale MAS the number of
agents can often be in the order of 10,000-100,000. These
observations show that communication issues have, in general,
different characteristics for MAS and MRS. Therefore, even
though it is possible to have a more precise characterization
of communication systems (e.g. regarding topology, range and
bandwidth as studied in [31]), in the taxonomy proposed in this
article we distinguish two different types of communication
depending on the way the robots exchange information: direct
or indirect communication. Direct communication makes use
of some on board dedicated hardware device, while indirect
communication makes use of stigmergy3. The fact that in MRS
direct communication is based on a dedicated physical devices,
results in a much more expensive and unreliable solution to
attain coordination with respect to MAS. Therefore, Indirect
communication has received particular attention in MRS liter-
ature, to cut implementation and design costs. While in MAS
direct communication has been extensively used, remarkable
exceptions such as [16] support stigmergic communication, in
this work a Pheromone Infrastructure for information sharing
is used. Stigmergic communication can both guarantee locality
in the interactions among agents, reducing the complexity
for the design of large scale systems, and avoid the need of
synchronization between the agents, by providing a shared
communication structure that each agent can access in a
distributed concurrent fashion.

Team Composition: According to team composition MRS
can be divided in two main classes, heterogeneous and
homogeneous (see for example [99]). Homogeneous teams
are composed of team members that have exactly the same
hardware and control software, while in heterogeneous teams
the robots differ either in the hardware devices or in the
software control procedures. This distinction is used also for
MAS, but in that case the differences are obviously only in

3Stigmergy is a term coined by the biologist P.Grassé which means to incite
work by the effect of previous work [65]. Here, stigmergic communication
refers to the sharing of information through modifications in the environment.

the software implementation of the agents’ behaviors.
System Architecture: System architecture is an important

feature for classifying MRS as well as MAS. In this work
we always refer to the architecture of the whole MRS and
not to the architecture of the single robotic agent. A precise
characterization of MRS with respect to reactive or deliber-
ative architectures is presented in [55]. We consider a team
architecture as deliberative if it allows the team members to
cope with the environmental changes by providing a strategy
to reorganize the overall team behaviors. On the other hand, in
reactive team architectures each robot in the team copes with
the environmental changes by pursuing an individual approach
to reorganize its own task in order to accomplish the goal
assigned to it. The main difference between deliberative and
reactive team architectures relies on the different approaches
adopted by the MRS to recover from an unpredicted situation:
in a deliberative MRS a long term plan involving the usage of
all the available resources to collectively accomplish a global
goal is provided; in a reactive MRS a plan to cope with the
problem at hand is provided by the robotic agent directly
involved with it.

Team Size: The team size is an important issue for MAS
and it is becoming a relevant issue also in MRS development,
actually a number of recent works explicitly address large
scale MRS [82], [63]. However, the number of robots acting
in the same environment is still quite limited with respect
to the number of agents in a MAS. Therefore, rather than a
quantitative measure of the size of the MRS in our taxonomy
we distinguish those approaches that explicitly consider as a
design choice the opportunity to deal with a large number of
robots, from those that do not.

A. Related work

In the recent literature there are few works that overview and
classify the research on MRS [19], [31], [30], [81]. Besides
being focused on the most recent developments in the field,
the present work aims at providing a novel perspective by
focusing on the coordination capabilities of the MRS.

The classification presented by Cao et al. [19] is the closest
to ours, since some of the aspects that are relevant to coordina-
tion are considered in their taxonomy. In particular, they are re-
ferred to as Group Architecture: centralization/decentralization
of the coordination approach, differentiation among the team
composition, communication infrastructure and knowledge of
the other agents. Not only we further distinguish between
coordination and system dimensions, but we provide for a
more refined analysis of the coordination aspects in the Coor-
dination Dimensions. On the other hand, we do not take into
account other dimensions such as Origin of Cooperation and
Geometric problem. As for Resource Conflict, if the resource
is the space in which the robots operate, then all the works
on MRS implicitly face this problem by providing different
solutions. However, when the modality for accessing a shared
resource becomes more complex, a coordination protocol and
a distributed solution is usually preferred. In fact, there are
few works explicitly addressing this issue, some of them are
described in Section IV-F.
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The work of Dudek et al. [31], [30] presents a different and
rather complementary classification. In particular, the issue of
communication is considered in detail with the three dimen-
sions Communication-Range, Communication-Topology and
Communication-Bandwidth. In this work we do not explore in
detail the communication structure, but we consider the issue
of communication by simply distinguishing between implicit
and explicit communication, which is most relevant to the kind
of MRS dealt with in this article. Specifically, we adopt an ab-
straction of the communication channel, since it is convenient
to decouple the communication layers from the coordination
capabilities. We refer the reader to the cited papers [31], [30]
for a detailed discussion of the impact of the communication
capabilities on the system. Another difference with respect
to our work is that, as previously mentioned, our focus is on
engineering applications for MRS, and thus we do not consider
in detail issues such as Collective Reconfigurability, which
are more relevant to biologically inspired MRS or Processing
Ability, that refers to the architecture of the computing system
used in each single agent.

A work that takes into account the issues of coordination
both in MAS and MRS is [110]. This work also introduces
some of our System Dimensions like Team Composition and
Communication, however it is mostly focused on Machine
Learning techniques for MAS and MRS. In fact, due to
the inherent complexity of MRS, Machine Learning is an
issue of great interest [114], [95] and many existing learning
techniques can be directly applied in a multi-agent scenario,
by delimiting a part of the domain that involves only a single
agent, as described by Weiss [43]. Multi-agent learning is
however focused on learning techniques which take explic-
itly advantage from the presence of several agents in the
environment, and MAS approaches have been generalized to
MRS. For example, Reinforcement Learning is often used
in MRS applications in order to improve the performance
of cooperating agents: in L-ALLIANCE agents learn how to
better estimate the performance of the other agents [87], in
[72] reinforcement learning is properly modified to cope with
noisy, and dynamic environment, while in [39] Q-Learning
is used to approach the Multi-Robot Observation of Multiple
Moving Targets. We refer to some of these works for their
approaches to coordination, though we do not specifically
consider learning techniques in MRS.

In [90] a formal analysis of optimality and complexity for
teamwork theories [49], [106], [57] in MAS is presented. The
work uses a general framework called the Communicative
Multi-agent Team Decision Problem (COMM-MTDP), based
on decentralized partially observable Markov decision pro-
cesses. Using this framework, a classification of teamwork
theories is proposed along the dimensions of observability
and communication cost, deriving optimality and complexity
results. The authors focus on four categories for the observ-
ability: Collective Partial Observability, where no assumption
is made on the agents’ observations, Collective Observability,
where a unique world state can be derived from the collection
of the agents’ observations, Individual Observability, where
each agent can derive a unique world state from its own
observation and, finally, Non Observability where no feed-

back is provided to the agent from the environment. As for
communication the authors consider three categories: General
Communication, where no particular assumptions are made on
communication cost, Free Communication, where no cost is
associated with communication acts, and No Communication,
where there is no explicit communication. For all the cases that
can be characterized by the combination of those categories,
time complexity results are given to find an optimal policy for
the team. Moreover, the authors report the analysis of a specific
domain through an empirical evaluation and comparison of
different communication policies taken from the literature,
with respect to a local optimal and globally optimal policy
inferred by the authors, varying the communication costs and
the degree of observability. The comparison pinpoints the
various situations (i.e. combination of communication costs
and degree of observability) where the communication policies
show sub-optimality with respect to the globally optimal
policy. The theoretical and experimental results obtained in the
paper for teamwork in MAS are very interesting: even if the
assumptions made could not always apply to robotic systems
(i.e. the absence of delay or noise in the communication
channels), they provide useful guidelines for the design of a
coordination approach for a MRS based on teamwork theories.

In [69], [71] the problems concerning the analysis and
synthesis of intelligent group behaviors in MRS are addressed
in detail. Definitions for key concepts related to MRS co-
ordination are given, thus precisely characterizing several
important aspects of the problem. In particular, distinctions are
made according to the ability of the agents to recognize their
kin, and based on whether the agents have an explicit model
of their team mates. There is a clear correspondence between
our notion of Awareness for a robotic agent, and its ability
of kin recognition, but we do not classify the Aware agents
according to their model of team mates, we rather consider
the protocol used for coordination. Moreover, the approaches
that we consider as strong coordinated are necessarily able to
recognize their kin and generally a model of the team members
is present; on the other hand, systems composed of robotic
agents which are able to recognize their kin but do not have a
model of the team mates could be classified in our taxonomy as
weakly coordinated or aware not coordinated. Regarding the
issue of communication, in [69] a definition similar to the one
proposed in this article is given for Direct Communication and
Indirect Communication, however, a further distinction is made
between Direct Communication and Directed Communication
(which is a direct communication aimed at a precise receiver).
Finally the definition of Explicit Cooperation, considered in
[69], is similar to the definition of Coordination provided in
this work, while Implicit Cooperation can be related to our
definition of Cooperation.

The work by Parker [81] is an else survey of the MRS
literature, whose goal is to characterize several primary re-
search topics for MRS research. It is focused on distributed
robotic systems and in particular on research that has been
demonstrated on physical robot implementation. Therefore, in
[81] a taxonomy, as above discussed, is not provided: only
some of the research issues such as Communication and Archi-
tectures correspond to dimensions in the proposed taxonomy.
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Conversely, Localization, Mapping and Exploration, Object
Transportation and Manipulation and Motion Coordination,
in our discussion are regarded as general tasks. As already
discussed, we do not explicitly address Biological Inspiration,
but several works that are presented in [81] under the above
research topic are also addressed in our classification in
light of their approach to coordination. We do not look at
Reconfigurable Robots, because those works, at present, are
mostly focused on hardware development. Nonetheless, the
ability to change the number and the capabilities of the robotic
agents could be regarded as one of our system dimension.

A recent work focusing on the analysis of task allocation
in MRS is presented in [44]. This work presents a taxonomy
to analyze the different approaches to the problem of Multi
Robot Task Allocation (MRTA) appeared in the literature,
proposing a formal framework for the study of this problem.
The authors consider three main dimensions: 1 ) single-task
(ST) vs multi-task (MT) robots, based on whether the robots
involved in the task assignment process can execute more than
one task at a time; 2) single-robot (SR) vs multi-robot (MR)
tasks, considering if the tasks to be performed involve one
or multiple robots; 3) instantaneous assignment (IA) vs. time-
extended assignment (TA), distinguishing whether the infor-
mation concerning the robots tasks and environment permit
only an instantaneous assignment or a more sophisticated plan-
ning approach. The authors provide a formal characterization
of a wide set of MRTA problems, analyzing and classifying in
their taxonomy significant approaches used in MRS literature;
for those approaches, bounds to the optimality of the method
used with respect to the optimal solution are provided. The
focus of this work is posed on a specific problem (MRTA),
which represents one, important, aspect of MRS coordination.
Being the problem of task assignment generally approached
using a well defined coordination protocol, all the works
analyzed in [44] can be precisely classified in our taxonomy as
Strongly-Coordinated. Therefore, the taxonomy presented by
the authors can be considered as a more detailed investigation
of the approaches that we classify as Strongly-Coordinated.

Finally, a chapter of [4] is devoted to social behavior
for MRS. Several interesting characteristics and fundamental
problems for MRS behaving in a society are pointed out.
The chapter is mostly focused on several aspects of MRS
social structure, such as social organization, communication,
distributed perception and social learning, providing a broad
perspective on MRS.

III. TASKS AND DOMAINS FOR MRS

Although we do not consider the application domain as a
dimension in our taxonomy, we believe it is useful to give an
overview of the specific test-beds which are commonly used in
the MRS literature for validating and evaluating the proposed
coordination techniques. In particular, we divide each of the
described test-bed in a generic description of the abstract task
the robot should be able to execute, and the real application
domains that are strictly tied to it. By abstract task we refer
to a general description of the goal the MRS should pursue,
without considering the details of the application, while the

application domains tied to the test-bed are the real-world
applications that require similar coordination capabilities.

Foraging and Coverage: The foraging task requires
the components of the MRS to pick up objects scattered
in the environment; foraging is a test-bed often used for
MRS, because of its analogies with tasks like toxic waste
cleaning, mine cleaning, service robots [78], [59]. A major
issue in this test-bed is to avoid interferences among the robots
during the task execution. The coverage task is very similar
to foraging, since it requires the robots to process all the
points of the free space in the environment [51]. The main
issue for coverage is therefore to find effective techniques
for cooperatively scanning all the environment. Applications
for coverage are: demining, snow removal, lawn mowing, car-
body painting, etc.

Multi-Target Observation: The task of multi-target ob-
servation requires a team of robots to detect and track a set of
moving objects. The robots have to maximize the time during
which each of the moving target is being observed by at least
one of the robotic agents within the MRS. The multi-target
observation (also known as CMOMMT: Cooperative Multi-
Robot Observation of Multiple Moving Targets) is a very
recent MRS test-bed, first introduced in [86]. Besides systems
composed of mobile robots, sensor nets are often used to
accomplish this kind of task [34], [15], [75]. Such systems are
typically composed of devices with very limited computational
capabilities, and are able to communicate among them and
monitor the environment. Although sensor nets represent an
effective solution to this task, as previously remarked, they
are not in the scope of the MRS we are considering in this
paper. Multi-Robot Observation has many connections with
security, surveillance and recognition problems [86], [116],
where targets moving around in a bounded area must be
observed.

Box pushing and Object Transportation: The task
of box pushing requires the robotic agents to cooperatively
push boxes in order to reach a desired configuration. The box
pushing task has analogies with problems like stockage, truck
loading and unloading. While in the box pushing task the
objects are assumed to be on a plane, object transportation
focuses on lifting and carrying objects [97], thus substantially
increasing the complexity of the task. Applications involved
are transportation of heavy objects in industrial environments
or assembly of large-scale structures, such as terrestrial build-
ings or planetary habitat [97]. In most of the applications it is
assumed that each robot can not carry the object alone, thus
object transportation is frequently used as test-bed for issues
like motion coordination and formation control.

Exploration and Flocking: Under the label of explo-
ration and flocking different tasks can be grouped: these tasks
differ in the way they are realized, but have the common
feature to require MRS members to coordinate their move-
ments in the environment. Behaviors like flocking, formation
maintenance or map building can be considered in the same
class. In the exploration task the robots must be spread in
the environment in order to collect as much information as
possible about the surrounding area. In the flocking task the
goal for the robotic agents is to move together, such as in a
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flock. The formation task is focused on having the robots move
in the environment forming particular shapes. Cooperation
among the robotic agents is also used to localize each other,
and to fuse information acquired from the environment. Map
building of unknown environments is a common issue related
to exploration, and in particular, a very interesting topic is the
cooperative simultaneous localization and mapping, in which
the robots need to localize while moving and building the
map of the environment [37]. The problem of exploration
and flocking is related with several applications such as trans-
shipment operations in harbors, airports and marshalling yards,
motion coordination in industrial application and exploration
of dangerous environments. Another example of exploration
task is given by the RoboCup Robot-Rescue league [62], that is
a setting for experimenting MRS involved in searching victims
in an unknown environment representing a disaster scenario.

Soccer: Robotic soccer has been considered in the last
years as an interesting test-bed for research in multi-agent
and multi-robot cooperation [61]. The uncertain dynamics
and hostile environment in which the robots operate makes
coordination of the multi-robot system a real challenging
problem. While in the early years of the robotic league
competitions the focus has been on improving the single
robot capabilities, only recently coordination in the MRS has
become a central issue. The different settings of each of
the robotic leagues present several issues for coordination
in MRS. In particular, in the Middle-Size league and the
Four Legged league, all the robot sensors must be on board;
therefore robots are more autonomous and have to deal with
high uncertainty in reconstructing global information about
the environment. On the other hand in the small size league
the robotic agents can take advantage of a top view of the
environment provided by a camera on the top of the field,
therefore the coordination approaches in this league are mostly
centralized. The use of coordination in the soccer domains has
demonstrated significant improvement in the performance of
the teams.

IV. SYSTEM CLASSIFICATION

In this section we describe several works related to MRS,
by collecting them according to their position inside our
taxonomy. By discussing concrete examples of implemented
MRS we aim at characterizing in deeper detail the proposed
taxonomy. Moreover, we describe the constraints imposed
by the different approaches to coordination presented, and
consider the tasks and domains that are addressed within each
class.

A. Unaware systems

Unaware systems are characterized by the fact that each
member of the MRS executes its own task without any
knowledge about the other members of the team. Obviously,
in this setting, coordination is not possible, while cooperation
among the robots can still be obtained in a goal driven manner.
Due to the fact that each member of the team does not have
knowledge of the other robots, the communication among the
robotic agents can not be direct. It is worth mentioning that

all the works we classified as unaware can not be considered
as deliberative, because a deliberative approach requires a
reorganization of the whole team and thus the robots must
be aware of each other.

Unaware approaches are frequently adopted in biologically
inspired MRS [65], [25]. The robots achieve cooperation by
using only very simple basic behaviors and exploiting only
local interactions. These kind of systems are well suited for
large scale development, but they are normally used only
for very simple tasks such as foraging [25] or box pushing
[65]. In particular, in [25] stigmergic communication is used
for a team of robots collecting objects by using the simple
rule of transporting objects near other objects. In [65] the
authors use a cooperative object transportation model inspired
by ant colonies; stigmergic communication is achieved through
the perceived stimuli on the item being transported. Another
biologically inspired model, based on the behavior of E. coli
bacteria, is presented in [88], where a cooperative foraging task
is addressed. E. coli bacteria are characterized by a very simple
and effective foraging strategy, which relies on the sensing of
nutritional and toxic substances. The author uses this model to
design a non-gradient optimization algorithm that drives the
bacteria in their search for the optimal solution of the objective
function. This model has been used in a preliminary study for
controlling groups of Unmanned Autonomous Aerial Vehicle
[35], that should be able to cooperatively search for interesting
target in a dangerous environment. Also Pheromone based
models have been considered to design cooperative unaware
systems. In particular in [17] multiple pheromone types are
used by static entities (named pumps) to guide moving entities
(walkers). The goal of the moving entities is to reach the
positions occupied by the pumps, resulting in a special kind of
foraging task with application to military Air campaign. The
Pheromone types have different propagation radii, in order
to provide a better guidance function over all the working
space. Pure pheromone approaches (such as the one discussed
above) can be considered as unaware; however, a protocol
based information exchange on an underlying pheromone
infrastructure can provide the system with more sophisticated
coordination capabilities (see Section F).

Notice that, as previously described approaches show, in un-
aware systems interactions among entities are possible through
the use of stigmergy. However, each active entity interprets the
modifications of the environment, without having any model
of the cause of those modifications. In particular, if an entity
A observes a particular modification of the environment, it
has no ability to distinguish if the source that caused that
modification, is an entity cooperating with A, an exogenous
event (i.e. a human) or the entity A itself. Therefore, the
behavior of A will always be independent of the source of
the observed modification. This property of the system can be
considered as the main criterion to classify such approaches
as Unaware.

In many of the unaware systems, the MRS is composed
of homogeneous robots; however, [5] makes a comparison
between homogeneous and heterogeneous unaware MRS in
a multi foraging task (i.e. foraging with different kinds of
objects) by considering the relation between performance and
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a metric, called social entropy, which denotes the degree of
diversity within the system. The results presented show that
even an unaware approach can benefit from the heterogeneity
of the team members, and that this benefit is tightly related to
the inherent complexity of the task.

In [117] a robot team is used to cooperatively transport an
object. The team is composed of a leader robot and some
followers (three in the example reported in the paper): the
leader has different hardware, and is in charge of observing
the environment and plan the object motion. The followers
can detect the object motion and react to the object movement
based only on their local perception. The idea of the proposed
system is that all robots support the object together to share the
load and keep the balance of the object, while each follower
tries to minimize the inter-force with the object to reduce
the driving effort of the leader. Although the overall system
requires the presence of a leader and several followers, each
robot acts as it is the only agent in the system, thus the system
can be classified as unaware.

B. Aware, not coordinated systems

Aware systems are characterized by the fact that the robots
of the team have knowledge of the presence of other robots
in the environment, and act together in order to accomplish
the same global goal. However, a robot may not take into
account the actions performed by other robots in order to
accomplish its task, and in this case we consider it as aware not
coordinated. It is not always easy to give a general criterion to
precisely distinguish whether each robot is taking into account
other’s robot actions during its task execution. In general,
aware not coordinated approaches are characterized by simple
methods to reduce interference among robots executing a co-
operative task, while avoiding the use of a specified protocol.
It is worth noticing that avoiding interferences among robots
is definitely different from simple obstacle avoidance, because
obstacle avoidance does not require the robot to recognize its
team mates and because interference can occur in more general
settings, as compared with conflicts on physical space, such
as sensorial interference.

A clear example of the differences among unaware, aware
not coordinated and weakly coordinated approaches is pre-
sented in [11], where three different approaches are used
for the coverage of an unknown environment by a team of
cooperative robots. One of these approaches can be considered
unaware, the second aware not coordinated, while the third
is weakly coordinated. The overall design choice is to have
behavior-based robots using only local sensing: in the unaware
approach, each robot chooses the most promising direction
of motion simply evaluating through vision the direction that
maximizes the frontal visibility; in the aware not coordinated
approach, the robots recognize each other and choose the
direction of motion which is opposite to the average angle
subtended by all its neighbors in its visual field; in the
weakly coordinated approach, when two robots recognize each
other they form a coalition, and calculate the most promising
direction of motion as that direction that maximizes the
coalition sensorial coverage. The experiments presented in the

article show that the aware not coordinated approach slightly
outperforms the weakly coordinated and that both approaches
outperform the unaware one. This work shows clearly the
difference between an aware, not coordinated approach and
a weakly coordinated one. Moreover, it shows by means of
experiments that, in some cases, an aware not coordinated
approach can outperform a weakly coordinated one.

Particular cases of aware not coordinated approaches might
ends up in competitive settings; while those kind of approaches
do not fall in our taxonomy that is explicitly focused toward
cooperative approaches, it seems worthwhile to report an
example of such approaches that clearly pinpoint the difference
between competitive and cooperative coordinated approaches.
In [107] the authors present a very interesting solution to the
problem of interferences among aircrafts using two different
levels: at the first level a competitive approach is used while
at the second level coordination among aircrafts is required.
The authors address the problem of air traffic management
in free flight mode4. At the first level interference among
aircrafts are avoided following a competitive approach: each
aircraft is modeled as a player in a n-player zero-sum game,
each aircraft models the action of the others as a known
set of disturbance values, ignoring which particular value
will be actually used in the particular situation. Each aircraft
solves the game considering the worst possible disturbance
values, if a saddle solution exist and this solution is within
the safe requirement for each aircraft then the aircraft need
not to coordinate and not even to cooperate. However, if this
condition is not met, then the conflict resolution is addressed
at the second level: using a coordinated approach the aircrafts
perform predefined a-priori safe maneuver.

In aware not coordinated systems, cooperation among
robotic agents is often considered as an emergent property
of the system that results from the interaction between the
system and its dynamic environment [98]. The collective task
is therefore designed using an interaction loop between the
system and the environment, ultimately converging towards
the desired performance. In [66] such an approach is presented
in several different tasks. In particular, a box pushing task is
implemented with robots whose collective behavior is achieved
by providing each of them with basic behaviors. The basic
behaviors are activated according to the progress of the overall
task, which is monitored by perception of each single robot.
The approach achieves coordination by exploiting only local
information that the robots can acquire from the environment
and therefore it is suitable for coordination of large size teams.

C. Weakly coordinated systems

MRS may present a form of weak coordination that does not
rely on the application of an explicit predefined coordination
protocol. By coordination protocol we mean a set of explicit
predefined rules, which are followed by all the robots of
the system, that clearly define the behavior of the robots
depending on the messages exchanged among the team mates.

4In free flight mode each aircraft can autonomously execute small detour
from the assigned route to achieve better flight condition or avoid conflict due
to schedule delay
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By behavior we mean a high level action the robot can
accomplish: typical examples of behaviors are going in a
predefined position, pick up an object, track an object and
so on. Weak coordination does not pose any constraints on
the System dimensions defined in our taxonomy. Thus all the
combinations of Communication, Architecture Composition
and Size are possible.

In particular, in [105], a weakly coordinated approach for
object transportation, avoiding the use of communication is
presented. Two robots cooperatively transport an object using
free rotational joints, that keep the object tied to the robots;
the joints are equipped with a force sensor, able to measure
the relative angle between the axes of the object and the
robot. One of the robots is the leader and is in charge of
executing a desired given trajectory for the object, while the
follower estimates the motion of the object and avoids the
obstacles present in the environment. No communication is
held between the leader and the follower, however the follower
estimates the motion of the leader and use this information for
better accomplishing its task realizing a coordinated approach.
The two robot coordinate themselves without the use of
communication and therefore, without an explicit protocol,
thus the approach is to be considered weakly coordinated.

In [111] another weakly coordinated approach that avoids
communication is proposed. The system is used to coopera-
tively clean a room, the robots are homogeneous and each one
performs the next move based only on its local perception,
thus the system can be considered reactive. Cooperation is
achieved by applying an algorithm that tells each robot to
clean a location only if it is not critical: a non critical location
is a location that does not disconnect the current graph of
dirty grid points. The robots stop when no dirty points exist
in the environment, the communication is stigmergic in the
sense that the dirty points can be considered as markers, that
the robots use to cooperate in the cleaning process. In this case
coordination among robots is achieved, by following a general
rule that constrains the robot behaviors, integrating the actions
of the robots in a convenient indirect way.

In [6] the task is formation control and communication is
used to exchange only the global position among the robots;
considering those information and the formation to be achieved
each robot tries to adjust its relative distance with respect to
its team mates. The way robots achieve the desired distance is
not specified by a coordination protocol and thus the approach
can be considered weakly coordinated. This approach can be
further classified as reactive because each robot reacts to the
unexpected environmental changes, in order to maintain the
predefined formation, without reorganizing the overall team. A
deliberative approach for a weakly coordinated system is also
possible, as presented in [41]. To avoid interference among
the robots, the environment is divided into regions of work,
the number and the size of the regions depend on the number
of working robots. At the beginning, each robot is assigned to
one region; during the task execution each robot broadcasts a
diagnostic message, that means the robot is working correctly;
on the basis of the number of the diagnostic messages received,
the working area division is reassigned. This work is an
example of a deliberative approach, because the regions of

competence are assigned on the basis of information regarding
the overall team (number of working robots), although the
communication protocol is rather simple. The information
derived from the messages are used to change some parameters
for the behaviors (i.e. the boundaries of the working area for
each robots) and not the behaviors themselves (i.e. searching
for an object, picking up the object and bring it to the deposit
position), therefore the approach is to be considered aware not
coordinated.

D. Strongly coordinated, strongly centralized systems

Strongly coordinated MRS are based on a system of signals
by which the robots in a team exchange information, according
to a predefined coordination protocol, concerning the way
the robots have to interact. Among these systems a further
classification can be done depending on the way the protocol
is implemented. In strongly centralized systems a particular
robot (called leader) is in charge of organizing the work of
the entire team, while the other members act according to its
directions. Although in most works direct communication is
used, it is possible to conceive a system where a leader uses
stigmergic communication in order to give “commands” to
the other robots. Moreover, most works in this class present a
deliberative approach, that is not a direct consequence of the
choice of realizing a strongly coordinated, strongly centralized
MRS, but just a very convenient way of implementing it.

The MRS presented in [96] deals with exploration and
formation maintaining. A predefined leader is in charge of
selecting one formation among a set of predefined ones,
according to the current situation, and then communicating to
the other robotic agents their dislocation within the environ-
ment. The strongly coordinated strongly centralized approach
is frequently used in systems designed for space missions;
in [10] a team of cooperating rovers is based on the use of
the central station that coordinates the rovers during the task
execution. To cope with dynamic changes of the environment
a continual planning approach is used, and three different
approaches to coordination are presented. In the first approach
the continual planning is performed on the central station, and
the commands are sent to the rover; in the second approach
tasks are assigned to the rover from the central station and each
task is planned by the rovers; finally, in the third approach the
central station rules an auction and the rovers bid to get the
assignment of the tasks. This work shows how in a strongly
centralized approach a leader can take into account different
levels of autonomy for the team members.

Another example of centralized system is SAMON [67],
where the missions of multiple Autonomous Underwater
Robots Vehicles (AUV) are coordinated through a behavior-
based architecture. In this case, several layers of coordination
are used: Tactical Coordinator, which issues missions orders,
Supervisory AUVs, which distributes the subordinates AUV
the search regions, AUVs, which decide their own itinerary to
collect data from the fixed sensory packages.

Also most teams in the RoboCup Small-Size league (e.g.
[109], [13]) use a strongly coordinated strongly centralized
approach, since robots are usually controlled by a remote
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host through a global vision system. In fact, the availability
of global information about the environment and the use
of a remote host for robot control naturally lead to the
implementation of centralized strategies.

In most cases centralized systems are not well suited for
coordination of large scale MRS, both for the communication
overhead among the team members, and for the high compu-
tation demand required by the leader.

E. Strongly coordinated, weakly centralized systems

Strongly centralized MRS are not robust to failures in com-
munication and to incorrect operation of the leader. Therefore,
in many applications a different kind of centralized system has
been preferred. Weakly centralized systems are characterized
by the fact that the leader is not chosen a priori, but it is
selected dynamically during the mission depending on the
current situation of the team and the environment.

Several policies have been used to decide which robot
should become the leader; in particular, in [73], a fixed priority
is set among the robotic agents, and if one of them is not
available as leader, the next agent in the priority order takes
the control of the team. This is possible because the robots
are homogeneous. In [80] the leadership is given to a robot
depending on its specific characteristics (the robots are het-
erogeneous); for example, a box pushing task is accomplished
cooperatively by a supervisor and a pusher; the supervisor is
the leader, because it can monitor the overall process with
a camera. In [97] the robots start an auction and “bid” in
order to become the team leader. In [28] the authors propose
a free market based approach to coordinate a group of robots.
Costs and revenues are associated to the tasks, and robots can
trade the tasks allocation trying to maximize their revenue.
The authors show that the use of a leader robot proposing the
tasks allocation to a group of robots, can enhance the team
performance. The leader of a group is chosen according to
the quality of the allocation that the candidate leader proposes
to the group: if the proposed allocation reduces the associated
cost of the team the resulting excess profit can be redistributed
within the group (including the leader), in such a way that the
robots in the group accept the leader’s allocation.

In [80] and [97] weakly centralized approaches adopting a
hybrid architecture are presented. By hybrid architecture here
we mean an architecture that can be both social deliberative
and reactive. Specifically, both those approaches are charac-
terized by organizing the architecture of each single robotic
agent in several layers (three in both the works) in a hierarchy.
Each layer is able to communicate with its peers among
the robotic agents, exchanging different type of information
according to the level in the hierarchy. Depending on the
level of information exchanged among the different layers,
and thus on the protocol used, it is possible to achieve a social
deliberative or social reactive approach.

F. Strongly coordinated, distributed systems

In distributed systems each team member is executing a
coordination protocol, while taking decisions in a completely
autonomous fashion. These systems are generally more robust

to communication failures and robot malfunctioning, even
though these problems may affect the overall performance of
the team in the accomplishment of the task. The large number
of works that adopt this approach shows that there is a clear
interest among the researchers to approach the problems of
cooperation in a distributed fashion. The strongly coordinated
distributed approach entails that some kind of communication
has to be used, and leaves unconstrained the other System
Dimensions.

A very interesting approach is the one used by Parker in the
ALLIANCE architecture [85]. ALLIANCE is a framework for
coordinating MRS composed of heterogeneous behavior-based
robotic agents. All the robotic agents have sets of behaviors,
which are controlled by modules called motivational behaviors
that can cross inhibit each other. Motivational behaviors are
based on two parameters: impatience and acquiescence; they
are updated based on the data that each robot acquires from its
sensors or from other robots. In [86] the ALLIANCE archi-
tecture is used in a Multi-Target Observation. The approach
of the ALLIANCE architecture is reactive in the sense that
each member of the team decides whether to employ itself in
accomplishing a task, without any need to reorganize the other
members activity.

In [116] the problem of multi-target observation is also
addressed. The robotic agents are behavior-based and homo-
geneous, but the technique proposed is perfectly applicable
to a heterogeneous system as well. The proposed architecture,
called Broadcast of Local Eligibility (BLE), is an extension of
the subsumption architecture, to enable coordination between
the robotic agents. Each behavior of each robot has a function
that locally evaluates the robot’s eligibility to accomplish a
given task; the values are then exchanged among the “peer
behaviors” of the robotic agents. The robot, whose behavior
has the highest value, inhibits the corresponding behaviors
on the other system members, thus advocating the task. This
process, called cross-inhibition, can be executed only among
peer behaviors. The approach followed in this work is social
deliberative in the sense that when a robot starts accomplishing
a task, it inhibits the peer behaviors of the other members.
Thus, when something happens, which imposes a selection of
a different action to be executed by a member of the MRS,
all the other members will be involved in this reorganization
and the new action will be executed by the robots which best
fit the requirements, thus obtaining a new strategy.

Communication in the strongly coordinated distributed ap-
proach does not need to be direct, a coordination protocol can
be realized using stigmergic communication. An interesting
example of this approach is presented in [16], where a MAS
is used for the control of a manufacturing system. The work
uses a Pheromone Infrastructure (PI) as stigmergic information
sharing mechanism. This approach is designed for a MAS,
therefore the stigmergic communication is realized as a shared
software framework (i.e. the PI), and not using physical
signals that can be perceived through the environment. In [54]
an example of a strongly coordinated approach for a MRS
making use of physical signals for stigmergic communication
is presented. The work is explicitly designed for large scale
systems, the test-bed is composed of a group of very small
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autonomous mobile robots, equipped with a gripping device;
the robots have to cooperate in pulling some sticks out of the
ground. The sticks are too long for being pulled by one robot
alone, therefore the robots must pull the same stick together.
The robots walk randomly in the environment and when they
find a stick, they try to pull it up. If the stick is not being
pulled by another robot they wait a certain amount of time
(gripping time) for help, otherwise they help another robot
in pulling the stick. This work shows how a task that needs
a tightly coupled coordination can be performed using only
stigmergic communication.

Strong coordination often requires some kind of synchro-
nization on the use of the available resources among the
robotic agents. Among others, the works in [2] and [59]
explicitly address the issue of conflict resolution on shared
resources in a MRS providing a distributed approach. In [2]
the approach is based on a central station that plans a mission
for all the agents. The mission assigned to the agents consists
of very high level instructions, leaving each robotic agent
the execution and coordination of the high level actions. To
avoid conflicts on shared resources the plans of the agents
are merged; in particular, any time an agent needs to execute
a new plan that uses shared resources, it executes a Plan
Merging Operation, trying to set timing constraints on the
actions of all the plans that access the shared resources. In
[59] the application domain is a cooperative cleaning task,
two robots, a vacuum and a sweeper, have the common
goal to clean an office like environment. The architecture is
called ABBA (Architecture for Behavior-Based Agents) and
is based on a network consisting of two types of nodes:
Competence Modules (CM) and Feature Detection (FD). The
edges between the nodes represent relationships of different
kind (successor, predecessor, conflictor, precondition, positive
or negative correlation), which can be learned and modified
during the task execution. Each node has a level of activation
that is controlled through the relationships, conflict resolution
is achieved by establishing the relationships among the nodes
in a proper way.

Finally, an example of distributed MRS in the soccer domain
is given by the RoboCup Azzurra Robot Team (ART) that has
implemented a distributed heterogeneous robotic soccer team
[23], based on a simple and flexible coordination protocol.
The approach makes use of a formation/role mechanism and
of dynamic assignment of roles. Role assignment is obtained
by explicit communication of information about the status
of the environment. A simple form of negotiation is used
in order to realize a deliberative, distributed MRS that does
not require a global representation of the environment. Each
robot has the knowledge necessary to play any role, and robots
switch roles on the fly, when a distributed agreement on the
actions to be performed is achieved. This work presents an
effective example of dynamic task assignment for a MRS
performing a very complex task in a highly dynamic and
hostile environment.

V. TRENDS AND CONCLUSIONS

In this paper we have addressed the recent developments
in the field of MRS, focusing on those approaches that are

targeted to specific applications and motivated by engineering
considerations. Specifically, we have presented a taxonomy
with the aim of highlighting the coordination aspects of
the recent proposals in the literature: we have defined a
set of Coordination Dimensions for the classification of the
approaches to team coordination, together with a set of System
Dimensions that account for the design choices that are more
relevant to the team organization. Moreover, we have identified
some prototypical tasks that characterize various application
domains. Finally, we have classified some of the recent works
on MRS in terms of the proposed taxonomy; a summary of
the classification is presented in Table II, where the approaches
described are positioned according to the task accomplished
and their placement inside our taxonomy.

Although the classification is focused on coordination and,
consequently, biased towards a class of MRS, a few reflections
on the outcomes of the analysis performed seem worthwhile.
A first observation is that both Unaware and Aware not
coordinated approaches can achieve very interesting results
in the execution of tasks, such as Foraging or Box Pushing.
Therefore, cooperation without coordination can be successful
in MRS, when the form of cooperation can be obtained with
a loose coupling of the agents. Arguably, approaches that fall
in this segment of the taxonomy are more frequent than in the
case of MAS.

However, the analysis of the recent works in the lit-
erature shows that for more complex tasks (e.g. Soccer,
Rescue missions, etc.), where the unpredictable, uncertain
and sometimes competing environment requires both a very
effective performance and high robustness, more complex
coordination capabilities are required. In particular, among the
Strongly Coordinated approaches, all the possible organiza-
tions have been extensively used, however a trend towards
the development of distributed approaches is not surprising.
Distributed approaches are generally more flexible, robust
and less computational demanding. In the case of aware
coordinated approaches, the techniques for coordination have
been largely inspired by the literature on MAS. However,
the major problems that have been tackled are concerned
with the application of the coordination techniques in critical
conditions due to the uncertainty of the environment and to
the limitations and inaccuracies in the sensing capabilities of
the robots. We argue that further research developments along
these lines may eventually lead to coordination models, that
are explicitly designed for the robotic scenario. Moreover, as
the tasks to be completed by the MRS become more and
more challenging, thus requiring tightly coupled coordination,
the issue of Conflict Resolution is likely to receive increasing
attention.

Summarizing, the research on MRS addressed in the present
work covers a broad range of approaches showing that the
form of coordination can vary significantly depending on
the task to be performed. The complexity of the tasks in
which robots are involved (e.g. building patrolling, large-scale
assembly, rescue operations) entails increasingly complex ca-
pabilities both in software and in hardware. Furthermore, the
research on MRS is nowadays facing Large Scale systems
[82], [63]: MRS with a large number of robots capable of
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cooperative localization, long term autonomy, task assignment
and conflict resolutions. In fact, teams formed by a large num-
ber of robots will impact also on the other System Dimensions
of our taxonomy.

In this context, social deliberative architectures become
more complex to realize, possibly requiring the introduction
of different levels of organization; the adoption of a team
strategy seems nonetheless needed, especially in uncertain and
dynamic environments. Direct communication is an obvious
choice to achieve coordination, when the application domain
does not pose additional constraints, but it is easy to foresee
that the increase in the size of the robotic team will introduce
constraints in the structure of the communication network.
Interestingly, among the MRS several alternative approaches
have been proposed such as stigmergic communication or
coordination without communication at all.

In the recent efforts on large scale systems, heterogeneity
is often chosen in order to exploit different robot capabilities
and reduce the cost of the overall system. Moreover, in this
setting a Weakly Centralized approach has been adopted,
where the more capable robot assumes the role of leader for
the most complex tasks (cooperative localization, autonomous
re-charging, autonomous teleoperation). This notwithstanding,
within large scale systems distributed approaches can be
advantageous also in the case of heterogeneous systems.

In conclusion, our analysis of the literature indicates that the
problem of coordination will be central to the design of MRS,
especially when dealing with complex tasks and large scale
systems. In this respect, teamwork theories and team oriented
programming [26], [106] could play increasing role in order
to obtain more effective and general coordination frameworks.
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