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Abstract. Biclustering, namely simultaneous clustering of genes and
samples, represents a challenging and important research line in the ex-
pression microarray data analysis. In this paper, we investigate the use
of Affinity Propagation, a popular clustering method, to perform biclus-
tering. Specifically, we cast Affinity Propagation into the Couple Two
Way Clustering scheme, which allows to use a clustering technique to
perform biclustering. We extend the CTWC approach, adapting it to
Affinity Propagation, by introducing a stability criterion and by devis-
ing an approach to automatically assemble couples of stable clusters into
biclusters.

Empirical results, obtained in a synthetic benchmark for biclustering,
show that our approach is extremely competitive with respect to the state
of the art, achieving an accuracy of 91% in the worst case performance
and 100% accuracy for all tested noise levels in the best case.

1 Introduction

The recent wide employment of microarray tools in molecular biology and ge-
netics have produced an enormous amount of data, which has to be processed to
infer knowledge. Due to the dimension and complexity of those data, automatic
tools coming from the Pattern Recognition research area have been success-
fully employed. Among others, clear examples are tools aiding the microarray
probe design, the image processing-based techniques for the quantification of the
spots (segmentation spot/background, grid matching, noise suppression [6]) and
methodologies for classification or clustering [18, 24, 25, 8]. In this paper we focus
on this last class of problems and in particular on the clustering issue. Within
this context, a recent trend is represented by the study and development of bi-
clustering methodologies, namely techniques able to simultaneously group genes
and samples; a bicluster may be defined as a subset of genes that show similar
activity patterns under a specific subset of samples [20]. This kind of analysis
may have a clear biological impact in the microarray scenario, where a bicluster
may be associated to a biological process that is active only in some samples and
may involve only a subset of genes. Different approaches to biclustering expres-
sion microarray data have been presented in the literature in the past, each one
characterized by different features, like computational complexity, effectiveness,
interpretability, optimization criterion and others (for a review see [20, 22]). It
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is worth noticing that, in many cases, successful methodologies have been ob-
tained by adapting and tailoring advanced techniques developed in other fields
of the Pattern Recognition research area. One clear example is represented by
the topic models [14, 5], initially designed for text mining and computer vision
applications, and recently successfully applied in the microarray context [23, 3,
2]. Clearly, the peculiar context may lead to substantial changes in the model so
to improve results [21].

This paper follows this promising direction, preliminary investigating the
capabilities, in the expression microarray biclustering context, of a recent and
powerful clustering technique, called Affinity Propagation (AP [10]). This tech-
nique is based on the idea of iteratively exchanging messages between data points
until a proper set of representatives (called exemplars) are found. Such exem-
plars identify clusters (which are all points represented by a given exemplar).
The efficacy of this algorithm (in terms of clustering accuracy) and its efficiency
(due to its really fast learning algorithm) have been shown in many different
application scenarios, including image analysis, gene detection and document
analysis [10]. Moreover, AP seems to be a promising approach for the microar-
ray scenario for two main reasons: first, AP does not need to know the number
of clusters beforehand and in a microarray clustering problem it is often difficult
to estimate a priori the number of groups, especially for the gene part; second,
and more important, it is known that under some assumptions (e.g. sparse input
data) this technique is very efficient for large scale problems such as microarray
data which involves thousands of genes. Actually, in recent years some papers
appeared in the literature with the aim of studying the application of this al-
gorithm in the expression microarray field, in its basic version or in some more
tailored ones [1, 19, 16, 7]. Nevertheless, all these papers deal with the clustering
problem, whereas the biclustering problem has not been addressed yet.

In this paper, we propose an approach to use AP for biclustering based on
a biclustering scheme called Coupled Two-Way Clustering (CTWC) [11], which
iteratively performs samples and genes clustering using the supeparamagnetic
clustering (SPC) algorithm, maintaining only clusters that satisfies a stability
criterion (directly provided by the SPC clustering approach). In its original for-
mulation CTWC does not provide an explicit representation of the obtained
biclusters (which remain implicitly defined). Nevertheless, an automatic mecha-
nism able to explicitly list the components of a bicluster is crucial for validation
purposes (to the best of our knowledge, no biological validation tools deal with
implicit or probabilistic memberships). To this end, in this paper we also pro-
posed an automatic reassembling strategy, which may in principle be applied
also to the original approach proposed in [11].

In more details this paper makes the following contribution to the state of
the art:

– Proposes the use of AP for biclustering. We cast AP into the CTWC bi-
clustering scheme and propose a different stability criterion inspired from
the bootstrapping, which is more general than the stability criterion used by
CTWC and is well suited for the AP approach.
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– Extends CTWC by devising an automatic reassembling strategy for the
biclusters. The strategy takes as input the clusters obtained on rows and
columns and returns only the couples of clusters that forms a bicluster in
the input data.

– Empirically tests the biclustering approach on a literature benchmark, using
the synthetic data and protocols described in [22]. While a biological valida-
tion is clearly important to assess the practical significance of the approach, a
synthetic validation permits to quantitatively compare the approach to other
state of the art methods. In our experimental evaluation, we show that the
proposed approach is very competitive with the literature, encouraging fur-
ther investigations on the use of AP clustering algorithm in the microarray
biclustering scenario.

The remainder of the paper is organized as follows: Sect. 2 will introduce the
Affinity Propagation clustering algorithm, whereas the proposed biclustering
scheme is presented in Sect. 3. The experimental evaluation is detailed in Sect.
4; finally, in Sect. 5 conclusions are drawn and future perspectives are envisaged.

2 Background: Affinity Propagation

Affinity Propagation (AP) is a well known clustering technique recently pro-
posed by Frey and Dueck [10] and successfully used in many different clustering
contexts.

The main idea behind AP is to perform clustering by finding a set of exemplar
points that best represent the whole data set. This is carried out by viewing the
input data as a network where each data point is a node, and selecting the
exemplars by iteratively passing messages among the nodes. Messages convey
the affinity that each point has for choosing another data point as its exemplar
and the process stops when good exemplars emerge or after a predefined number
of iterations.

In more details, AP takes as input a similarity matrix, where each entry
s(i, j) defines how much point j is suited to be an exemplar for i. The similarity
is clearly domain dependent and can be any measure of affinity between points,
in particular it does not need to be a metric. A peculiar characteristic of AP,
when compared to other popular exemplar based clustering techniques such as
k-means, is that it does not require to specify a priori the number of clusters
to be formed. Such number is automatically computed by the algorithm, and
it is influenced by the values s(i, i), given as an input, which represents the
preference for point k of being itself an exemplar. In particular, the higher the
preferences the larger the number of clusters that will be formed and vice versa.
While tuning preferences is an important issue to have more accurate clustering,
usually all preferences are set to a common value that depends on the input
similarity matrix and a common choice is the median of such matrix [10].

Given the similarity matrix, AP finds the exemplars by iteratively exchanging
messages between points. In particular there are two types of messages that data
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points exchange: responsibility and availability messages. Intuitively, a responsi-
bility message sent from point i to point j represents how much j is well suited
to be a representative for i while an availability message from i to j indicates
how much i is well suited to be a representative of j. Both availability and re-
sponsibility are updated by accumulating information coming from neighboring
data points and considering the preferences.

More in details, at each iteration, messages are updated according to the
following equations [10]:

ri→j = s(i, j)−max
k 6=j

{ak→i + s(i, k)} (1)

ai→j =

{

min{0, r(i, i) +
∑

k 6=j max{0, rk→i}} if i 6= j
∑

k 6=i max{0, rk→i} otherwise
(2)

where ri→j and ai→j represent respectively a responsibility and an availabil-
ity message from data point i to j. At the beginning all availabilities are set
to zero. The responsibility update is obtained by combining the similarity be-
tween point i and point j with the maximum similarity of point i and all other
points and their availability of being a representative for point i. Intuitively, if
the availability of a point k becomes negative over the iterations, its contribution
of being a representative will also decrease. The availability update adds to the
self responsibility (r(i, i)) the positive responsibilities message from other point,
which represent information gathered by other points about how good point i

would be as an exemplar. The update for self availability consider all incoming
positive responsibilities from other points.

The exemplar for each data point i is the data point j that maximizes the sum
of aj→i + ri→j . Exemplars can be computed at every iteration and the message
update process converges when for a given amount of iterations the exemplars
do not change, or it can be stopped after a predetermined amount of iterations.

Notice that the message update rules reported above can be derived by rep-
resenting the clustering problem with a factor graph [17] and then by running
the max-sum algorithm [4] to solve it. We refer the interested reader to [12] for
further details on this.

As previously mentioned, a key element of the success of AP is the ability to
efficiently cluster large amount of sparse data. This is possible because messages
need not be exchanged among points that can not (or are very unlikely to) be
part of the same cluster (i.e. points that has extremely low similarities). In fact,
AP can leverage the sparsity of the input data by exchanging messages only
among the relevant subsets of data point pairs, thus dramatically speeding up
the clustering process.

Being a clustering technique AP can not directly perform biclustering anal-
ysis, therefore, in the next section, we present our approach to use AP for bi-
clustering analysis of microarray data.
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3 The proposed approach

The approach we propose in this paper is built on a scheme called Coupled Two-
Way Clustering (CTWC) [11]. The basic idea of this scheme is to use a clustering
algorithm to independently cluster samples and genes and select clusters that
meet some stability criteria; sample clusters are then coupled with gene clusters
effectively forming sub-matrices of the input data; then the CTWC method is
run again on each of these sub-matrices in an iterative fashion. This process is
repeated until no new stable clusters are formed.

In [11], the superparamagnetic clustering approach was used to perform row
and column clustering. Nevertheless, as the authors claim in [11], any clustering
method can be used to cluster samples and genes. Here we propose the use of
Affinity Propagation and extend the CTWC scheme to automatically assemble
genes and samples clusters into an explicit bicluster representation.

More in details, our proposed approach can be described as follows:

1. Given an n by m input matrix we independently cluster rows and columns
by using Affinity Propagation. To do this each row (column) is considered
as an m(n) dimensional data point. Affinity Propagation takes in input a
similarity matrix between each pair of the data points and the preferences,
it then clusters the data points automatically detecting the best number of
clusters as described in Section 2.

2. We maintain a subset of the clusters returned by Affinity Propagation by
selecting only those that meet a stability criteria inspired by the bootstrap
method (see Section 3.1).

3. Following the CTWC scheme we couple all stable clusters together and iter-
ate the process on all the obtained sub-matrices. Notice that when coupling
the clusters together we consider also stable clusters that were formed in
previous iterations of the approach.

4. We assemble clusters in biclusters by coupling stable clusters on rows and
columns and testing whether each cluster couple forms a bicluster in the
input data (see 3.2).

The above steps are iterated until no new stable cluster is formed.
Algorithm 1 reports the pseudo-code of our approach: in particular the algo-

rithm takes in input an n by m matrix that represents the expression microarray
data and returns a set of biclusters. The queue Q represents the sub-matrices
that have to be analyzed. It is used to control the algorithm iterations and it is
initialized with the input data matrix (line 1). The two sets of clusters, rows Sr

and columns Sc, represents stable clusters and are initialized with a single cluster
each, which includes all rows and columns of the input matrix (lines 2 and 3).
The while loop describes the algorithm iterations and stops when no elements
are present in the queue (lines 4 to 11). At every iteration, a sub-matrix currA is
extracted from the queue and affinity propagation is used to find stable clusters
on rows (line 6) and columns (line 7). In particular, the stableAP method runs
affinity propagation on a set of multidimensional points and selects stable clus-
ters, according to the stability criteria described in section 3.1. Relevant data
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Algorithm 1 ap-ctwc

Require: A : and n by m input data matrix
Ensure: B : a set of biclusters
1: Q← A

2: Sr ← {(1, . . . , n)}
3: Sc ← {(1, . . . ,m)}
4: while Q is not empty do

5: currA← pop(Q)
6: {r1, . . . , rs} ← stableAP (rows(currA))
7: {c1, . . . , ct} ← stableAP (col(currA))
8: Sr ← Sr ∪ {r1, . . . , rs}
9: Sc ← Sc ∪ {c1, . . . , ct}
10: Q← push(Q,allNewCouples(Sr, Sc))
11: end while

12: return B ← assembleBiclusters(Sr, Sc)

structures are then updated. Specifically, the new stable clusters are added to
the set of row and columns clusters (lines 8 and 9), and clusters are coupled and
pushed in the queue (line 10). Notice that the allNewCouples(Sr, Sc) function
returns all couples of clusters involving new clusters, i.e. all couples < ri, cj >

where ri ∈ {r1, . . . , rs} and cj ∈ Sc ∪ {c1, . . . , ct} and vice versa. Finally, the set
of row and column clusters are assembled in biclusters (line 12) as explained in
section 3.2.

A final postprocessing has been carried out in order to present data in a
more meaningful way. First, we clean the set of biclusters by removing smaller
size biclusters contained in a more stable bicluster, since usually the aim is to
find maximal biclusters which are maximally coherent. Second, we order the bi-
clusters according to size (from bigger to smaller) and, in case of ties, we order
based on stability, where the stability of a bicluster is defined as the sum of the
stability of the row and column clusters that forms the bicluster. The rationale
behind the ordering is that researchers are usually interested in clusters of big-
ger size because they usually yield more knowledge about the interconnections
among gene behaviors across experiments.

3.1 Stability Criterion

Stability or robustness of clusters is a well known but yet unsolved problem in the
clustering field [15]. In this paper we adopt a very simple approach, starting from
the consideration that AP injects noise in the clustering process to avoid ties.
The approach we propose is to perform N different clusterings, measuring the
stability of a cluster as the fraction of times where it is found by the algorithm.
Clearly, if a cluster is stable, small perturbations of the input data won’t affect
its detection. This is the same rationale under the bootstrap method used in the
phylogeny domain [9], where noise is added to the data and a final consensus
tree is devised (stability of a group is exactly the fraction of times where such
group appears).
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3.2 Assembling Biclusters

Given the two sets of row and column clusters, biclusters are assembled by
considering all possible couples of row-columns clusters in such lists and by
selecting only the couples of clusters that can mutually generate each other.
More in details, consider a specific couple bij =< ri, cj >, we consider bij as a
valid bicluster if and only if the clusters obtained by clustering the sub-matrix
A[ri, :] along the columns contains cj and vice versa. Here, A[ri, :] represents the
sub-matrix of the input data obtained by considering only the subset of rows
contained in the cluster ri and all the columns. This condition effectively avoids
that couples of clusters that do not form a biclusters in the input matrix are
assembled together.

To further clarify this point, Figure 1 reports an example of a couple of
clusters that do form a bicluster in the input data. Specifically Figure 1(a)
shows the input data and the row and column clusters that we want to test.
Let’s consider the column submatrix (Figure 1(b)), clustering along the rows
we obtain three clusters that include the input row cluster. The same happens
when we consider the row submatrix of Figure 1(c), hence we can conclude that
the input cluster couple does form a bicluster of the input data, as Figure 1(d)
shows.

On the other hand, Figure 2 reports an example of a couple that does not
form a bicluster. Here, we consider the same input data matrix as before but a
different cluster couple as Figure 2(a) shows. Running the test for this couple we
can see that by considering the row submatrix we do obtain the input column
cluster (2(b)). However, when we consider the column submatrix we can not find
the input row cluster (2(c)). Therefore this cluster couple would not pass our
test and in fact this is not a bicluster of the input data as Figure 2(d) shows.

(a) (b)

(c) (d)

Fig. 1: Couple of clusters that form a bicluster: (a) Input data and the couple
of clusters to test. (b) Submatrix considering the column cluster. (c) Submatrix
considering the row cluster. (d) Bicluster formed by the couple of clusters.
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(a) (b)

(c) (d)

Fig. 2: Couple of clusters that do not form a bicluster: (a) Input data and the
couple of clusters to test. (b) Submatrix considering the row cluster. (c) Subma-
trix considering the column cluster. (d) Submatrix formed of row and columns
clusters, which is not a bicluster of the input data.

Having described our approach the next session will report and discuss results
obtained in the empirical evaluation of our method.

4 Experimental evaluation

The methodology proposed in this paper has been tested in a synthetic bench-
mark ([22]), which includes synthetic expression matrices, perturbed with differ-
ent schemes1. In this setting, biclusters represent transcription modules; these
modules are defined by (i) a set G of genes regulated by a set of common tran-
scription factors, and (ii) a set C of conditions in which these transcription
factors are active. In the original paper two scenarios are considered, one with
non overlapping biclusters and one with overlapping biclusters. Here we consider
only non overlapped biclusters, since the CTWC scheme does not permit to ex-
tract overlapped biclusters. In the experiments, 10 non-overlapping transcription
modules, each extending over 10 genes and 5 conditions, emerge. Each gene is
regulated by exactly one transcription factor and in each condition only one
transcription factor is active. The corresponding datasets contain 10 implanted
biclusters and have been used to study the effects of noise on the performance
of the biclustering methods.

The accuracy of the biclustering has been assessed with the so-called Gene

Match Score [22], which reflects the similarity of the biclusters obtained by an

1 All datasets may be downloaded from: www.tik.ee.ethz.ch/sop/bimax.
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algorithm and the original known biclustering (it varies between 0 and 1, the
higher the better the accuracy), for all details on the datasets and the evaluation
protocol please refer to [22].

Even if our proposed approach is also able to extract biclusters with an
average expression value close to zero, in this setting we remove such groups,
in order to adapt our results to the synthetic evaluation of [22]. The proposed
approach has been tested using as similairty the negative Euclidean distance and
the Pearson coefficient, the latter being a very common choice in the microarray
analysis scenario. Results were qualitatively and quantitatively really similar,
thus here we report only those with the negative Euclidean distance. As for the
stability threshold, after a preliminary evaluation we have found that a 50% value
represents a good compromise between quality of clusters and level of details.
Concerning the affinity propagation clustering algorithm, it is well known that
setting the preferences may be crucial in order to obtain a proper clusterization
[10]. Even if some sophisticated solutions have been proposed ( e.g. [26]) the
most widely used approach is to set all the preferences as the median value of
the similarity matrix [10]. Here we slightly enlarge the scope of this rule, by also
setting as preferences the median +/- the Median Absolute Deviation (MAD)
(which represents a robust estimator of the standard deviation [13]), defined, for
a given population {xi} with median med, as

MAD = mediani{|xi −med|} (3)

The results are reported in Fig. 3, for the different initialization of the pref-
erence values. Following [22], we report both bicluster relevance (i.e., to what
extent the generated biclusters represent true biclusters), and module recovery

(i.e., how well true biclusters are recovered).
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Fig. 3: Results on the synthetic dataset: (a) bicluster relevance, (b) module re-
covery.
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Reported results support two main conclusions: i) the method performs ex-
tremely well on this dataset, with a worst case performance that still provides
91% accuracy. By comparing these results with those published in [22, 2], we can
observe that our approach is very competitive with respect to the state of the
art. ii) while in principle the initialization of preference values does make a dif-
ference in the AP method, the approach is not very sensitive to this parameter,
reaching very good performances for preference values within the tested range
(especially in the first four conditions).

Moreover, it is worth noticing that the different performance of the three
preference settings confirm the intuition that higher preference values lead to
more clusters in AP. In fact, the reason why the median − MAD has worst
average performance, in terms of recovery, is due to the fact that AP forms
less clusters thus failing to detect some of the biclusters that are present in the
data set when the level of noise increases. On the other hand, by setting higher
preferences AP finds more clusters thus resulting in a GMS that is more robust
to the increasing noise level while maintaining a very good level of relevance.

As a further analysis, we tried to understand which kind of errors are pro-
duced by the approach. In particular, in Fig. 4 we reported the biclusters ex-
tracted by the proposed approach in one of the run of the algorithm, within the
last condition.

It is clear that almost all the biclusters have been obtained, there is just one
which has been divided in two. Therefore, the elements are correctly grouped
together (the algorithm does not group together expressions which are not sup-
posed to be together), but oversegmentation occurs. This issue may be possibly
faced by selecting the preferences in the AP clustering module in a more careful
way.

5 Conclusions and future works

In this paper we propose a method to use Affinity Propagation [10] (a recently
proposed, promising clustering techniques), to perform biclustering of expression
microarray data. Our method builds on the CTWC biclustering scheme [11] and
extends it in two main directions: i) we propose a stability criterion, inspired from
the bootstrap method, which is suited for AP, and more general that the one
used in the original version of CTWC. ii) we propose a method to automatically
assemble couples of stable clusters into biclusters.

We empirically evaluated our approach in a synthetic benchmark [22], and
results show that our method is very competitive with respect to state of the
art.

Future work in this area includes two main research directions: i) testing the
approach on real biological data sets to assess the practical significance of the
approach, ii) investigate extensions of the approach to deal with overlapping
biclusters.
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Fig. 4: Example of the result of the algorithm: the original expression matrix is
shown in the top left corner, in the remaining boxes the obtained biclusters are
displayed.
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