
Chapter 12

Distributed Constraint Handling
and Optimization

A. Farinelli, M. Vinyals, A. Rogers and N.R. Jennings

1 Introduction
Constraints pervade our everyday lives and are usually perceived as elements that
limit solutions to the problems that we face (e.g., the choices we make everyday
are typically constrained by limited money or time). However, from a computa-
tional point of view, constraints are key components for efficiently solving hard
problems. In fact, constraints encode knowledge about the problem at hand, and
so restrict the space of possible solutions that must be considered. By doing so,
they greatly reduce the computational effort required to solve a problem.

Against this background, constraint processing can be viewed as a wide and di-
verse research area unifying techniques and algorithms that span across many dif-
ferent disciplines including Planning and Scheduling, Operation Research, Com-
puter Vision, Automated Reasoning and Decision Theory. All these areas deal
with hard computational problems that can be made more tractable by carefully
considering the constraints that define the structure of the problem.

Here we will focus on how constraint processing can be used to address op-
timization problems in Multi-Agent Systems. Specifically, we will consider Dis-
tributed Constraint Optimization Problems (DCOPs) where a set of agents must

1

2 Chapter 12

come to some agreement, typically via some form of negotiation, about which
action each agent should take in order to jointly obtain the best solution for the
whole system. This framework has been frequently used in the MAS literature
to address problems such as meeting scheduling in human organizations, where
agents must agree on a valid meeting schedule while maximizing the sum of indi-
vidual preferences about when each meeting should be held, or target tracking in
sensor networks, where sensors must agree on which target they should focus on
to obtain the most accurate estimation of the targets’ positions. A key common
aspect of DCOPs for MAS is that each agent negotiates locally with just a subset
of other agents (usually called neighbors) that are those that can directly influence
his/her behaviors. Depending on the problem setting and on the solution tech-
nique used, this aspect can greatly reduce the computational effort that each agent
faces, making hard problems tractable even for large-scale systems. For example
in the meeting scheduling problem, an agent will directly negotiate with and care
about people that he/she must meet, which is usually a small subset of the agents
involved in the whole problem.

In more detail, this chapter aims to provide the reader with a broad knowl-
edge of the main DCOP solution approaches describing both exact algorithms,
approximate approaches and quality guarantees that can be provided in the DCOP
framework. After reading it, you will understand:

• The mathematical formulation of a DCOP, being able to model distributed
decision-making problems using the DCOP framework.

• The main exact solution techniques for DCOPs and the key differences be-
tween them in terms of benefits and limitations.

• Why and when approximate solution techniques should be used for DCOPs
and the main algorithms in this space.

• Why quality guarantees are important, how to differentiate between various
types of quality guarantees and which techniques are currently available in
the literature to achieve them.

The chapter is organized as follows, first Section 2 presents the mathematical
background for constraint networks and distributed constraint processing; next
Section 3 provides examples of practical problems that can be addressed using
DCOPs and a description of the abstract benchmarking problems commonly used
to empirically evaluate the different solution techniques. Section 4 introduces a

Chapter 12 3

selection of exact solution algorithms for DCOPs, focusing on two representa-
tive examples: (i) ADOPT, as an example of a search based technique and (ii)
DPOP, as an example of a dynamic programming based approach. Section 5
discusses the need of approximate solutions for DCOPs describing some repre-
sentative techniques in this area, and Section 6 discusses quality guarantees for
approximate DCOP solution algorithms, focusing on two representatives: the k-
optimality framework and the bounded max-sum approach. Finally, Section 7
concludes the chapter.

2 Distributed Constraint Handling
A key element for distributed constraint handling is the concept of the constraint
network. Here we provide standard formal definitions relating to constraint net-
works and then we focus on the distributed constraint processing paradigm itself.

2.1 Constraint Networks
A constraint network N is formally defined as a tuple < X ,D,C >, where X =
{x1, · · · ,xn} is a set of discrete variables, D = {D1, · · · ,Dn} is a set of variable
domains, which enumerate all possible values of the corresponding variables, and
C = {C1, · · · ,Cm} is a set of constraints. A constraint Ci can be of two types: hard
or soft.

A hard constraint Ch
i is a relation Ri defined on a subset of variables Si ✓ X .

Variables in Si are the scope of the constraint and the relation Ri enumerates all the
valid joint assignments of all variables in the scope of the constraint. Therefore Ri
is a subset of the Cartesian product of variable domains that are in the constraint’s
scope: Ri ✓Di1 ⇥ · · ·⇥Dir and r = |Si| is the arity of the relation. A soft constraint
Cs

i is a function Fi defined again on a subset of variables Si ✓ X which comprise
the scope of the function. Each function Fi maps every possible joint assignment
of all variables in the scope to a real value, therefore Fi : Di1 ⇥ · · ·⇥Dir) ¬ and,
as above, r = |Si| is the arity of the function.

Notice that constraints can be defined over any subset of the variables, however
most of the work in constraint networks (both solution algorithms and theoretical
analysis) focus on binary constraint networks, where each constraint (soft or hard)
is defined over two variables. Actually, it is possible to show that every constraint
network can be mapped to a binary constraint network1, nonetheless here we use

1In general this requires the combination or addition of both variables and constraints [4].

4 Chapter 12

the general formalization and specify when the analysis is restricted to the binary
case.

When the constraint set involves only hard constraints, the problem we face
is known as a constraint satisfaction problem (CSP). In this context, we aim to
find an assignment for all the variables in the network that satisfies all constraints.
An assignment satisfies a constraint if the tuple of values of the variables in the
constraint’s scope belongs to the constraint’s relation, if (ai1 , · · · ,air) 2 Ri where
a j 2 D j and Si = {xi1 , · · · ,xir} such an assignment is referred to as a solution for
the network.

If the constraint set involves soft constraints, then we face a constraint op-
timization problem (COP) and our aim is to find the best solution. That is,
an assignment for all variables that satisfies all constraints and that optimizes a
global function F(ā). The global function F(ā) is an aggregation of the func-
tions representing the soft constraints (local functions): F(ā) = Âi Fi(āi), where
ā = (a1, · · · ,an) with a j 2 D j, and āi is a restriction of ā to Si. A COP can be
a maximization or a minimization problem. Without loss of generality, we focus
here on maximization problems, therefore our aim is to find the assignment ā⇤

that satisfies all hard constraints and such that:

ā⇤ = argmax
ā Â

i
Fi(āi) (12.1)

In general, every CSP can be viewed as an optimization task, where we aim to
find the assignment that violates the least number of constraints. This is particu-
larly useful for over constrained problems where a solution for the CSP might not
exist. Specifically, we can assign a constant fixed cost to every violated constraint
and search for an assignment that minimizes the sum of the costs. This problem
is known as the Max-CSP problem.

Moreover, we can always encode hard constraints using only soft constraints
by using infinite values to penalize assignments that do not satisfy hard con-
straints. For example, assume, without loss of generality, that we are solving a
maximization problem, and let Ri be a relation that corresponds to a hard con-
straint Ci. We can construct a function Fi(ā) = �• if ā 62 Ri and F(ā) = 0 other-
wise2.

2Notice that this may result in inferior solution techniques, as explicit hard constraints might
be exploited to reduce the solution search space [9].

Chapter 12 5

2.2 Distributed Constraint Processing

Distributed constraint processing extends the standard constraint processing
framework by considering a set of agents that have control over variables and
interact to find a solution to the constraint network. As before, we can have satis-
faction or optimization tasks resulting in two types of problems: distributed CSP
(DCSP) and distributed COP (DCOP). The DCSP paradigm was originally pro-
posed to address coordination problems in a multi-agent setting [41], however
in recent years the DCOP framework has received increasing attention as it can
better represent many practical application scenarios.

Formally a DCOP can be represented as a constraint network N =< X ,D,C >
containing soft constraints, plus a set of agents A = {A1, · · · ,Ak}. Each agent can
control only a subset of the variables Xi ✓ X , and each variable is assigned to ex-
actly one agent. In other words the assignment of variables to agents must be a
partition of the set of variables. Agents can control only the variables assigned to
them, meaning that they can observe and change the values of their assigned vari-
ables only. Moreover, agents are only aware of constraints that involve variables
that they can control. Such constraints are usually termed local functions and the
sum of these local functions is the local utility of the agent. Finally, two agents are
considered neighbors if there is at least one constraint that depends on variables
that each controls. Only neighboring agents can directly communicate with each
other.

Within this context, the goal for the agents is to find the optimal solution to the
constraint network, i.e. to find the assignment for all the variables in the system
that optimizes the global function. Thus, in a standard DCOP setting, agents are
assumed not to be self-interested, i.e. their goal is to optimize the global function
and not their local utilities.

Finding an optimal solution for a DCOP is an NP-Hard problem, which can
be seen by reducing a DCOP to the problem of deciding on the 3-colorability of a
graph; a problem known to be NP-Complete [26].

In the next section we will present a number of practical problems that can be
addressed using the DCOP framework, as well as some exemplar and benchmark-
ing DCOP instances.

6 Chapter 12

3 Applications and Benchmarking Problems
To provide concrete examples of how the DCOP framework can be applied to
real world scenarios we report here on a number of practical problems that can be
successfully addressed using the DCOP framework discussed above. Following
this we go on to show a set of abstract benchmarking problems that are commonly
used to evaluate and compare DCOP solution techniques.

3.1 Real World Applications

Many real world applications can be modeled using the DCOP framework, rang-
ing from human-agent organizations to sensor networks and robotics. Here we
focus on two such applications that have been frequently used as motivating sce-
narios for work in the MAS literature.

3.1.1 Meeting Scheduling

The problem of scheduling a set of tasks over a set of resources (e.g., schedule a
set of lectures over a set of lecture halls or a set of jobs to a set of processors) is
a very common and important problem that can be conveniently formalized using
constraint networks.

A typical example of this is the meeting scheduling problem, which is a very
relevant problem for large organizations (e.g., public administration, private com-
panies, research institutes etc.) where many people, possibly working in different
departments, are involved in a number of work meetings. In more detail, people
involved in a meeting scheduling problem might have various private preferences
on meeting start times, for example a given employee might prefer his/her meet-
ings to start in the afternoon rather than in the morning (to happily conjugate a late
night social life with work!). Given this, the aim is to agree on a valid schedule for
the meeting while maximizing the sum of the individuals’ private preferences. To
be valid, a schedule must meet obvious hard constraints, for example two meet-
ings that share a participant cannot overlap.

A possible DCOP formalization for the meeting scheduling domain involves a
set of agents representing the people participating in the meeting and a set of vari-
ables that represent the possible starting time of a given meeting according to a
participant. Constraints force equality on variables that represent the starting time
of the same meeting across different agents and ensure that variables that represent

Chapter 12 7

the starting times of different meetings for the same agent are non-overlapping. Fi-
nally, preferences can be represented as soft constraints on meeting starting times
and the overall aim is to optimize the sum of all the soft constraints. Notice that,
while in this setting we do have private preferences, we are maximizing the sum
of preferences of all the agents, and thus we are still considering a scenario where
agents are fully cooperative, i.e. they are willing to diminish their own local utility
if it will maximize the global utility.

While this problem could be easily formalized as a centralized COP, in this
case a distributed approach not only provides a more robust and scalable solution,
but it can also minimize the amount of information agents must reveal to each
other (thus preserving their privacy). This is because, as mentioned above, in a
DCOP, agents are required to be aware only of constraints that they are involved
in. For example, consider a situation where Alice must meet Bob and Charles in
two separate meetings. In a centralized approach Alice would have to reveal the
list of people she has to meet with. On the other hand, in a DCOP only people
involved in any particular meeting will be aware that the meeting is taking place.
Thus in our example, Bob does not need to know that Alice will also meet with
Charles.

3.1.2 Target Tracking

Target tracking is a crucial and widely studied problem for surveillance and mon-
itoring applications. It involves a set of sensors tracking a set of targets in order to
provide an accurate estimate of their positions. Sensors can have different sensing
modalities that impact on the accuracy of the estimation of the targets’ positions.
For example a pan, tilt and zoom (PTZ) camera could move to focus on a specific
area of the environment, reducing observation uncertainty for targets in that area.
Moreover, collaboration among sensors is crucial to improve the performance of
the system. For example two cameras could decide to track different targets to
maximize coverage of the environment, or to both focus on a potentially danger-
ous target, thus providing a more accurate estimate of its position.

There are several ways to formalize this scenario using the DCOP framework.
A widely accepted formulation is one where sensors are represented by agents
and variables encode the different sensing modalities of each sensor. Constraints
are usually defined among sensors that have an overlapping sensing range. Each
constraint relates to a specific target and represents how the joint choice of sensor
modalities impacts on the tracking performance for that target. Constraints can
specify the minimum number, or particular number, of sensors that are required to

8 Chapter 12

correctly identify a target, or provide a measure of position tracking accuracy for
each possible combination of agents’ sensing modalities. The global function for
the DCOP is the sum of constraints’ values. For example, the system could aim
to maximize the number of targets correctly identified or to maximize the sum of
tracking accuracy over all targets.

Within this context, the main reasons for a using distributed approach for the
optimization problem are robustness and scalability, which are both crucial issues
in surveillance and monitoring applications. Specifically, a distributed solution
improves scalability as it exploits the decomposition of the problem to reason lo-
cally. Thus reducing the communication and computation that each agent must
perform. This is very important as this type of application typically involves the
use of hardware devices that have inherent constraints on communication and
computation. Furthermore, robustness is enhanced as each agent decides on its
own sensing modalities, thus avoiding a central point of failure.

3.2 Exemplar and Benchmarking Problems
As previously remarked, finding an optimal solution for a DCOP is known to be an
NP-Hard problem. Therefore empirical evaluation of DCOP solution techniques
is a crucial point in order to evaluate their likely practical impact. In particular,
to have a meaningful comparison between the different solution techniques it is
essential to be able to run the various programs on shared test bed. This prob-
lem has been addressed by the DCOP community using benchmarking problem
instances inspired by practical applications, such as meeting scheduling and target
tracking3.

In addition, there are also a number of exemplar NP problems that are fre-
quently used to test solution techniques such as propositional satisfaction (SAT)
or graph coloring. Here we focus on the latter problem as it has been widely
used to evaluate the techniques that will be presented later in this chapter and is
particularly useful for illustrative purposes.

The graph coloring problem is an extremely simple problem to formulate and
is attractive since the computational effort associated with finding the solution
can be easily controlled using few parameters (e.g., number of available colors,
and the ratio of number of constraints to the number of nodes). The constraint
satisfaction version of a graph coloring problem can be described as follows: given

3For example see the repository of shared DCOP benchmarking problems created and main-
tained by the Teamcore research group, available at http://teamcore.usc.edu/dcop/.

Chapter 12 9

a graph of any size and k possible colors, decide whether the nodes of the graphs
can be colored with no more than k colors, so that any two adjacent nodes have
different colors.

In the CSP formulation of the graph coloring problem, nodes are variables,
the set of k colors is the variable domain (which is the same for all the variables)
and constraints are not-equal constraints that hold between any adjacent nodes.
An assignment is a map from nodes to colors without constraint violations. The
optimization version is a max-CSP problem where the aim is to minimize the
number of constraint violations. The optimization version of the graph coloring
problem can be generalized in many ways, for example by assigning different
weights to violated constraints or by giving different values to conflict violations
based on the color that causes the conflict (e.g., a penalty of 1 if both nodes are
blue and a penalty of 10 if both nodes are red).

4 Solution Techniques: Complete Algorithms
Given the previous description of a DCOP, we now focus on complete solution
techniques, i.e. those that always find a solution that optimizes the global ob-
jective function. These techniques are particularly interesting and elegant from a
theoretical point of view, but since we are dealing with an NP-Hard problem they
also exhibit an exponentially increasing coordination overhead (either in the size
and/or number of messages exchanged, or in the computation required by each
agent) as the number of agents in the system increases.

Broadly, these complete approaches can be divided in two classes: those that
are search based [25, 7, 15, 10, 17], and those that exploit dynamic program-
ming [30]. Moreover, search based approaches can be further divided between
synchronous ones, such as SyncBB [17] and AND/OR search [10]4, and asyn-
chronous ones, such as ADOPT [25], NCBB [7] and AFB [15]. In the syn-
chronous execution model, agents wait for messages from other agents before
computing and sending out new messages themselves. In contrast, in the asyn-
chronous execution model agents perform computation and send out messages
without waiting for messages from their neighbors. Asynchronous operation is
desirable in a multi-agent context as it allows agents to take decisions without
waiting for others agent to complete their computation, thus fully exploiting par-
allel computation. On the other hand, the synchronous model ensures that agents

4AO search was originally developed for centralized optimization problems but can easily be
extended to work in decentralized settings, see [28].

10 Chapter 12

always have the most relevant and up to date information before executing their
computation, thus minimizing redundancy in both computation and communica-
tion.

All the above techniques are completely decentralized, in the sense that each
agent has complete control over its variables and is aware of only local constraints.
However, centralizing part of the problem can sometimes reduce the effort re-
quired to find a globally optimal solution. This is the key concept behind the
Optimal Asynchronous Partial Overlay (optAPO) approach [23]. In more detail,
optAPO aims to discover parts of the problem that are particularly hard to solve
in a decentralized fashion (parts that are strongly interconnected) and centralizes
them into sub problems that are delegated to mediator agents (which act as central-
ized solvers). OptAPO has been shown to consistently reduce the communication
overhead with respect to other decentralized techniques such as ADOPT. How-
ever, it is very hard to control how much of the problem will be centralized, and
thus, it is difficult to predict the computational effort that mediator agents must be
able to sustain.

Here we focus on two decentralized approaches that are good representatives
of the two general solution classes: ADOPT for search based techniques and
DPOP for dynamic programming.

4.1 Search Based: ADOPT
ADOPT (Asynchronous Distributed OPTimization) was proposed by Modi et
al. and both guarantees solution optimality and allows agents to asynchronously
change the values of the variables that they control [24, 25]. As it is common
in the DCOP literature, the original ADOPT formulation assumes that each agent
controls only one variable and that the constraints are binary. While there are ways
to remove these assumptions without significantly changing the algorithm, most
of the work related to the ADOPT technique falls within this setting, therefore in
what follows we embrace these assumptions. Moreover, to maintain a close cor-
respondence with the original ADOPT description we assume that our task here
is a minimization problem. Hence constraints represent costs and agents wish to
find an assignment that minimizes the sum of these costs.

ADOPT is a search based technique that performs a distributed backtrack
search using a best-first strategy; each agent always assigns to its variable the best
value based on local information. The key components of the ADOPT algorithm
are: (i) local lower bound estimates, (ii) backtrack thresholds and (iii) termination
conditions. In particular, each agent maintains a lower bound estimate for each

Chapter 12 11

x3

F2,4

F1,4

F1,3F1,2

x4

x2

x1

Fi, j xi x j
2 0 0
0 0 1
0 1 0
1 1 1

Figure 12.1: Exemplar constraint network.

possible values of its variable. This lower bound is initially computed based only
on the local cost function, and is then refined as more information is passed be-
tween the agents. Each agent will choose the value of its variable that minimizes
this lower bound, and this decision is made asynchronously as soon as the local
lower bound is updated.

Backtrack thresholds are used to speed up the search of previously explored
solutions. This can happen because the search strategy is based on local lower
bounds, and thus, agents can abandon values before they are proven to be subopti-
mal. Backtrack thresholds are lower bounds that have been previously determined
and can prevent agents from exploring useless branches of the search tree.

Finally, ADOPT uses a bound interval to evaluate the search progress. Specifi-
cally, each agent maintains not only a lower bound but also an upper bound on the
optimal solution. Therefore, when these two values agree, the search process can
terminate and the current solution can be returned. In addition, this feature can be
used to look for solutions that are sub-optimal but within a given predefined bound
of the optimal solution. The user can specify a valid error bound (i.e. the distance
between the optimal solution value and an acceptable suboptimal solution) and as
soon as the bound interval becomes less than this value the search process can be
stopped.

Before executing the ADOPT algorithm, agents must be arranged in a depth

12 Chapter 12

1 1

2

3

2

3

2

1

Cost

Value

Parent/Child

1

[0,0,c3]

c2 : {(x1 = 0)}

x2 = 0�> 1

[0,0,c4]

x3 = 0

x1 = 0

c4 : {(x1 = 0),(x2 = 0)}

[0,∞,c2]

[0,2,c2]

c3 : {(x1 = 0)}
x3 = 0

A4

A2

A1

A3

Figure 12.2: Message exchange in the ADOPT algorithm: Value and Cost mes-
sages for one possible trace of execution. Numbers within squares indicate the
(partial) order of the messages.

first search (DFS) tree. A DFS tree order is defined by considering direct parent-
child relationship between agents. DFS tree orderings have been frequently used
in optimization (see for example [30]) because they have two interesting proper-
ties: (i) agents in different branches of the tree do not share any constraints, (ii)
every constraint network can be ordered in a DFS tree and this can be done in
polynomial-time with a distributed procedure [28]. The fact that agents in differ-
ent branches do not share constraints is an important property as it ensures that
they can search for solutions independently of each other. Figure 12.1 shows an
exemplar constraint network and Figure 12.2 reports a possible DFS order, where
solid lines show parent child relationships and constraints are not represented.
Given a constraint network, the DFS ordering is not unique and ADOPT’s perfor-
mance (in terms of coordination overhead) depends on the actual DFS ordering
used. Finding the optimal DFS tree is a challenging problem that the ADOPT
technique does not address.

Given a DFS ordering of the agents, the algorithm proceeds by exchanging
three types of messages: Value, Cost and Threshold. When the algorithm starts,
all agents choose a random value for their variables, and initialize the lower bound

Chapter 12 13

Parent/Child

Threshold

x1 = 0�> 1�> 0

A2

A4

t(0,x2) = 1 t(0,x3) = 0
A1

A3

Figure 12.3: Message exchange in the ADOPT algorithm: Threshold messages
for a revisited context.

and upper bound of their variables’ possible values to zero and infinity respec-
tively. These bounds are then iteratively refined as more information is transmitted
across the network. Figures 12.2 reports messages exchanged among the agents
during the first stages of the algorithm. Since the algorithm is asynchronous, we
report here one possible trace of execution and numbers within squares indicate
the (partial) order of the messages.

In more detail, Value messages are sent by an agent to all its neighbors that
are lower in the DFS tree order than itself, reporting the value that the agent has
assigned to its variable. For example, in Figure 12.2 agent A1 sends three value
messages to A2, A3 and A4 informing them that its current value is 0. Notice
that this message is sent to A4 even though there is no parent/child relationship
between A1 and A4 because A4 is a neighbor of A1 that is lower in the DFS order.

Cost messages are sent by an agent to its parent, reporting the minimum lower
and upper bound across all the agent’s variable values, and the current context.
The current context is a partial variable assignment, and in particular, it records
the assignment of all higher neighbors. For example, in Figure 12.2 the current
context for A4, c4, is {(x1,0),(x2,0)}. The minimum lower bound and minimum
upper bound are computed with respect to the current context. To compute the

14 Chapter 12

minimum lower bound each agent evaluates its own local cost for each possible
value of its variable, adding all the lower bound messages received from children
that are compatible with the current variable value. The local cost for an agent
is the sum of the values of local cost function for all the higher neighbors. For
example, consider the cost message sent by A4. The minimum lower bound (which
is 0) is computed by finding the minimum between d(x4 = 0) = 4 and d(x4 = 1) =
0 where d(a) is the local cost function when the variable assumes the value a. The
local cost function is computed by summing up the values of the cost functions
for all neighbors higher in the DFS order and by assigning their values according
to the current context. A similar computation is performed for the upper bound.

Cost messages for agents that are not leaves of the DFS tree (e.g., A2) also
include the lower and upper bound for each child. For example, consider the cost
message sent by A2 to A1. Here the minimum lower bound across all variable’s
values (LB = 0) is computed by finding the minimum between LB(x2 = 0) =
d(x2 = 0) + lb(x2 = 0,x4) = 2 and LB(x2 = 1) = d(x2 = 1) + lb(x2 = 1,x4) =
0 where lb(a,xl) is the lower bound for the child variable xl when the current
variable is assigned to a in the current context.

Threshold messages are sent from parents to children to update the agent’s
backtrack thresholds. Backtrack thresholds are particularly useful when a previ-
ously visited context is re-visited. Each agent stores cost information (e.g., upper
and lower bounds) only for the current context and deletes previously stored in-
formation as soon as the context changes. In fact, if an agent did maintain such
information for every visited context it will need an exponential space in mem-
ory. However, since a context might be visited multiple times during the search
process, whenever this happens the agent starts computing cost information from
scratch. Now, since this context was visited before, the agent reported the sum of
cost information to its parent and since the parent has that information stored, it
can now send it back to the agent via a threshold message. The threshold message
is used to set the agent’s threshold to a previous valid lower bound, and propagate
cost information down the tree, avoiding needless computation. Notice that the in-
formation that the parent stores is the accumulated cost information. Therefore, to
propagate information down the tree, the agent must subdivide this accumulated
cost across its children using some heuristic, as the original cost subdivision is
lost, and then correct this subdivision over time as cost feedback is received from
the children. For example, assume that during the search process, x1 changes its
value and then the context with x1 = 0 is visited again. Agent A1 will then send
threshold messages to A2 and A3 as shown in Figure 12.3. Notice that the value
of these messages is the lower bound value sent by the corresponding child agent

Chapter 12 15

for that context, e.g. the message t(x1 = 0,x2) equals the lower bound sent by A2
to A1 with context {(x1,0)}.

Finally, agents asynchronously update a variable’s value whenever the stored
lower bound for the current value exceeds the backtrack threshold and the new
variable’s value is the one that minimizes the stored lower bounds. For example,
consider agent A2 in Figure 12.2, when receiving the cost message from A1. In this
case, the lower bound for the current value (LB(x2 = 0) = 2) exceeds the threshold
(initially set to 0). Therefore, the agent updates its variable value to the one that
minimizes the lower bound, which in our case is x2 = 1. It then sends cost and
value messages accordingly. When the minimum lower bound for a variable value
is also an upper bound for that value, the agent can stop propagating messages as
that value will be optimal given the current context. When this condition is true at
the root agent, a terminate message is sent to all the children. Agents propagate the
termination message if the termination condition is true for them as well. When
the terminate message has propagated to all the agents, the algorithm stops, and
the optimal solution has been found.

ADOPT is particularly interesting because it is asynchronous and because the
memory usage of each agent is polynomial in the number of variables. Moreover,
messages are all of a fixed size. However, the number of messages that agents
need to exchange is, in the worst case, exponential in the number of variables.
This impacts on the time required to find the optimal solution. In particular, the
number of message synchronization cycles, defined as all agents receiving incom-
ing messages and sending outgoing messages simultaneously, is exponential in
the number of variables. This is a frequently used measure to evaluate DCOPs so-
lution techniques as it is less sensitive to variations in agents’ computation speed
and communication delays than the wall clock. As previously remarked, such ex-
ponential elements are unavoidable in complete approaches and they can severely
restrict the scalability of the approach.

Several works build on ADOPT attempting to reduce computation time. For
example, Yeoh et al. propose BnB-ADOPT, which is an extension of ADOPT that
consistently reduces computation time by using a different search strategy; depth
first search with branch and bound instead of best first search [39]. Moreover,
Ali et al. suggest the use of preprocessing techniques for guiding ADOPT search
and show that this can result in a consistent increase in performance [3]. Finally,
Gutierrez and Meseguer show that many messages that are sent by BnB-ADOPT
are in fact redundant and most of them can be removed resulting in significant
reduction in communication costs [16].

In the next section we describe a completely different approach based on dy-

16 Chapter 12

namic programming.

4.2 Dynamic Programming: DPOP
DPOP (Dynamic Programming Optimization Protocol) was proposed by Petcu
and Falting [30], and is based on the dynamic programming paradigm, and more
specifically, on the Bucket Elimination (BE) algorithm [9].

In more detail, BE is a dynamic programming approach for solving both con-
straint networks and also more general graphical models such as Bayesian net-
works, Markov random fields and influence diagrams. BE takes as input a con-
straint network and an ordering of the network variables. It then associates a
bucket to each variable and partitions the constraints; assigning them to the bucket
following the given ordering. The optimal assignment is obtained by running two
phases. First, the buckets are processed (from last to first), essentially running a
variable elimination algorithm. Specifically, when processing a bucket, all con-
straints in the bucket are summed together and the variable that corresponds to
the bucket is eliminated by maximization. This results in a new constraint that is
placed in the first bucket, following the specified order, that contains one of the
variables that are in the constraint scope. When the first phase is completed, the
optimal value for the variable associated with the first bucket can be computed.
This optimal value can be fixed, and then, given this value, the optimal value for
the next variable in the ordering can be found. Proceeding in this way the entire
optimal assignment is generated.

Now, while BE is normally defined over a linear ordering of the variables,
it can be extended to work on a tree ordering via message passing between the
nodes; resulting in the Bucket Tree Elimination Algorithm (BTE) [9]. Against
this background, DPOP can essentially be seen as a special case of BTE that oper-
ates on a DFS tree ordering of the constraint network. This specific arrangement
is important because it ensures that during the optimization process, agents have
knowledge of, and can control, only their own variables, and that they communi-
cate only with other agents that share at least one constraint.

The DPOP algorithm can be divided in to three phases: (i) arrangement of the
variables into a DFS tree; (ii) propagation of Util messages bottom-up along the
DFS tree (from leaves to root); and (iii) propagation of Value messages top-down
(from root to leaves). We will briefly discuss these three phases in the following.
As with the ADOPT example, for ease of presentation, we assume that each agent
controls only one variable and that constraints are binary. However, relaxing this
assumption does not result in significant changes to the algorithm. In contrast to

Chapter 12 17

F1,2

x3

x4

x1

x2

(b)

x3

x1

x4

x2 x3

x1

F2,4

F1,3

x4

(a)

x2

(c)

F1,4

F2,3

Figure 12.4: (a) Exemplar constraint network, with (b) induced graph with DFS
order {x4,x2,x3,x1}, and (c) induced graph with DFS order {x1,x2,x3,x4}

the description of ADOPT, and in line with the original description of DPOP, we
deal here with maximization problems.

As with ADOPT, DPOP first pre-processes the constraint network to create
a DFS tree. In contrast to ADOPT, however, DPOP guarantees that the optimal
solution can be obtained with a linear number of messages; resulting in messages
whose size is exponential in the induced width of the DFS tree ordering.

More specifically, DPOP can operate on a pseudo-tree ordering of the con-
straint network. A pseudo-tree ordering is one where nodes that share a constraint
fall in the same branch of the tree. DFS tree ordering is thus a special case of a
pseudo-tree that can be easily obtained with a DFS traversal of the original graph.
Now, the complexity of the DPOP algorithm is strongly related to the DFS ar-
rangement on which the algorithm is run, and in particular, it is exponential in
the induced width of the DFS tree ordering. Given a graph and an ordering of
its nodes, the width induced by the ordering is the maximum induced width of a
node, which is simply given by how many parents it has in the induced graph. The
induced graph can be computed by processing the nodes from last to first, and for
each node, adding edges to connect all the parents of that node (i.e. neighbors that
precede the node in the order).

18 Chapter 12

A3

A2

A1

U4!2 U3!2

V2!4
V2!3

U2!1

V1!2

A4

Figure 12.5: Message exchange in DPOP.

In particular, Figure 12.4 shows a constraint network and two induced graphs
given by different orderings. The induced width for the graph in Figure 12.4(b)
is 3, while the induced width for the graph in Figure 12.4(c) is 2. Notice the
dashed edge between x3 and x4 in Figure 12.4(b) that was added when building the
induced graph. While there are various heuristics to generate DFS orderings with
small induced width, finding the one with minimal induced width is an NP-Hard
problem. Figure 12.5 report a DFS arrangement for the constraint network shown
in Figure 12.4(a) along with messages that will be exchanged during the following
phases. Dashed edges represent constraints that are part of the constraint network
but are not part of the DFS tree. These are usually called back-edges.

Once the variables have been arranged in a DFS tree structure, the Util prop-
agation phase starts. Util propagation goes from leaves, up the tree, to the root
node. Each agent computes messages for its parent considering both the mes-
sages received from its children and the constraints that the agent is involved in.
In general, the Util message Ui! j that agent Ai sends to its parent A j can be com-
puted according to the following equation:

Ui! j(Sepi) = max
xi

0

@M

Ak2Ci

Uk!i �
M

Ap2Pi[PPi

Fi,p

1

A (12.2)

Chapter 12 19

where Ci is the set of children for agent Ai, Pi is the parent of Ai, PPi is the set
of agents preceding Ai in the pseudo-tree order that are connected to Ai through
a back-edge (pseudo parents), and Sepi is the set of agents preceding Ai in the
pseudo-pstree order that are connected with Ai or with a descendant of Ai

5. The
� operator is a join operator that sums up functions with different but overlap-
ping scopes consistently, i.e. summing the values of the functions for assignments
that agree on the shared variables. For example, considering again Figure 12.5,
agent A3 sends the message U3!2(x1,x2) = maxx3(F1,3(x1,x3)�F2,3(x2,x3)) be-
cause there are no messages from its children, while agent A2 sends the message
U2!1(x1) = maxx2(U3!2(x1,x2)�U4!2(x1,x2)�F1,2(x1,x2)). It is possible to
show that the size of the largest separator in a DFS tree equals the induced width
of the tree, which clarifies the exponential dependence on the induced width of
message size.

Finally, the Value message propagation phase builds the optimal assignment
proceeding from root to leaves. Root agent Ar computes x⇤r which is the argu-
ment that maximizes the sum of the messages received by all its children (plus
all unary relations it is involved in) and sends a message Vr!c = {xr = x⇤r} con-
taining this value to all its children Ac 2Cr. The generic agent Ai computes x⇤i =
argmaxxi(ÂA j2Ci Uj!i(x⇤p)+ÂA j2Pi[PPi Fi, j(xi,x⇤j)), where x⇤p =

S
A j2Pi[PPi

{x⇤j} is
the set of optimal values for Ai’s parent and pseudoparents received from Ai’s
parent. Finally, the generic agent Ai sends a message to each child A j with
value Vi! j = {xi = x⇤i }[

S
xs2Sepi\Sep j

{xs = x⇤s}. For example, assume agent A1’s
optimal value is x⇤1 = 1, then agent A2 computes x⇤2 = argmaxx2(U3!2(1,x2)�
U4!2(1,x2)� F1,2(1,x2)) and propagates the message {(x1 = 1),(x2 = x⇤2)} to
agents A3 and A4. Notice that the maximization performed by agent A4 in the
value propagation phase is the same as the one previously done to compute the
Util messages, but now with the aim to find the value that maximizes the equa-
tion. Hence computation can be reduced by storing the appropriate values during
the Util propagation phase.

As discussed above, DPOP message size, and hence the computation that
agents need to compute them, is exponential. However, it is only exponential
in the induced width of the DFS tree ordering used, that, in general, is much less
than the total number of variables. Furthermore, there are many extensions of
DPOP that address various possible trade-offs in the approach. In particular, MB-
DPOP exploits the cycle-cut set idea to address the trade-off between the number

5This set is called the separator because it is precisely the set of agents that should be removed
to completely separate the subtree rooted at Ai from the rest of the network.

20 Chapter 12

of messages used and the amount of memory that each message requires [31].
On the other hand, A-DPOP addresses the trade-off between message size and
solution quality [29]. Specifically, A-DPOP attempts to reduce message size by
optimally computing only a part of the messages and approximating the rest (with
upper and lower bounds). Given a fixed approximation ratio, A-DPOP can then
reduce message size to meet this ratio, or alternatively, given a fixed maximum
message size, it propagates only those messages that do not exceed that size.

As a final remark, note that there is a close relationship between DPOP and
the Generalized Distributive Law (GDL) framework which we shall discuss fur-
ther in Section 5.2 [2]. GDL represents a family of techniques frequently used in
information theory for decoding error correcting codes6 [21], and solving graphi-
cal models (e.g., to find the maximum a posteriori assignment in Markov random
fields [37], or the posterior probabilities [38]).

5 Solution Techniques: Approximate Algorithms
As discussed earlier, solving a constraint network is an NP-Hard problem. There-
fore the worst case complexity of complete methods are often prohibitive for prac-
tical applications. This is particularly the case for applications involving physical
devices, such as sensor networks or mobile robots, which have severe constraints
on memory and computation.

In these settings, approximate algorithms are often preferred, as they require
very little local computation and communication, and are, as such, well suited for
large scale practical distributed applications in which the optimality of the solu-
tion can be sacrificed in favor of computational and communication efficiency (see
[6] for a review of such algorithms). Furthermore, such approximate techniques,
have been shown to provide solutions which are very close to optimality in several
problem instances [12, 22]. However, these approaches do not provide guarantees
on the solution quality in general settings. This is particularly troublesome be-
cause the quality of solution to which most approximate algorithms converge is
highly dependent on many factors which cannot always be properly assessed be-
fore deploying the system. Therefore there is no guarantee against particularly
adverse behavior on specific pathological instances.

Thus, we next describe two classes of approximate algorithms for addressing
DCOPs: local greedy methods and GDL based approaches.

6Decoding turbo codes is probably the most important representative application for which
GDL techniques are used. See [21], chapter 48.4 for details.

Chapter 12 21

5.1 Local Greedy Approximate Algorithms
A local greedy search starts with a random assignment for all the variables and
then performs a series of local moves trying to greedily optimize the objective
function. A local move usually involves changing the value of a small set of
variables (in most cases just one) so that the difference between the value of the
objective function with the new assignment and the previous value is maximized.
This difference is usually called the gain. The search stops when there is no local
move that provides a positive gain, i.e., when the process reaches a local maxi-
mum. Local greedy search is a very popular approximate optimization technique,
as it requires very little memory and computation, and can obtain extremely good
solutions in many settings. The main problem for this type of approach is the
presence of local maxima that can, in general, be arbitrarily far from the global
optimal solution. Many heuristics can be used to avoid local maxima such as us-
ing random restart (sometimes called Stochastic Local Search [9]) or introducing
stochastic steps in the search process (resulting in algorithms such as walkSAT
and Simulated Annealing [9]).

Greedy local search methods have been widely used for DCOPs resulting in
many successful approaches [12, 22]. When operating in a decentralized context
an important issue for these techniques is that to execute a greedy local move
agents need some type of coordination. In fact, the gain for a local move involving
a variable xi is computed assuming that all other variables X \{xi} do not change
their values. If all agents are allowed to execute in parallel, a potentially greedy
move can become harmful (i.e., result in negative gain) because each agent has
out-of-date knowledge about the choices of other agents. Such incoherence may
also compromise the convergence of the approach leading to thrashing behaviors.

5.1.1 The Distributed Stochastic Algorithm

A simple and effective way to reduce such incoherence is to introduce a stochas-
tic decision on whether agents should actually perform a move when they see the
opportunity to optimize the gain [12]. This approach is usually called the Dis-
tributed Stochastic Algorithm (DSA) and has been widely studied and applied in
many domains. In more detail, assuming a synchronous execution model (each
agent waits for the messages from all its neighbors), DSA has an initialization
phase, where each agent chooses a random value for its variable, and then an infi-
nite loop is executed by each agent. At each execution step, each agent Ai executes
the following operations:

22 Chapter 12

• Choose an activation probability pi 2 [0,1].

• Generate a random number ri 2 [0,1).

• If ri < pi choose a value ai such that the local gain is maximized.

• If ri � pi do not change its value.

• If the variable value changed, send information to all neighbors notifying
them of the change.

• Receive messages from neighbors and update information accordingly.

DSA can also be used in an asynchronous context and empirical results show that
the algorithm is still effective if the rate of variable change is low with respect to
the communication latency, thus allowing information to be propagated coherently
in the system. Moreover, in most work, the activation probability is not decided
at each optimization step, but is fixed at the beginning of the execution and is
the same for all agents. The main strength of the DSA algorithm is its extremely
low overhead in terms of memory, computation and communication. In fact, each
agent needs to store and reason only about its direct neighbors which, in general,
are far fewer than the total number of agents in the system. Moreover, there is
no exponential increase in computation and communication, as the optimization
step considers only the current values of neighbors, and the communication step
involves a message to communicate just the new value of the agent’s variable. Fi-
nally, empirical results show that the algorithm typically monotonically increases
the solution quality with each execution step, resulting in anytime behavior that is
very well suited for practical applications; a solution is always available and the
longer an agent waits before acting, the better the solution will be. Note, however,
that there is no theoretical guarantee of such anytime behavior, but this is often
obtained in practice with a suitable tuning of the activation probability.

The main drawback of DSA is that the solution quality can be strongly depen-
dent on the activation probability, and there is no way to compute its value from
an analysis of the problem instance. Moreover, the sensitivity of the algorithm’s
performance, with respect to the activation probability, is domain dependent, and
it is hard to generalize the behavior of the algorithm across different domains.

5.1.2 The Maximum Gain Message Algorithm

An alternative approach to address the possible out-of-date knowledge about other
agents’ variable values, is for neighboring agents to agree on who is the agent that

Chapter 12 23

can perform a move, while the others wait without changing their values. This
approach is the basic idea behind the Maximum Gain Message algorithm (MGM)
[22]. MGM is based on the well known Distributed Breakout Algorithm (DBA),
but is adapted to avoid outdated knowledge of the agent about its neighbours.
Assuming again a synchronous execution model, at each execution step each agent
Ai executes the following operations:

• Send its current value ai to neighbors and receive values from neighbors.

• Choose a value a⇤i such that the local gain g⇤i is maximised (assuming neigh-
bors do not change value).

• Send the gain g⇤i to neighbors and receive gain from neighbors.

• If the gain for the agent is the highest in the neighborhood, update the value
of xi to a⇤i .

MGM is guaranteed to be anytime and several empirical evaluations show
that it has comparable performance with respect to DSA in various domains [22].
Moreover, unlike DSA, MGM does not require any parameter tuning.

A common characteristic of both DSA and MGM, is that decisions are made
considering local information only, i.e., when deciding the next value for its vari-
able each agent optimizes only with respect to the current assignments of its neigh-
bors. This provides for extremely low cost and scalable techniques, however,
solution quality is strongly compromised by local maxima that can, in general,
be arbitrarily far from the optimal solution. In the next section, we present an
algorithm for solving DCOP, based on the Generalised Distributive Law (GDL)
framework, that overcomes this limitation.

5.2 GDL Based Approximate Algorithms
As previously mentioned, the Generalised Distributive Law (GDL) is a unify-
ing framework to perform inference in graphical models. Specifically, the GDL
framework operates on commutative semi-rings, and depending on the specific
semi-ring used, we obtain different algorithms such as the max-sum, max-product,
or sum-product. Such algorithms are widely used to perform inference tasks such
as finding the maximum a posteriori assignment in Markov random fields (max-
product) [37], or computing marginal distributions in Bayesian networks (sum-
product or belief propagation) [21]. In particular, the max-sum algorithm can be

24 Chapter 12

x4

x1

x2

m4!1(x1)

m3!1(x1)

m1!2(x2)

m2!1(x1)
x3

Figure 12.6: Message exchange in max-sum.

used to solve constraint networks as it can find the argument that maximizes a
global optimization function expressed as the sum of local functions.

5.2.1 The Max-Sum Algorithm

In more detail, the max-sum algorithm is an iterative message passing algorithm,
where agents continuously exchange messages to build a local function that de-
pends only on the variables they control. This function represents the dependence
of the global function on the agents’ values and is used to find the optimal as-
signment. The max-sum algorithm can directly handle n-ary constraints and more
variables per agent, however for ease of presentation, we report here a description
of the algorithm in line with the earlier assumptions that each agent controls one
variable and all constraints are binary. The interested reader can find the descrip-
tion of the algorithm in more general settings in [32]. Finally, we again assume a
synchronous execution model.

Given this, at each execution step each each agent Ai updates and sends to each
of its neighbors A j the message, mi! j(x j), given by:

mi! j(x j) = ai j +max
xi

Fi j(xi,x j)+ Â

k2N(i)\ j
mk!i(xi)

!
(12.3)

Chapter 12 25

where ai j is a normalization constant, N(i) is the set of indices for variables that
are connected to xi, and Fi j is the constraint defined over the variables controlled
by Ai and A j. The normalization constant ai j is added to all the components of the
message so that Âx j mi! j(x j) = 0. This is necessary on graphs with loops because
otherwise message values might grow indefinitely, possibly leading to numerical
errors.

At the first iteration all messages are initialized to constant functions, and at
each subsequent iteration, each agent Ai aggregates all incoming messages and
computes the local function, zi(xi), which is given by:

zi(xi) = Â
k2N(i)

mk!i(xi) (12.4)

This is then used to obtain the max-sum assignment, x̃, which, for every variable
xi 2 X is given by:

x̃i = argmax
xi

zi(xi) (12.5)

Figure 12.6 shows input and output messages for agent A1. In this example, the
message to agent A2 is computed as m1!2(x2) = maxx1(F1,2(x1,x2)+m3!1(x1)+
m4!1(x1)) and z1(x1) = m2!1(x1)+m3!1(x1)+m4!1(x1).

The max-sum technique is guaranteed to solve the problem optimally on
acyclic structures, but when applied to general graphs which contain loops, only
limited theoretical results hold for solution quality and convergence. Nonetheless,
extensive empirical evidence demonstrates that, despite the lack of convergence
guarantees, the max-sum algorithm does in fact generate good approximate solu-
tions when applied to cyclic graphs in various domains [13, 11, 19]. When the
algorithm does converge, it does not converge to a simple local maximum, but
rather, to a neighborhood maximum that is guaranteed to be greater than all other
maxima within a particular large region of the search space [37]. Characteriz-
ing this region is an ongoing area of research and to date has only considered
small graphs with specific topologies (e.g., several researchers have focused on
the analysis of the algorithm’s convergence in graphs containing just a single loop
[37, 1]).

The max-sum algorithm is attractive for decentralized coordination of compu-
tationally and communication constrained devices since the messages are small
(they scale with the domain of the variables), and the number of messages ex-
changed typically varies linearly with the number of agents within the system.
Moreover, when constraints are binary, the computational complexity to update
the messages and perform the optimization is polynomial. In the more general

26 Chapter 12

case of n-ary constraints, this complexity scales exponentially with just the num-
ber of variables on which each function depends (which is typically much less
than the total number of variables in the system). However, as with the previously
discussed approximate algorithms, the lack of guaranteed convergence and guar-
anteed solution quality in general cases, limits the use of the standard max-sum
algorithm in many application domains.

A possible solution to address this problem is to remove cycles from the con-
straint graph by arranging it into tree-like structures such as junction trees [20] or
pseudo-trees [30]. However, such arrangements result in an exponential element
in the computation of the solution or in the communication overhead. For exam-
ple, DPOP is functionally equivalent to performing max-sum over a pseudo-tree
formed by depth-first search of the constraint graph, and the resulting maximum
message size is exponential with respect to the width of the pseudo-tree. This ex-
ponential element is unavoidable in order to guarantee optimality of the solution
and is tied to the combinatorial nature of the optimization problem. However, as
discussed in the introduction of this chapter, such exponential behavior is undesir-
able in systems composed of devices with constrained computational resources.

To address these issues, low overhead approximation algorithms that can pro-
vide quality guarantees on the solution are a key area of research, and we discuss
the most prominent approaches in this area in the next session.

6 Solution Techniques with Quality Guarantees
Developing approximate algorithms that can provide guarantees on solution qual-
ity is a growing area of research that is gaining increasing attention. Such ap-
proaches are particularly promising as they can conveniently address the unavoid-
able trade off between guarantees on solution quality and computation effort. Ad-
dressing this trade-off is particularly important in dynamic settings and when the
agents have severe constraints on computational power, memory or communica-
tion (which is usually the case for applications involving embedded devices, such
as mobile robots or sensor networks). Moreover, having a bound on the quality
of the provided solutions is particularly important for safety critical application
(such as disaster response, surveillance, etc.) because pathological behavior of
the system is, in this case, simply unacceptable.

Guarantees that can be provided by approximate algorithms can be broadly
divided in two main categories: off-line and on-line. The former can provide a
characterization of the solution quality without running any algorithm on the spe-

Chapter 12 27

cific problem instances. In contrast, the latter can only provide quality guarantees
for a solution after processing a specific problem instance. Off-line guarantees
represent the classical definition of approximation algorithms [8], and they pro-
vide very general results which are not tied to specific problem instances. In
this sense they are generally preferred to on-line guarantees. However, on-line
guarantees are usually much tighter than the off-line, precisely because they can
exploit knowledge on the specific problem instance, and thus, better characterize
the bound on solution quality.

Here we present two representative approaches for these two classes: the k-
optimality framework and the bounded max-sum approach.

6.1 Off-line Guarantees
A widely used approach to provide off-line guarantees for solution quality in
DCOPs is based on the k-size optimality framework. The main idea behind k-
size optimality is to consider optimal solutions for sub-groups of k agents, and
then provide a bound on the globally optimal solution. More specifically, a so-
lution is k-optimal if the corresponding value of the objective function cannot
be improved by changing the assignment of k or fewer agents. For example,
consider again the constraint network in Figure 12.1. The solution x̂ = {x1 =
1, x2 = 1, x3 = 1, x4 = 1} is a 2-optimal solution but not a 3-optimal solu-
tion. In fact, F(x̂) = F1,2 + F1,3 + F1,4 + F2,4 = 1 + 1 + 1 + 1 = 4, and thus,
clearly if only two agents can change their variables’ values, there is no solu-
tion that obtains a value higher than four. However, if we allow three agents to
change their values, then we can obtain a better solution. Consider for example
the assignment x̂0 = {x1 = 0, x2 = 0, x3 = 1, x4 = 0} we can see that F(x̂0) =
F1,2+F1,3+F1,4+F2,4 = 2+0+2+2 = 6 � 4. Moreover, notice that x̂0 is not the
optimal solution, as the optimal solution is x⇤ = {x1 = 0, x2 = 0, x3 = 0, x4 = 0}
and F(x⇤) = 8.

Building on the k-optimality concept, Pearce and Tambe were able to pro-
vide an approximation ratio (i.e., the ratio between the unknown optimal solution
and the approximate solution [8]) for k-optimal algorithms which is valid for any
DCOP with non-negative reward structure7 [27]. The accuracy of such an approx-
imation ratio, in any particular setting, depends on the number of agents, on the
arity of the constraints and on the value of k. Specifically, for any DCOP with

7Reward structure here makes reference to the particular values that return the functions of the
DCOP.

28 Chapter 12

non-negative rewards, the following equation holds:

F(x̂)�
�n�m

k�m

�
�n

k

�
�
�n�m

k

�F(x⇤) (12.6)

where x̂ is a k-size optimal solution, x⇤ is the optimal solution, n is the number of
agents and m is the maximum constraint arity and m k < n. Notice that every
DCOP that does not have infinite negative costs can be normalized to one with
all non-negative rewards. However the analysis is not applicable to DCOPs that
include hard constraints.

For the usual case of a binary network (i.e. m = 2) the above equation simpli-
fies to:

F(x̂)� k�1
2n� k�1

F(x⇤) (12.7)

Thus, for the constraint network in Figure 12.1, we can immediately conclude that
for any 2-optimal solution, x̂, we will have that F(x̂)� 1/5 ·F(x⇤) simply because

k�1
2n�k�1 = 1/5 when k = 2 and n = 4. In fact it is easy to see that this inequality
holds for the 2-optimal solution considered above.

Notice that, the above inequalities hold for every possible constraint network
with every possible reward structure (as long all rewards are non-negative). For
example, if we add a constraint between x3 and x4 in our exemplar constraint net-
work, no matter what function we define for that constraint, we are still guaranteed
that the value of any 2-optimal solution will be greater than 1/5 of the value of
the optimal solution. This is clearly a very strong and general result, but unfortu-
nately, the accuracy of this bound depends on the number of agents, on the arity
of the constraints, and on the value of k. Specifically, the bound is more accu-
rate when k is higher, but less accurate when the number of agents in the system
grows, and the maximum arity of constraints is high. Clearly, by increasing k it
is possible to achieve better bounds, however this would result in an exponential
increase in computation and communication required to obtain a k-size optimal
solution.

From an algorithmic point of view, the k-size optimal framework assumes
that we are able to find a k-size optimal solution. This basically requires that a
group of k agents coordinate their choice to find a solution that is optimal for
the group. Now, any local hill climbing algorithm is k-size optimal for k = 1.
Hence, approaches such as DSA [12] and MGM [22] are able to find a 1-optimal
solution. However, for k = 1 we are unable to provide any guarantees as the k-
optimal analysis is valid only if m k. Therefore, k = 2 variants of MGM and

Chapter 12 29

DSA, termed MGM-2 and DSA-2, have been devised [22]. Moreover, there are
also algorithms to find k-size optimal solutions with arbitrary k [18].

The k-size optimality framework has been recently extended introducing a
different criterion for local optimality; in particular, t-distance optimality. This
is based on the distance between nodes on the constraint graphs, rather than on
the size of the groups. Furthermore, Vinyals et al. recently introduced the C -
optimality framework that generalizes both k-optimality and t-optimality by pro-
viding quality guarantees for local optima in regions that can be defined by ar-
bitrary criteria [36]. Specifically, they propose a new criterion to define regions
(i.e., the size-bounded-distance criterion); showing that this criterion outperforms
both k-size and t-distance, yielding more precise control of the computational ef-
fort required to provide such local optimal solutions. Finally, the C -optimality
framework has been recently used to provide quality guarantees for fixed-point
assignments of the max-sum algorithm (i.e., assignments to which the algorithm
converged). Specifically, building on the results obtained by Weiss that charac-
terized any fixed point max-product assignment as a local optima for a specific
region (named Single Loops and Trees) [37], Vinyals et al. were able to charac-
terize the quality guarantees for the max-sum algorithm in that region [33]. Thus,
if the max-sum algorithm converges, it is possible to provide a worst case quality
guarantee equivalent to 3-optimal solutions of the k-optimality framework.

As mentioned above, inequality 12.6 is valid for every possible constraint
network. This is because the bound is the result of a worst case analysis on a
completely connected graph. If we restrict our attention to specific constraint net-
work topologies it is possible to obtain better bounds. For example, for a network
with a ring topology, where each agent has only two constraints, we have that
F(x̂)� k�1

k+1F(x⇤). This is a much better bound as it does not depend on the num-
ber of agents in the system, but applies only to a very specific topology. Similar
considerations hold for assumptions on the reward structure. Specifically, bet-
ter guarantees can be provided assuming some a priori knowledge on the reward
structure. For example, Bowring et al. show that the approximation bounds can
be improved by knowing the ratio between the minimum reward to the maximum
reward [5]. In addition, they also extend the k-optimality analysis to DCOPs that
include hard constraints. However, while they are able to significantly improve
on the accuracy of the bound by exploiting a priori knowledge on the reward, the
bound is still dependent on the number of agents, and decreases as the number of
agents grows; thus, being of little help for large scale applications.

30 Chapter 12

6.2 On-line Guarantees
On-line approaches for providing quality guarantees are complementary to off-
line ones, as they usually give accurate bounds but only for specific problem in-
stances [32, 34]. In this respect, the Bounded Max-Sum (BMS) approach is a
good representative for this kind of technique [32]. The main idea behind BMS
is to remove cycles in the original constraint network by simply ignoring some
of the dependencies between agents. It is then possible to optimally solve the
resulting tree structured constraint network, whilst simultaneously computing the
approximation ratio for the original problem instance. The BMS approach uses
the max-sum algorithm to provide an optimal solution for the tree-structured prob-
lem, hence the name, but any distributed constraint optimization technique that is
guaranteed to provide optimal solutions on a tree-structured constraint network
could be used. The choice of the max-sum approach is driven by its efficiency in
terms of low communication overhead (specifically in the number of messages),
low computational requirement and ease of decentralization. The main issue with
this approach is to choose which dependencies should be removed to form the
tree-structured constraint network, and to somehow relate the solution quality of
the new problem to that of the original loopy one.

To do this, BMS assigns weights to constraints, where the weights quantify the
maximum impact that removing any constraint may have on the optimal solution.
In other words, the weight of a constraint specifies the worst case outcome if
we were to solve the problem ignoring that constraint. BMS will then remove
constraints that have the least impact on the solution quality, (i.e. constraints that
have smaller weights). This can be done by computing a maximum spanning tree
of the original constraint network.

For ease of presentation, we again provide a description of the algorithm under
the usual assumptions that each agent controls exactly one variable, and that all
constraints are binary. The interested reader can find the description of the algo-
rithm in more general settings in [32]. In this context, the steps of the algorithm
are the following:

1. Define the weight of each constraint as: wi j = min{w0
i j,w

00
i j} where w0

i j =

maxx j

⇥
maxxi Fi j �minxi Fi j

⇤
and w00

i j = maxxi

⇥
maxx j Fi j �minx j Fi j

⇤
. For

example, Figure 12.7 reports a constraint network and the weights that
the BMS algorithm would compute. Specifically, for the constraint be-
tween x1 and x4 we have that w0

14 = maxx4 [maxx1G14 �minx1G14] = 3 and
w00

14 = maxx1 [maxx4G14 �minx4G14] = 1 therefore w14 = 1.

Chapter 12 31

G14

x1

x2

F24

G23

F12

x4

x3

F13

Fi, j xi x j
2 0 0
0 0 1
0 1 0
1 1 1

Gi, j xi x j
4 0 0
3 0 1
1 1 0
2 1 1

Figure 12.7: Loopy constraint network with two types of constraints.

2. Remove constraints from the original cyclic constraint network by building
a maximum weight spanning tree. In this way it is possible to minimize
the sum of the weights of the removed edges, pursuing the objective of
removing constraints that have least impact on the solution.

Moreover, define the sum of the weights of the removed constraints as:

W = Â
ci j2Cr

wi j (12.8)

where Cr is the set of constraints removed from the constraint network.

For example, in Figure 12.7 we have that Cr = {G14,G23} therefore W =
w14 +w23 = 2.

3. Run the max-sum algorithm on the remaining tree structured constraint net-
work. For constraints which have been removed, add unary constraints ob-
tained by minimizing out one of the two variables. The removed variable is
the one that yields the minimum weight for that constraint. For example, in
our case the assignment we obtain after running max-sum on the spanning
tree solves the constraint network shown in Figure 12.8, thus optimizing
the global function Gm

1 +F12 +F13 +Gm
2 +F24 where Gm

1 = minx4 G14 and
Gm

2 = minx3 G23.

32 Chapter 12

G14

x1

x2

Gm
1

1

2F24

1

G23

F12

2

Gm
2

x4

x3

F13

2

Figure 12.8: Tree-like constraint network formed by the BMS algorithm when run
on the loopy constraint network of Figure 12.7. Numbers represent weights for
binary constraints.

4. The resulting variable assignment, x̃, represents the approximate solution to
the original optimization problem, and it is possible to prove that this ap-
proximate solution is within a calculated bound from the optimum solution.
More precisely:

V ⇤ rṼ (12.9)

where the approximation ratio r = (Ṽ m +W)/Ṽ , and Ṽ m represents the op-
timal solution to the tree structured constraint network. Here V ⇤ represents
the value of the unknown optimal solution to the original cyclic constraint
network and Ṽ is the approximate solution, found using the tree structured
constraint network, but evaluated on the original cyclic constraint network.

All the above steps can be performed using a decentralized approach. In par-
ticular, the computation of the maximum spanning tree can be performed in a
distributed fashion using various message passing algorithms, such as, for exam-
ple, the minimum spanning tree algorithm by Gallager, Humblet and Spira (GHS),
modified to find the maximum spanning tree [14].

Chapter 12 33

As previously mentioned, this approach is able to provide guarantees on solu-
tion quality that are instance based. Therefore the algorithm must be run on the
specific problem instance in order to obtain the bound. By exploiting knowledge
of the particular problem instance, BMS is able to provide bounds which are very
accurate. For example, the BMS approach has been empirically evaluated in a
mobile sensor domain, where mobile agents must coordinate their movements to
sample and predict the state of spatial phenomena (e.g., temperature or gas con-
centration). When applied in this domain, BMS is able to provide solutions which
are guaranteed to be within 2% of the optimal solution.

Other data dependent approximation approaches with guarantees have also
been investigated. For example, Petcu and Faltings propose an approximate ver-
sion of DPOP [29], and Yeoh et al. provide a mechanism to trade-off solution
quality for computation time for the ADOPT and BnB-ADOPT algorithms [40].
Such mechanisms work by fixing an approximation ratio and reducing computa-
tion or communication overhead as much as possible to meet that ratio.

More specifically, BnB-ADOPT fixes a predetermined error bound for the op-
timal solution, and stops when a solution that meets this error bound is found. In
this approach, the error bound is fixed and pre-determined off-line, but the num-
ber of cycles required by the algorithm to converge is dependent on the particular
problem instance, and, in the worst case, remains exponential. The BMS approach
discussed above, in contrast, is guaranteed to converge after a polynomial num-
ber of cycles, but the approximation ratio is dependent on the particular problem
instance.

Similar considerations hold with respect to A-DPOP [29]. A-DPOP attempts
to reduce message size (which is exponential in the original DPOP algorithm in
the width of the pseudo tree) by optimally computing only a part of the messages,
and approximating the rest (with upper and lower bounds). In this case, given a
fixed pre-determined approximation ratio, A-DPOP reduces message size to meet
this ratio. Alternatively, given a fixed maximum message size, A-DPOP propa-
gates only those messages that do not exceed that size. As a result of this, the
computed solution is not optimal, but approximate. If the algorithm is used by
fixing a desired approximation ratio, the message size remains exponential. In
contrast, if we fix the maximum message size, the approximation ratio is depen-
dent on the specific problem instance.

34 Chapter 12

7 Conclusions
The constraint processing research area comprises powerful techniques and algo-
rithms which are able to exploit problem structure, and thus, solve hard problems
efficiently. In this chapter we focused on the DCOP framework where constraint
processing techniques are used to solve decision making problems in MAS.

This chapter provides an overview of how DCOPs have been used to ad-
dress decentralized decision making problems by first presenting the mathemat-
ical formulation of DCOPs and then describing some of the practical problems
that DCOPs can successfully address. We detailed exact solution techniques for
DCOPs presenting two of the most representative algorithms in the literature:
ADOPT and DPOP. We then discuss approximate algorithms, including DSA and
MGM, before presenting GDL and the max-sum algorithm. Finally, we presented
recent ongoing work that is attempting to provide quality guarantees for these
approaches.

Overall, the DCOP framework, and the algorithms being developed to solve
such problems, represent an active area of research within the MAS community,
and one that is increasingly being applied within real world contexts.

8 Exercises
1. Level 1 Consider the coordination problem faced by intervention forces in

a rescue scenario. In particular, consider a set of fire fighting units that must
be assigned to a set of fires in order to minimize losses to buildings, infras-
tructure and civilians. Each fire fighting unit can be assigned to just one fire.
However, if more than one unit work on the same fire at the same time, they
can extinguish it faster (collaboration has a positive synergy). Furthermore,
a fire fighting unit can only be assigned to fires which are within a given
distance from its initial position (due to the travel time required to reach the
fire). As a result, any particular fire fighting unit can only be assigned to a
subset of the fires that exist.

• Formalize this task assignment problem as a DCOP specifying (i) what
the variables represent, (ii) the domain of the variables, and (iii) the
constraints.

• Present an example involving about five fire fighting units and three
fires, instantiating each of the features above.

Chapter 12 35

2. Level 2 Consider the coordination problem described in Exercise 1, but now
extended to include two types of intervention forces: fire fighting units and
ambulance units. Assume that instead of minimizing loses, we must now
assign exactly one fire fighting unit and one ambulance unit to each fire.
As before, any particular fire fighting or ambulance unit can only attend a
subset of the existing fires. Provide a CSP formulation of this problem.

3. Level 4 Consider the coordination problem described in Exercise 1, and
specifically, a situation with two fire fighting units and two fires, where
both units can be assigned both fires. Depending on the units’ travel times,
the severity of the fires, and the function that defines the losses that result,
the best solution could result in both units being assigned to the same fire,
leaving the other one uncontrolled. Assume now that we want to have a fair
assignment of fire fighting units to tasks. Can we formalize this as a DCOP?
Which approach could be used to tackle this problem?

4. Level 2 Consider the following constraint network representing a graph col-
oring problem:

• X = {x1, ..,x6}
• D = {d1 = d3 = d4 = d6 = {Red,Blue},d2 = d5 = {Red,Blue,Green}}
• C = {< x1,x2 >,< x1,x3 >,< x1,x6 >,< x2,x3 >,< x3,x4 >,< x4,x5 >,

< x4,x6 >,< x5,x6 >}

Assume that every node in the graph is controlled by one agent. Find the
computational complexity of DPOP with the following pseudo-tree order-
ing: o1 =< x1,x2,x3,x4,x5,x6 >. State whether there is a pseudo-tree order-
ing that would result in less computational complexity and, if so, present an
instance of one.

5. Level 1 Show a complete execution of DPOP that solve the MaxCSP for-
mulation of the constraint network provided in Exercise 4 (use either o1 or
a pseudo-tree ordering of your choice).

6. Level 1 Give an execution example of MGM where the algorithm finds the
global optimum, and another where it gets trapped in a local minimum.

7. Level 3 The max-sum algorithm is guaranteed to converge to the optimal
solution on graphs that do not contain cycles. However, if there are several
optimal assignments, the distributed maximization performed in Equation

36 Chapter 12

12.5 is problematic, and may lead to sub-optimal solutions. Discuss whether
a value propagation phase would solve this problem. Provide an execution
example.

8. Level 4 The DPOP algorithm is based on a pseudo-tree arrangement of the
agents. In particular, DFS trees which are a specific class of pseudo-tree are
typically used. On the other hand, many constraint optimization approaches
[9], including GDL-based techniques, are based on the concept of a junc-
tion tree [20]. Discuss the relationship between these two structures, and
their impact with respect to computation and communication on DCOP so-
lution techniques. Can you find a junction tree that allows a GDL algorithm
to solve a DCOP with significantly less computation (and/or communica-
tion) than when using a pseudo-tree? What about DFS trees? We suggest
the reader start from [35] where these questions were investigated for unre-
stricted pseudo-trees.

9. Level 2 Provide a DCOP problem with at least five variables and a solution
which is 3-optimal but not 4-optimal.

10. Level 3 Consider the bound expressed by Equation 12.9 for the bounded
max-sum approach. Assuming that you know the constraint network topol-
ogy, and the maximum and minimum value for all the functions (but not the
actual values of the functions), in a particular DCOP example, modify the
bounded max-sum technique to provide a bound in this setting. Can you
provide some bounds even before running the max-sum algorithm? Can
you extend the analysis assuming you do not know the constraint network
topology?

11. Level 3 Consider the bounded max-sum technique presented in Section 6.2.
Elaborate on how this technique can be applied to problems that include
hard constraints. In particular, how is the approximation ratio affected by
hard constraints? Under which assumptions can this technique still provide
useful bounds?

12. Level 4 Consider the problem of minimizing the running time of a DCOP
solution algorithm when agents have heterogeneous computation and com-
munication. In this settings it might be beneficial to delegate computation
to agents that have additional computation capabilities, or to minimize mes-
sage exchange between agents that are connected by poor communication

Chapter 12 37

links. Formalize this problem and provide an approach that can take such
heterogeneity into account.

38 Chapter 12

Bibliography

[1] S. M. Aji, S. B. Horn, and Robert J. Mceliece. On the convergence of itera-
tive decoding on graphs with a single cycle. In Proceedings of the Interna-
tional Symposium on Information Theory (ISIT), pages 276–282, 1998.

[2] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Trans-
actions on Information Theory, 46(2):325–343, 2000.

[3] S. M. Ali, S. Koenig, and M. Tambe. Preprocessing techniques for accel-
erating the DCOP algorithm ADOPT. In Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1041–1048, 2005.

[4] Fahiem Bacchus, Xinguang Chen, Peter van Beek, and Toby Walsh. Binary
vs. non-binary constraints. Artif. Intell., 140(1/2):1–37, 2002.

[5] E. Bowring, J. Pearce, C. Portway, M. Jain, and M. Tambe. On k-optimal dis-
tributed constraint optimization algorithms: New bounds and algorithms. In
Proceedings of the Seventh International Joint Conference on Autonomous
Agents and Multiagent systems, pages 607–614, 2008.

[6] A. Chapman, A. Rogers, N. R. Jennings, and D. Leslie. A unifying
framework for iterative approximate best response algorithms for distributed
constraint optimisation problems. The Knowledge Engineering Review,
26(4):411–444, 2011.

[7] A. Chechetka and K. Sycara. No-commitment branch and bound search for
distributed constraint optimization. In Proceedings of Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, pages
1427–1429, 2006.

39

40 Chapter 12

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms, second edition. The MIT press, 2001.

[9] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[10] R. Dechter and R. Mateescu. And/or search spaces for graphical models.
Artificial Intelligence, 171:73–106, 2007.

[11] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coor-
dination of low-power embedded devices using the max-sum algorithm. In
Proceedings of the Seventh International Conference on Autonomous Agents
and Multiagent Systems, pages 639–646, 2008.

[12] S. Fitzpatrick and L. Meetrens. Distributed Sensor Networks: A multiagent
perspective, chapter Distributed coordination through anarchic optimization,
pages 257–293. Kluwer Academic, 2003.

[13] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. Science, 315(5814):972–976, 2007.

[14] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming
Languages and Systems, 5(1):66–77, 1983.

[15] A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward bounding
for distributed COPs. Journal Artificial Intelligence Research, 34:61–88,
2009.

[16] P. Gutierrez and P. Meseguer. Saving redundant messages in BnB-ADOPT.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, pages 1259–1260, 2010.

[17] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint sat-
isfaction problem. In Principles and Practice of Constraint Programming,
pages 222–236, 1997.

[18] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe. Asynchronous algorithms
for approximate distributed constraint optimization with quality bounds. In
Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems, pages 133–140, 2010.

Chapter 12 41

[19] R. J. Kok and N. Vlassis. Using the max-plus algorithm for multiagent deci-
sion making in coordination graphs. In RoboCup-2005: Robot Soccer World
Cup IX, 2005.

[20] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 42(2):498–
519, 2001.

[21] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[22] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed algorithms for
DCOP: A graphical game-based approach. In Proceedings of the Seven-
teenth International Conference on Parallel and Distributed Computing Sys-
tems, pages 432–439, 2004.

[23] R. Mailler and V. Lesser. Solving distributed constraint optimization prob-
lems using cooperative mediation. In Proceedings of Third International
Joint Conference on Autonomous Agents and MultiAgent Systems, pages
438–445, 2004.

[24] P. J. Modi. Distributed constraint optimization for multiagent systems. PhD
thesis, Department of Computer Science, University of Southern California,
2003.

[25] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelli-
gence Journal, (161):149–180, 2005.

[26] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[27] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal solutions for dis-
tributed constraint optimization problems. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, pages 1446–1451,
2007.

[28] A. Petcu. A Class of Algorithms for Distributed Constraint Optimiza-
tion. PhD thesis, Swiss Federal Institute of Technology (EPFL), Lausanne
(Switzerland), 2007.

42 Chapter 12

[29] A. Petcu and B. Faltings. A-DPOP: Approximations in distributed optimiza-
tion. In Principles and Practice of Constraint Programming, pages 802–806,
2005.

[30] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent con-
straint optimization. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 266–271, 2005.

[31] A. Petcu and B. Faltings. MB-DPOP: A new memory-bounded algorithm
for distributed optimization. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, pages 1452–1457, 2007.

[32] A. Rogers, A. Farinelli, R. Stranders, and N. R Jennings. Bounded approxi-
mate decentralised coordination via the max-sum algorithm. Artificial Intel-
ligence Journal, 175(2):730–759, 2011.

[33] M. Vinyals, J. Cerquides, A. Farinelli, and J. A. Rodriguez-Aguilar. Worst-
case bounds on the quality of max-product fixed-points. In Neural Informa-
tion Processing Systems, pages 2325–2333, 2010.

[34] M. Vinyals, M. Pujol, J. A. Rodriguez-Aguilar, and J. Cerquides. Divide-
and-coordinate: DCOPs by agreement. In Proceedings of the Ninth Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages
149–156, 2010.

[35] M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides. Constructing a unify-
ing theory of dynamic programming DCOP algorithms via the Generalized
Distributive Law. Journal of Autonomous Agents and Multi Agent Systems
(JAAMAS), pages 1–26, 2010.

[36] M. Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar, Z. Yin,
M. Tambe, and M. Bowring. Quality guarantees for region optimal DCOP
algorithms. In Proceedings of the Tenth International Conference on Au-
tonomous Agents and Multiagent Systems, pages 133–140, 2011.

[37] Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-
product belief propagation algorithm in arbitrary graphs. IEEE Transactions
on Information Theory, 47(2):723–735, 2001.

Chapter 12 43

[38] Y. Weiss and W.T. Freeman. Correctness of belief propagation in Gaussian
graphical models of arbitrary topology. Neural Computation, 13(10):2173–
2200, 2001.

[39] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-
and-bound DCOP algorithm. In Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multiagent Systems, pages
591–598, 2008.

[40] W. Yeoh, X. Sun, and S. Koenig. Trading off solution quality for faster
computation in DCOP search algorithms. In Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence, pages 354–
360, 2009.

[41] Makoto Yokoo. Distributed constraint satisfaction: Foundations of cooper-
ation in multi-agent systems. Springer-Verlag, 2001.

