
Design and implementation of modular software for programming

mobile robots

Alessandro Farinelli, Giorgio Grisetti, Luca Iocchi
Dipartimento di Informatica e Sistemistica - Università di Roma "La Sapienza"

Via Salaria 113 00198 Roma Italy
E-mail: <lastname>@dis.uniroma1.it

Abstract: This article describes a software development toolkit for programming mobile robots, that has been used on

different platforms and for different robotic applications. We address design choices, implementation issues and results

in the realization of our robot programming environment, that has been devised and built from many people since

1998. We believe that the proposed framework is extremely useful not only for experienced robotic software developers,

but also for students approaching robotic research projects..

Keywords: Robotic Application Development.

1. Introduction

Research on developing autonomous agents, and in
particular mobile robots, has been carried out within the
field of Artificial Intelligence and Robotics from many
different perspectives and for several different kinds of
applications, and the development of robotic applications
is receiving increasing attention in many laboratories.
Moreover, robotic competitions (e.g. AAAI contexts,
RoboCup, etc.) have encouraged researchers to develop
effective robotic systems with a predefined goal (e.g.
playing soccer, searching victims in a disaster scenario,
etc.). Moreover, mobile robots are also used for teaching
purposes within computer science laboratories and often
students are required to work and develop robotic
applications on them1. This increasing population of
robots in the research laboratories and the consequent

1 e.g. CMRoboBits Course at CMU
www.andrew.cmu.edu/course/15-491/

need for developing robotic applications have started a
process of design and implementation of robotic
software, that aims at having a design methodology and a
software engineering approach in the development of
such applications. Furthermore, companies producing
and selling mobile robots make available to their users
development libraries and software tools for building and
debugging robotic applications (e.g., Saphira/ARIA for
Pioneer robots (Konolige et al., 1997), OPEN-R SDK for
Sony AIBO2, etc.). These tools are obviously platform
dependent and thus they cannot easily be used for
building multi-platform robotic systems. Moreover, they
usually lack some features that are required from a
general purpose robot development toolkit. For instance,
the OPEN-R SDK completely lacks facilities for remote
monitoring the behavior of the robot. It just supports
wireless network communication among processes and
all the remote information exchange must be explicitly

2 Open-r SDK, www.jp.aibo.com/openr/

XX

Family Name, First Letter of Name. / Title of Paper, pp. xx - yy, International Journal of Advanced Robotic Systems, Volume

y, Number x (200x), ISSN 1729-8806

coded. On the contrary, the Saphira/ARIA environment,
although it is specifically implemented for the Pioneer
robots, has several facilities for building robotic
applications and debugging them also by using a
simulator and allowing for a graphical display of the
robot status. Finally, a number of open source multi-
platform robotic development environments have been
realized. For example, OROCOS (Open RObot COntrol
Software)3 is an European project that has recently
started with the objective of realizing a framework for
developing robot control software under Real Time
Linux. This project has many general goals, like
independence to architectures used for connecting the
components together, to robot platforms, to robotic
devices, to computer platforms. The OROCOS project
has a long time target and it is currently under
development. Player/Stage (Gerkey et al., 2003) is also a
general framework for controlling a robotic system.
Player supports a wide range of devices, algorithms and
viewers, that can be tested through Stage, a simulator
able to work on complex multi robot scenarios. Each of
these devices can be either a server or a client, allowing
for a great flexibility in spreading the computation on
different machines. However, Player/Stage provides only
limited support for high level specification of user-
defined modules and their interaction. CARMEN4

comprises a set of independent utilities, that
communicate with each other through UNIX inter
process communication. This framework has been used
for implementing a set of interesting algorithms, but it is
mainly suited with the low level activities of the robots
(such as navigation and exploration). MARIE5 is a
development tool and an integration environment for
mobile robot applications. It is well suited for fast and
easy connection of high level modules among thems and
with hardware components. However, MARIE does not
provide infrastructures for dynamic information sharing
and for remote inspection of the application. Also the
works in (Utz et al., 2002; Wang et al., 2001) are focused
on proposing robot middle-ware that are not specific to a
given platform or to a particular application domain. In
particular, the system presented in (Wang et al., 2001) is
explicitly focused on the realization of soccer
applications, while in (Utz et al., 2002) mostly low level
interface issues are addressed. In this paper we describe

3 Orocos project, www.orocos.org
4 Carmen project, www-2.cs.cmu.edu/~carmen/
5 MARIE project, marie.sourceforge.net

a Robot Development Toolkit (RDK) for modular
programming of mobile robots. We will use the term
task to denote a basic functionality of the robot and
module to refer to its software implementation. The
toolkit we have realized includes a middle-ware that
implements all the basic functionalities for the
development of a typical robotic application, a set of
modules implementing the basic capabilities of the robot,
and a set of tools that are useful for developing,
monitoring and debugging the entire application. In
particular, the middle-ware implements an infrastructure
for: task management, interfacing with the robot
hardware, representation of the status of the robot,
remote monitoring and debugging. The main difference
with other approches discussed above is the support that
our middle-ware provides for task development, in terms
of hardware abstraction, dynamic information sharing
among modules and remote inspection that are useful for
efficient development of robotic applications. Our
development toolkit is currently named SPQR-RDK. We
have used our framework for developing different kinds
of robotic applications: i) RoboCup soccer (Kitano et al.,
1998) ii) RoboCup Rescue (Tadokoro et al., 2000) iii)
RoboCare (Bahadori et al., 1995) - a project for
developing a multi robot system for assistance of elderly
people in a health care house. The development of these
applications has given us a real testbed for evaluating the
proposed RDK and, by a comparison with the
development of similar applications by using a different
development environment (in particular, we refer to the
robotic soccer application with Sony AIBO robots by
using OPEN-R SDK), we have experimented the
effectiveness of our toolkit.

2. Design Choices

During the development of our RDK, we have identified
a set of fundamental functionalities and a set of software
requirements needed for our framework. As our
applications have been developed through the years by
different people which were able to work at the related
projects only for a limited period of time, modularity and
re-usability appear to be the main issues to address: the
proper division of the code in independent modules
exchanging data inside a clear framework ensures to
have a coherent software generation, resulting in high
modularity and re-usable code. Efficiency is also a

YY

primary requirement: the middle-ware needed for
running the modules must have a minimum overhead
with respect to the entire application. Moreover, the
hardware computational capabilities must always be
considered, posing strict constraints on the
implementation choices for our middle-ware; therefore
most of the design choices that we have done (e.g.
language, operating system, shared memory for
information exchange) are motivated by this
requirement. As for functionalities we have identified

three main issues to be addressed: i) Remote Inspection

Capability, ii) Information Sharing, iii) Common Robot

Hardware Interface. Remote Inspection is a fundamental
functionality for every robotic application and is
extremely important for effective development of a
complex system. The Remote Inspection mechanism,
should allow the developers to use a general mechanism
for remotely inspecting the internal status of each
component of the application and to dynamically chose
what to monitor and when, with limited network
bandwidth and minimum computational overhead with
respect to the normal execution of the robotic
application. Another important problem that we have
faced during our past developments has been the
exchange of data among components. The use of shared
memory without any data access policy, is not
satisfactory because the management of all the shared
data in the program can become very complex.
Similarly, the use of message exchanging typically arises
the same problems and may also affect modularity of the
system, when a module is implemented by including the
details of other interacting modules. Therefore, an
important functionality for the RDK is an Information
Sharing mechanism providing a uniform interface and a
policy for dynamic data sharing among modules. Finally,
when dealing with several different types of mobile
bases and sensing devices the independence of the
application from the low level details of platforms and
devices becomes an important issue. Hence, the
development of a Robot Hardware Interface has been
identified as another important functionality: a uniform
interface has to be defined between robot devices and
user modules, and hardware configuration is described in
a configuration file.

Fig. 1 Middle-ware Architecture Layered View

3. Software Architecture and Implementation of the

Middle-Ware

The RDK we are presenting in this article is based on a
middle-ware that provides the basic functionalities for
the development of robotic applications. This middle-
ware is composed by a minimum set of modules,
common to all the applications that can be developed
within this framework. The middle-ware is made up by
the following modules (as shown in Figure 1): i) The
Robot Hardware Interface is a library that defines an
abstraction layer on the specific robot hardware,
providing a common interface to the higher level
modules. ii) The Task Manager is a library that defines a
template for all the user modules and provides both a set
of services for dynamically loading the user modules in
the application and a mechanism for data exchange
among them. iii) The Remote Inspection Server is a
library that allows for remotely monitoring the robot
activities, by implementing a publish/subscribe
mechanism for the data produced by the running
modules that can be selectively gathered at run-time.

A Robot Hardware Interface
The Robot Hardware Interface (RHI) module
encapsulates the functionalities for accessing the mobile
base and the on board devices and provides an
abstraction for: i) mobile robot kinematics, by
implementing the functions for reading odometry and for
controlling the motion that are specific to a mobile
platform kinematics model (for example, distinguishing
holonomic6 mobile bases from unicycle-like7 ones); ii)
mobile base connection, by providing a standard way to
access the mobile base and its specific control functions.
Each mobile base is generally equipped with various
kinds of sensors and actuators like sonar rings, laser
scanners, cameras, kickers (in the case of our soccer
robots) and so on, that are generically defined as Device.

6 An holonomic robot has three degrees of freedom in its
motion.

7 A unicycle robot has translational and rotational velocity
bounded by a given kinematic law.

XX

These devices are connected to the robot and grouped in
a set of hierarchical classes for convenience (see Figure
2). In the following we provide a short description of the
class hierarchy: i) Robot: is the base class of the
hierarchy, that defines primitives for getting/setting the
absolute robot position, for enabling/disabling the
motors, for synchronizing the internal variables with the
underlying hardware, etc. A Robot may have one or
more connected Devices. ii) HoloRobot and
UnicycleLikeRobot: define the interface for controlling a
generic holonomic or unicycle-like robot, by defining the
interface of the commands for setting/getting the
rotational and translational speeds of the mobile base.
Their subclasses redefine control functions for specific
kinds of robots. iii) Device: is an abstraction for a device
which is connected to the mobile base. The sensor
devices produce information that are exploited by user
modules (e.g. images form a camera), while the actuator
devices export commands that are used by user modules
for executing some action (e.g. moving the camera
motor). Note that the mobile platform is not explicitly
modeled as a device, since it is integrated with the robot
and thus it is considered in the specific robot class by
using the specific control library. Each specific robot or
device driver class is compiled into a different shared
object, that can be loaded by the application at run time.
This allows great flexibility in switching among mobile
bases or devices, which is useful for developing the
single application subsystems. Both devices and robot
drivers can be replaced by simulators or players of real
data streams recorded before, allowing for off-line
application development and debugging.

Fig. 2 Robot Hardware Interface Class Hierarchy

B. Task Manager
 The Task Manager has been designed in order to allow
the user to dynamically load his/her modules, to specify
their execution features (i.e. execution period, scheduling
policy, priority and so on) and to export the information
to be shared among them. A user module is modeled
within the Task Manager as a single thread. Although
there are several sophisticated C++ thread libraries

available, like the Boost thread library8, as well as some
implementation of process schedulers that are used in
building mobile robotic applications (Piaggio et al.,
2000), since we need only simple features, we chose to
implement a simple C++ wrapper for the Linux threads,
instead of using external libraries. Basically the wrapper
defines the following kind of tasks, that differs each
other for the scheduling policy: Asynchronous Tasks: are
a classical threads, whose execution policy is delegated
to the Linux scheduler; it is useful for implementing
modules that do not interfere with the executional flow
of other modules, like a network monitor. Periodic
Tasks: are asynchronous threads, re-spawned at fixed
time intervals; they are used for tasks that require
periodic execution, like vision, localization, etc.
Serial Tasks: are tasks whose execution is serialized with
respect to other serial tasks in the same group; since all
the serial tasks in the group do not preempt each other,
they are used for modeling operations that have a strict
time or data dependence. Another important feature of
the Task Manager is to allow for the exchange of
information among modules. When modules need to
directly exchange information each other, the simplest
solution is to couple those modules. For example, if a
module a needs the information provided by another
module b, it is an obvious choice to allow a and b to
know each other since they have to interact. However,
this simple solution has the effect of limiting the
software modularity since a modification in the
implementation of b may need a modification of a;
Therefore, besides the mechanism of directly coupling
two modules, the Task Manager offers another
possibility to exchange information, by abstracting on
the type of information. In fact, if a module needs data
provided by some other module, it only needs to know
where to read such data and when the data are available.
On the other hand, a module that produces information
can easily declare the kind of such information without
knowing which user module will use it. This solution
grants a complete independence among modules sharing
data and it is possible to substitute a module with
another, by only ensuring that the two modules produce
the same kind of data. This mechanism has been used for
sharing information among user modules, as well as
between a device and a user module. More in depth, this
information exchange mechanism makes use of a Shared

8 The boost libraries, www.boost.org

YY

Information Register (SIR) which is a sub-component of
the Task Manager. The information producers submit the
data to share to the SIR, while the information
consumers can decide when to retrieve the data, without
knowing who published the information. The published
data can be written only from the module that produces
it, and read from all the other modules. As an example of
use of this mechanism, suppose we want to develop a
localization module for a robot equipped with a laser
range finder. In this case we have to develop a module
that reads data from the range finder and produces data
associated to a known label (e.g. RangePoints). In order
to read the range finder output, the localization module
only has to get from the Task Manager the reference of
the information named RangePoints. If we further want
to test the developed localization method to work with
points extracted from a camera image, rather than
provided by a range finder, we just have to define a
vision module that produces the same kind of
information, with the same label, and thus we can
replace the laser device with this vision module, without
affecting the localization module. Observe that, since no
one of the three involved modules (localization, vision,
scanner reader) knows the others, in the proposed
implementation there is no coupling among modules,
thus data flow can be dynamically activated at run-time.

Fig. 3 Work of the Pass-through Task
Another aspect that must be considered is that the
reliance on the shared memory constrains the user to
execute all of the communicating tasks on a single
machine. If the computational requirements of the
modules are high, then such a constraint can be limiting.
In order to spread the execution of heavy tasks on more
machines, we have defined a pass-through mechanism
that is similar to the one used in Player/Stage (Gerkey et
al., 2003) and simply acts as a bridge in the network: on
one side it is seen as a sink, on the other side it is seen as
a source see Figure 3. All of the predefined data-types
that can be used in our RDK are serialaizable, and in fact
there is no great programming effort in using this kind of
mechanism.

C. Remote Inspection

The problem of remote monitoring is very important in
developing a robotic application and its realization may
not be simple when considering that: i) the wireless
network connection between a robot and its monitoring
host is usually very noisy; ii) network latency must not
affect the robotic application; iii) the information to
inspect must be selected at run time, i.e. during normal
operation of the robot, and when no information are
requested there should be no overhead in the robotic
application; iv) it should be avoided to differentiate a
debug version from a release one. In order to devise such
functionalities, the first design choice is the network
transmission protocol. In fact, while wireless network
devices are less reliable than the wired ones, remote
monitoring requires to collect all the data transmitted by
the robot (and in the correct order). Therefore, a reliable
protocol, like TCP, must be used, since an unreliable
one, like UDP, does not guarantee the retransmission of
lost packets. However, since a reliable protocol grants
packet delivery by retransmitting lost packets and this
may be very frequent with wireless networks in noisy
environments, the amount of data to be transmitted must
be minimized in order to avoid network overhead. The
second implementation choice, that has been made in
order to avoid locks and minimize delays to the robotic
application due to network latency, has been to perform
this transmission in a separate thread with respect to the
robotic application. The third design choice has been a
publish/subscribe mechanism for allowing the
monitoring clients to subscribe for receiving specific
information published by the user modules. In this way
the network bandwidth is determined only by the amount
of information actually requested by the connected
clients. The Remote Inspection Server (RIS) defined in
our middle-ware exports facilities for the user modules
requiring to publish information that can be monitored
by a remote client and manages the connection with the
clients. The information update is performed in two
steps: the first one is refresh, where the RIS copies in a
local buffer the information produced by user modules
which have been requested by at least one client; and the
second step is transmission, in which the RIS performs
the transmission of the buffered information to the
clients. The refresh step, which has to interact with other
modules in the same machine, typically takes a very
short time; while the transmission step, which has to
interact with a remote host, can take a long time and thus
it runs as a separate thread. In this way network latency
only affects the communication of the information to the

XX

remote host and not the efficiency of the publishing
module on the robot. During the normal operation, when
it is not needed to monitor the robot behavior in such a
deep way, and clients do not request information to the
robot, there is no overhead at all, since the Remote
Inspection Server detects this situation and avoids
useless computation. Moreover, in our middle-ware we
have defined several data types that can be useful in
robotics, like points, set of points, trajectories (i.e.
sequences of points), bitmap images, vectorial images,
etc., and other types may be easily defined. Each data
type is identified by means of a key mechanism that
allows also for serialization, and for each of these data
types a graphical viewer is defined in the remote
graphical client application in order to display the status
of the robots during their missions. This allows
developing remote monitoring graphical tools with a
very small overhead. Observe also that the
publish/subscribe mechanism that we have implemented
allows for simultaneously connecting more clients to a
robot. This is very useful in order to monitor different
behaviors of a robot application with appropriate client
tools. As an example, consider a situation in which we
want to debug a navigating robot equipped with a
camera: we want to be able to inspect both navigation
and vision processing. With the RIS mechanism it is not
needed to develop a debug tool that is specific for this
task combination, but it is possible to use two clients
connected to the robot: one that analyzes the camera
image processing, and the other that controls the robot
motion. Although there exist efficient alternatives to the
proposed approach that provides for interoperability
among modules, such as CORBA implementations, that
can be suitable for robotic applications, we have chosen
a simple remote inspection mechanism in order to
implement a small subset of specific features. In fact, the
Remote Inspection Server that we have developed has
been specifically devised for a robotic application in
order to provide a minimal set of specific facilities,
instead of a wide range of general ones that has to be
specialized in order to become useful.

4. Applications

The toolkit described in this article is designed to be a
useful programming tool to develop applications for
autonomous mobile robots. In this section we present

and discuss some specific applications developed using
the described toolkit. In particular, we focus on two main
domains: 1) Soccer Mid-size Robots (Nardi, 1999); 2)
Exploration and Mapping in rescue environments
(Bahadhori et al., 2005). For each of those issues we
highlight the desired goals, and the results obtained.

Soccer Robots: The goal of the soccer robotic application
is to build a team of autonomous robotic soccer players
for the RoboCup middle size league competition (Nardi,
1999). Our middle size team comprised four different
platforms: a customized ActivMedia Pioneer 1 platform,
a customized ActivMedia Pioneer 2, a Golem Robot and
a robot completely developed within our group. The
same code runs on all the robotic platforms, and a
configuration file is used in order to load different
libraries and set different parameters for each robotic
base. Figure 4 reports the pluggable modules involved in
the robotic soccer application and the data flow among
them. All modules have been realized using our
framework and the SIR is used for data exchange.

Fig. 4. Robotic soccer application

Fig. 5. Expl. and Mapping in Rescue Environments

Exploration and Mapping in Rescue Environments: We
are currently involved in several projects regarding
rescue robots (RoboCup Rescue, SRSOES9). The main
aim of these projects is to develop robotic platforms with

9 Simulation and Robotic Systems for Operation in
emergency Scenario
www.dis.uniroma1.it/~multirob/SROES.html

YY

high level capabilities to assist human rescuers during
emergency operations. Figure 5 reports the modules
realized for the rescue applications. In particular, we
added a mapping module to build the map of the
environment (Bahadori et al., 2004), a victim detection
module to detect and locate victims (Bahadori et al.,
2004) and an exploration module which is in charge of
finding a strategy to explore the environemnt (Calisi et
al., 2005). Moreover the motion control module has been
substituted to negotiate narrow passage and deal with
unstructured obstacles. The results of the use of our
robotic development toolkit in the described applications
has been a rapid, modular and effective development by
many people that have interacted each other with
minimum overhead and high productivity. Moreover, the
possibility of reusing a large part of what we have
developed so far in future projects without fundamental
changes, provides an evidence that the design choices
made in the development of our toolkit were reasonable
and adequate for these kinds of applications.

5. Conclusions

In this article we have presented a toolkit (SPQR-RDK)
for developing modular multiplatform robotic
applications, that has been designed for providing
modularity, effectiveness and efficiency. Such a
framework has been tested in different contexts: robotic
soccer, robot navigation and mapping, and it is currently
used in some other robotic projects. This RDK allows a
group of programmers to design and implement the
modules composing a multi-platform robotic application,
having both remote control and remote debugging
capabilities, with a very small effort, by using a software
engineering approach and by focusing on the semantics
of the information exchanged among the modules. The
main use of our toolkit is for people (mainly students)
that want to develop a solution for a single topic or for a
specific application (e.g. localization in an office-like
environment, path planning with moving obstacles, multi
robot coordination in a soccer domain, etc.), by using
available modules for all the other capabilities of the
robot. Our RDK provides these programmers with an
easy methodological tool for implementing the robotic
application and also it allows for easily evaluating the
specific application developed under different
environment conditions and in comparison with different
solutions implemented by other people. The presented
RDK has several advantages with respect to other robotic
development libraries distributed by robot producing

companies (e.g. Saphira/ARIA (Konolige et al., 1997),
OPEN-R SDK, etc.), since it has been specifically
designed for multi-platform applications and provides
for easy and efficient implementation of modular
solutions to a specific robotic problem, remote control
and debug, abstraction with respect to the mobile base
and the connected devices, and a set of useful tools for
developing typical robotic applications. Furthermore,
besides providing facilities for robot hardware
abstraction, module interaction as in (Utz et al., 2002;
Wang et al., 2001), MARIE, CARMEN and Player-
Stage, our RDK integrates at the same time two other
important mechanisms: dynamic information sharing and
remote inspection, that are very important in the
realization of a robotic application.
As for the OROCOS project, while the general
objectives are similar to our approach, our framework is
specifically targeted toward a particular kind of robotic
applications and has been developed with specific goals
(e.g. minimizing the computational overhead of the
infrastructural layer, reducing performance decrease due
to communication failures, etc.) that were driven by
experience gained developing robotic applications. The
SPQR-RDK is continuously increasing in the number of
modules that are realized for the different applications
that are currently under development within our group,
but always maintaining the same middle-ware. This is an
important achievement for our group since having
several modules that can be combined for building
different robotic applications with a minimum effort,
allows for developing different solutions to common
robotic problems and to evaluate them in several
scenarios and in general to increase over time the quality
and the effectiveness of the robotic applications
developed.

6. References

S. Bahadori, D. Calisi, A. Censi, A. Farinelli, G. Grisetti,
L. Iocchi, and D. Nardi. (2005) Autonomous systems
for search and rescue. In A Birk, S. Carpin, D. Nardi,
Jacoff A., and S. Tadokoro, eds. Rescue Robotics.
Springer-Verlag.

S. Bahadori, D. Calisi, A. Censi, A. Farinelli, G. Grisetti,
L. Iocchi, and D. Nardi. (2004) Intelligent systems
for search and rescue. In Proc. of IROS Workshop
Urban search and rescue: from Robocup to real world
applications.

XX

S. Bahadori, A. Cesta, G. Grisetti, L. Iocchi, R. Leone,
D. Nardi, D. Oddi, F. Pecora, and R. Rasconi. (1995)
Robocare: an integrated robotic system for the
domestic care of the elderly. In Proc. of Workshop on
Ambient Intelligence AI*IA-03, Pisa, Italy.

D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi. (2005)
Autonomous navigation and exploration in a rescue
environment. In Proc. of 2nd European Conference
on Mobile Robots, Ancona, Italy. pp. 110-115 June.

B. P. Gerkey, R. T. Vaughan, and A. Howard. (2003)
The player/stage project: Tools for multi-robot and
distributed sensor systems. In Proc. of the Int. Conf.
on Advanced Robotics (ICAR 2003), pages pp. 317
323, Coimbra, Portugal, July.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa,
and H. Matsubara. (1998) Robocup: A challenge
problem for ai and robotics. In Lecture Note in
Artificial Intelligence, volume 1395, pages 119.

K. Konolige, K.L. Myers, E.H. Ruspini, and A. Saffiotti.
(1997) The Saphira architecture: A design for
autonomy. Journal of Experimental and Theoretical
Artificial Intelligence, 9(1):215235.

D. Nardi et al. (1999). ART-99: Azzurra Robot Team. In
RoboCup-99: Robot Soccer World Cup III, pages
695698. Springer-Verlag.

M. Piaggio, A. Sgorbissa, and R. Zaccaria. (2000) A
programming environment for real time control of
distributed multiple robotic systems. Advanced
Robotics, 14(1):7586.

Tadokoro et al. (2000) The robocup rescue project: a
multiagent approach to the disaster mitigation
problem. IEEE International Conference on Robotics
and Automation (ICRA00), San Francisco.

H. Utz, S. Sablatng, S. Enderle, and G. K. Kraetzschmar.
(2002) Miro - middleware for mobile robot
applications. IEEE Transactions on Robotics and
Automation, Special Issue on Object-Oriented
Distributed Control Architectures, 18(4):493497.

Hui Wang, Han Wang, C. Wang, and W. Y. C. Soh.
(2001) Multi-platform soccer robot development
system. In RoboCup 2001: Robot Soccer World Cup
V, pages 471476.

YY

