A Methodology for Deploying the Max-Sum Algorithm and a CaseStudy on
Unmanned Aerial Vehicles

F. M. Delle Fave, A. Farinelli*, A. Rogers and N. R. Jennings
University of Southampton
{fmdf08r, acr, nr}@ecs.soton.ac.uk
*Universita di Verona
alessandro.farinelli@univr.it

Abstract

We present a methodology for the deployment of the max-
sum algorithm, a well known decentralised algorithm for co-
ordinating autonomous agents, for problems related ta-situ

tional awareness. In these settings, unmanned autonomous

vehicles are deployed to collect information about an un-
known environment. Our methodology then helps identify
the choices that need to be made to apply the algorithm to

these problems. Next, we present a case study where the
methodology is used to develop a system for disaster manage-

ment in which a team of unmanned aerial vehicles coordinate
to provide the first responders of the area of a disaster with
live aerial imagery. To evaluate this system, we deploy it on
two unmanned hexacopters in a variety of scenarios. O test
show that the system performs well when confronted with the
dynamism and the heterogeneity of the real world.

1 Introduction

Current research in artificial intelligence has dedicataa c
siderable effort to developing technologies for disastanm

Furukawa, and Durrant-Whyte 2004) and constraint optimi-
sation (Fitzpatrick and Meertens 2003). Among these, the
max-sum algorithm, a message passing algorithm relying on
the generalised distributive law (GDL) (Aji and McEliece
2000), has been shown to yield the most efficient decisions
on a variety of simulated problems, whilst being scalable,
robust and requiring very little computation and communi-
cation (Rogers et al. 2011).

However, despite its potential, thus far max-sum has not
been deployed on a real system. It has only been tested in
simulation, which lacks the dynamism and the heterogeneity
of the real world. Hence, max-sum’s robustness and flexi-
bility for real applications have not been tested in practic
Moreover, max-sum’s performance depends greatly on the
way it is applied to a problem. In fact, this performance is
affected by both the way in which a generic problem is en-
coded to form the input of the algorithm, and the way the
algorithm is decentralised between the available sourtes o
computation. However, whereas a variety of ways to apply
the algorithm have been described by literature, a general

agement. Some of these seek to help first responders toframework that discusses and analyses these issues is.absen

quickly assess the area of a disaster; thereby providing sit

To address these shortcomings, this paper presents a study

uational awareness—the ability to make sense of, and pre- of the deployment of the max-sum algorithm. First, we in-
dict, what is happening in an environment (Endsley 2000). troduce a methodology that the less-experienced developer
In these settings, the deployment of autonomous unmannedcan use to deploy max-sum for problems related to situa-
aerial or ground vehicles (UAVs and UGVs), has been advo- tional awareness. In so doing, we describe a set of general
cated, since these are capable of gathering such informatio rules that unify the different ways in which the algorithm

in an efficient and timely fashion, without relying on valu-

can be applied to these problems and analyse their advan-

able and scarce human resources to control them (Bethke, tages and disadvantages. Second, we present a case study

Valenti, and How 2008).

whereby we apply our methodology to deploy max-sum to

However, to do so, it is necessary for these vehicles to co- coordinate a team of unmanned aerial vehicles to provide
ordinate their decision making to ensure that they perform live aerial imagery to the first responders operating in the
effectively as a team, as opposed to acting independently. area of a disaster. In so doing, we propose a potential sys-
To achieve this, a variety of algorithms have been produced, tem that could be effectively deployed for real world opera-
among which decentralised algorithms are typically pre- tions. We then evaluate the performance of the algorithm by
ferred since they are scalable and robust to component fail- deploying it on two hexacopter UAVs and performing live

ure (Bethke, Valenti, and How 2008; How et al. 2009). In

flight tests in a number of different settings. In so doing, we

such cases, the key challenge is to produce techniques thatmake the following contributions to the state of the art:

allow these vehicles to make joint decisions within the com-
putation and communication constraints of the system. Ex-
amples are many, from market-based algorithms (Dias et al.
2006), to algorithms inspired by game theory (Bourgault,
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e We develop a methodology to apply max-sum to problems
related to situational awarenésdn so doing, we unify
the various existing techniques and organise them into a

The algorithms may be applicable to other domains with sim-
ilar characteristics. This will be considered for futureriwo



sequence of steps that can guide the less experienced de«} = arg max, 2; (x;) as the sum of the messages flow-
veloper to the successful deployment of the algorithm. ingintoz;:

e We present a potential system for disaster management, in 2 — are max Z ris (5 @)
which first responders interact in real time with unmanned ;= A8 KA
aerial vehicles to request live imagery of the area of a dis-

aster. wherel () is the set of all the function neighboursof.

e We evaluate the system by deploying it on two hexacopter
UAVs in three different settings. These tests demonstrate Procedure 1messageT oFunction(z;, U;, R): The proce-
its flexibility, and therefore they show that max-sum is a dure to compute a message from variabjeo functionU;.

strong candidate to be deployed on real unmanned vehi- Input: z;: the sending variableR: the set of all the messages
cles for problems related to situational awareness. received byz; since the last time a message was computed;

The remainder of this paper proceeds as follows: Section 2 0utpUuit:- the_ dg(smt'_r;at'on function.
introduces max-sum; Section 3 presents our methodology; ;. q,;_gjﬁ)zzjo
Section 4 presents the case study; Section 5 describes the 5. 5y all ﬂk%j ER;k#ido

i i€ M(j)

flight tests and Section 6 concludes. 3 qisilay) = qoi(zy) + e (ay)
4: end for
2 The Max-Sum Algorithm 5: retun gji(z;)

Here we briefly describe the max-sum algorithm (refer to
(Rogers et al. 2011) for more details). This algorithm sslve

problems defined by a set of variables= {x1,--- , 25} Procedure 2messageT oV ariable(z;,U;, Q): The proce-
defined over a set of discrete domais= {D;,--- , Dy} dure to compute a message from functigrto variablex ;.
and a set o/ = {Uy,---,Un}, Where eactU; € U is Input: z;: the destination variable): the set of all the messages
defined over a subset; < x of the set of variables. The received bylU; since the last time a message was computed;
output is a joint variable assignmextit such that the sum of U;: the sending function;
all the functions is maximised: Output: 7;—;(x;)
N 1 rinj(zy) = —o0
2: for all d; € D; do {all the joint assignments of; }
x* = argmaxz Ui(x;) (1) 3 o=Ui(d)
* i=1 4. forall dy € ds, (k # j) do

To apply the algorithm to solve Equation 1, the problem is g eng fora i) {geos € Q)
encoded into a factor graph; an undirected bipartite graph  7: ., (d,) = max(ri_,;(d;), ) {d; € d:}

whose vertices represent variablgsand functiong/; and 8: end for

the edges the dependencies between them. The algorithm 9: retun r;—;(z;) + a;;?
then works by propagating messages between the functions
and the variables of the factor graph. These messages take

two forms, messages sent from a variabjeto a function
U;, denoted by, _,;(z,) and messages from functiéf to 3 ) The Meth0d9|09y )
variablez;, denoted byr; ,;(z;). The former are calcu- Our methodology is composed of five steps. Each describes

lated by Procedure 1, while the latter are calculated by Pro- ON€ aspect to take into account when deploying max-sum.
cedure 2. Note that each message is a function of the cor- Step 1 — Defining Variables Each variable of the factor
responding variable. In problems where the structure does graph represents a vehicle’s decisions. These decisikas ta
not change (i.e. the functions and variables of a problem re- one of two forms in situational awareness domains:

main the same), such as the graph colouring problem or the o pecisions as actionsEach action is specific to the type
scheduling problem, these procedures are typically rua for of vehicle that is deployed. Each action is related to the
pre-defined number of |terat|ons(proport|_0nal to the numbe manoeuvres that the vehicle can make and is defined by
of nodes of the factor graph). However, in most real world  giscretising its motion space. For instance, the actions of
settings the structure of the problem varies continuously t afixed wing UAV are defined as the set of bank angles that

incorporate the changes of the environment. Indeed, ithes it can follow, whereas the actions of a UGV are defined as
settings, the number of the variablesand of the utilities its steering inputs.

U, can change as can the variables’ domains and the utili-

ties’ values. To deal with this, various approaches have bee ® Decisions as tasksEach task is a unit of work to be at-
defined, which will be discussed in the next section. tended. Examples related to disaster management include

The propagation of these messages allow the algorithm imagery requests or _tracking targets such as drifting life-
to compute for each variable; the marginal function rafts and ground vehicles.

zj(2j) = maxy\ ;) U(x). This function calculates the de- 2Here; is a normalising constant that prevents the messages
pendency between; and the global functio®/(x). Max- from becoming arbitrarily large in cyclic factor graphs (Ros et
sum then calculates the best assignment of each variableal. 2011).



The developer needs to be extremely careful when defining - Utility of a vehicle: Each function is allocated to the

variables, since their number and the size of their domain vehicle whose utility it represents.

influence the performance of max-sum in two ways. First,  _ Utility of a task: Each function can be allocated to any
in terms of communication overhead, the length of a max- vehicle that can attend the task. Any allocation mech-
sum message to or from a variablg is linear in the size anism can be used to select one of these vehicles. For
of its domain O(|D;)). Second, the complexity of com- instance, the one with the lowest id can be chosen.

puting a message from a function to a variable message is
O(I1,,ex, |Pxl). Thus, itis polynomial in the size of the
individual domains, and exponential in the number of con-
nected variables. The latter can be problematic when de-

cisions represent tasks since their number is likely to be Step 4 — Selecting a Message-Passing Schedwesched-
large. To addr_ess this shortcoming, there exists a variant jje for computing procedures 1 and to make a decision
of max-sum tailored to task assignment problems that re- (gquation 2) is necessary for three reasons. The first two
duces the communication and computation costs required ,5ve been discussed in Section 2. First, max-sum requires
(see (Macarthur et al. 201%)) the nodes to share a specific number of messages before
Step 2 — Defining Functions Each function of the factor Equation 2 can be calculated for each variable (i.e. before
graph quantifies the impact of a joint set of decisions on the the vehicles can compute a decision). Second, in most real
value of the objective function (Equation 1). These funcéio  world settings, the structure of the problem changes conti-
take one of two forms for situational awareness domains:  nously, therefore messages need to be shared to incorporate

e Utility of a vehicle: This utility identifies the contribution ~ and propagate the changes in the environment. Third, com-
of each vehicle to the set of measurements that the team Munication is lossy in many real world settings, therefore
is making. This representation is used when vehicles are sending redundant messages (i.e. computing procedures 1
coordinating to make collective measurements of some and 2 more frequently) can result in more messages being
specific feature such as the temperature of a building, or received. Three schedules can be used:

the position of a drifting life-raft (Bourgault, Furukawa, e Synchronised schedule A node waits to receive all the
and Durrant-Whyte 2004). In these settings, actions rep-  messages from its neighbours before computing new ones
resent a vehicle’s decisions and are used to identify the  or making a decision. This schedule can only be used in
local measurement corresponding to each of its possible  settings where communication is perfect (i.e. in simula-
manoeuvres. A collective measurement is then defined as tion). When this is not the case, as in most real world set-
the union of all the vehicles’ local measurements. tingsy a node can wait for a message to arrive for a unde-
e Utility of a task : This utility quantifies the assignment of fined amount of time. Thus it would generate a deadlock
one or more vehicles to a task (e.g. providing imagery of ~ which would prevent all the other nodes from functioning.

an area or tracking a drifting life-raft). A decision then ¢ periodic schedule A node computes its messages (and
represents the assignment of a task to a UAV. Thus, a util- - jakes a decision) periodically given the most recent mes-
ity assigns value to determine which vehicle is more capa- sages. This schedule is highly recommended in scenarios

ble to attend a specific task, given the vehicle's properties  \yhere communication is lossy (i.e. in most real world set-
such as its’s battery life or current position, and the sk’ tings).

properties such as its duration and importance.

Note that, similarly to variables, each function can be-allo
cated to an independent platform provided that a reliable
communication channel is built.

] ] e Response scheduleA node sends a new message (and
Step 3 — Allocating Nodes The computation related to the makes a decision) in response to the arrival of a single
functions and the variables of the factor graph (procedlires  message from another node. This drastically reduces the
and 2) needs to be allocated to one of the available sources Computation of redundant messages Compared to a peri-
of computation. These include vehicles, laptops, desktops  odic schedule. Indeed, new messages are computed only
and personal digital assistants (PDAs). This is extremely  in the presence of new information. However, since this
useful since UAVs and UGVs have heterogeneous and lim-  redundancy is now lost, this schedule is suitable in do-

ited computational resources and, mostimportantly, they c mains where communication is not lossy.

fail. Each node is then assigned as follows:

e Variable Allocation: Each variable is allocated to the ve-
hicle whose decisions it represents. Another option is to
allocate the variable to an independent platform such as
a laptop or a PDA, considering that a very reliable com-
munication channel needs to be built between the variable
and the actual vehicle in order to send each decision.

e Function Allocation: Each function is allocated depend-

Step 5 — Updating the NeighbourhoodThe vehicles used
in disaster management typically use broadcasting to com-
municate with each other, since it is cheaper and easier to
implement than point to point or multicast communication.
However, recall from Section 2 that each node of the fac-
tor graph sends and receives messages from a specific set of
neighbours. Moreover, due to the dynamism, these neigh-
. . . - . bours change since the structure of the factor graph varies
ing on which of the two approaches defined in stejs continuosly. Hence, each node needs to keep track of, and
used: constantly update, its neighbours to identify its own mes-
3In this work, the algorithm is used on a task assignment prob- sages among those that it receives. Depending then on the
lem. Hence, this version is the one adopted here. type of node, this update happens as follows:



e Variable nodes

— Decisions as actionsFor each vehicle, the neighbour-
ing function nodes of its decision variable are the util-
ities of all the other vehicles that can make measure-
ments that overlap with its own. In order to calculate
these neighbours, all the measurements collected thus
far are, initially, fused into a global estimate of a fea-
ture of interest, such as the temperature of a building,
or the radiations emanating from a power plant (Bour-
gault, Furukawa, and Durrant-Whyte 2004). Then, this
estimate is used to calculate each vehicle’s contribu-
tion to the next collective measurement (Stranders et
al. 2010).

Decisions as tasksFor each vehicle, the neighbour-
ing function nodes of its decision variable are the util-
ities of all the tasks that it can attend. These are con-
tinuously updated by the communication between the
different platforms, so that completed tasks are deleted
while new ones are added.

e Function nodes

— Utility of a vehicle: For each vehicle, the neighbouring
variable nodes of its utility are the decision variables of
all the other vehicles that can make measurements that
overlap with its own. These are calculated when updat-
ing the utility with new overlapping measurements.
Utility of a task: For each task, the neighbouring vari-
able nodes of its utility are the decision variables of all
the vehicles that can attend it. These are continuously
updated by the communication between the different
platforms so that new vehicles that can attend the task
are added, while those that cannot attend it anymore are
removed.

In order to understand the way in which this methodology
can be used to deploy max-sum in real world settings, we
will now outline a case study in which the algorithm is used

to coordinate teams of UAVs for disaster management.

4 The Disaster Response Case Study

In this section, we describe our disaster response systm th
allows first responders to request imagery collection té&sks
a team of UAVs flying above the area of a disaster.

4.1 Problem Description
The UAVs involved in our problem are rotary wing UAVS.
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Figure 1: The PDA's interface.

used to prevent tasks’ starvation, as will be discussedlghor
and (iii) durationd;, which defines the interval of time for
which imagery needs to be collected. Note that a first re-
sponder does not know this duration with precision since
it depends on the specific reason for which imagery is re-
quired (e.g. to search for a casualty or to check access to an
area). Thus, three estimates are consideigd=({5 min,

10 min, 20 min}). To complete a task, a UAV needs to fly

to the specified location, station itself above it and stream
live video to the PDA until the first responder indicates that
the task is completed (Figure 1(b)). The information about
each submitted task is then broadcasted by the correspond-
ing PDA, so that the UAVs in the surrounding area that re-
ceive it add the task to the set of tasks that they can poten-
tially attend. The UAVs theipintly decide which task each
vehicle should complete and, in so doing, they maximise the
number of completed high priority tasks. We achieve this
coordination by applying max-sum as discussed next.

4.2 Application of the Methodology
The max-sum algorithm is used here to allow the UAVs to

jointly decide which task each of them should attend. The

algorithm is deployed as follows:

Step 1 — Defining Variables: Each variabler; takes val-
ues in the set of tasks that UAY¥ can attend. This choice

These are chosen because they have a wide range of mo-o|lows from stepl of the methodology, when decisions rep-

tion capacities (i.e. being able to take off and land veltiica
hover, fly forward, backwards and laterally) that make them
very suitable for collecting aerial imagery.

The first responders request imagery collection tasks from
the UAVs using a touch screen personal digital assistant
(PDA). Each task’; represents a location (in geographic co-
ordinates) for which imagery is required. To submit a task,
each first responder sets three properties (Figure 1(3)): (i
priority p; = {normal, high, very high}, representing
the importance of the task (i.e. collecting imagery of an
occupied building is more important than doing so for an
empty one); (ii) urgency; = {normal, high, very high}

resent tasks. As a consequence, the domairy & defined

as the set of task®; that UAV j can attend, wherg; C T
and7 = {T1,T>,...,Tn} is the set of all the submitted
tasks. Since UAVs have limited communication capacities,
they will only be able to attend a subsgtof the tasks irfr .
Again this follows from stef of Section 3.

Step 2 — Defining Functions: A utility function U; mea-
sures the utility of one or more UAVs attempting to complete
taskT;. This choice follows from step of the methodology
applied to the case where utilities quantify the assignroént
atask. In order to deriv€;, we assume that the task comple-



tion is a Poisson procesgChitale 2008) measured over the
time interval in which one or more UAVs can station itself
above task;. To define this interval, considail the UAVs

that can attend’;. Live imagery can then be collected from

t; = min; ¢} t0 £y = max; ¢7, wheret} = ”‘ljf is the timé
. E J

required by a UAVj to reach task’; and wher&f =t+0

is the remaining time that UAY can remain on statior{ is

the UAV battery capacity, in terms of remaining flight time)

aboveT;. The utility U; is then defined as follows:
|:1 _ e*)\i-(tgftl)i| (3)

wheret is the current time, ang;, u; andt{ are, respec-
tively, T;’s priority, urgency and activation time.

Intuitively, the utility defined by Equation 3 measures the
impact of each possible assignmetjt e x; of the UAVs

0
Ui(xi) =pi-u; "

K2

Figure 2: A factor graph showing 2 variables nodes, 3 func-
tion nodes and the platforms controlling them.

about their status (e.g. their positions, the UAVS’ remain-
ing battery and the tasks’ properties). Then, the informa-

! - ) tion about each variable’s neighbours is stored and updated
aware of7; on its completion (i.e£; andi, are calculated a5 new tasks are submitted or completed. Similarly, the in-

over those UAVs where;; = T;). Each possible assign-  formation about each function’s neighbours is updated each
ment then represents a different subset of the UAVs that can time a new UAV becomes able to complete the function’s

attend; and for whichU; needs to be calculated. In s0 a5k or runs out of battery life.
doing, this utility allows the UAVs to make a variety of so-
5 Flight Tests

phisticated decisions based on all the possible constrafnt

the problem. For instance, the platforms will always choose .
To ascertain the performance of max-sum when deployed on
real vehicles, we deployed our system on two unmanned au-

tasks with higher priority (due to the factorin Equation 3).
tonomous hexacopters over three different settings. W use

If these have same priorities, the UAVs will always choose
the one that has remained unattended for a longer interval of two commercial off-the-shelf Mikrokopter hexacopter ryta
wing UAVs® (Figure 3). Each vehicle uses a waypoint-

time (due to the factouf_t? in Equation 3)). In addition,

multiple UAVs may attend a task if this extends the time pased guidance system to control its motion—it follows
span for which at least one UAV is on station above the task g sequence of waypoints representing locations to reach.
(due to the factot — exp=*i(2=11)), A miniature video camera provided aerial imagery. Our
tests were run at a test facility outside of Sydney, Aus-
tralia. A video summarising the tests can be found at
http://vimeo.com/34800379n the video (see Figure 4 for

a snapshot), windowd and B show the hexacopters, win-
dow C' shows the computation over the factor graph over

duced and the sources of computational power are used in aWNich max-sumiis running and windo shows the path of
more efficient way. Figure 2 shows an example of a factor e UAVS. We conducted three tests:

graph resulting from this allocation. The figure shows two Flight 1 — Homogeneous TasksTwo identical tasks (nor-
UAVs (UAV; and UAV,) controlling two variables:; and mal priority and urgencyj min duration) are simultaneously
x2 and two PDAs: PDA controls two task§} and75 (and submitted to the UAVs. The aim of this is to test the be-
the corresponding utilitie&'; andUs) while PDA; controls haviour of the system in response to a canonical coordina-
one taskr; (and its utility Us). tion scenario. In this setting, the maximum of each task’s
utility is obtained when the task is assigned to the closest
UAV (this is due to the exponential factor in Equation 3).

. . ; SThus, the coordinated decision that maximises Equation 1
choice follows from steg of Section 3. Each device (UAV is the one in which each UAV is assigned a single task. In-

or PDﬁ‘) then periodically rgTjs procedures 1 and 2 to comh deed, this is what we observed during our test, confirming
pute the new messages and decisions (Equation 2), given they correctness of our system,

messages that it received. . . . .

Flight 2 — Sequential arrival of Tasks Two different tasks
Step 5 — Updating the Neighbourhood: Within our set- (one with a normal and one with a high priority, both have
ting, variables can appear and disappear at anytime sincenormal urgency and min duration) are submitted to the
UAVs can run out of battery and new tasks are constantly UAVs. One task is submitted0s after the other. The aim

Step 3 — Allocating Nodes: Each UAV is allocated the
variable representing its decisions. Similarly, each PBA i
allocated the utility functions of the tasks submitted bg th
first responder. By doing so, as discussed in step Sec-
tion 3, the responsibilities delegated to the platformsrare

Step 4 — Selecting a Message-Passing Schedul&Ve use
a periodic schedule to compute the max-sum messages. Thi

submitted or completed. Thus, as suggested by stap

of this is to test the behaviour of the system in the pres-

Section 3, UAVs and PDAs continuously share information ence of heterogeneous properties and dynamism. Initially,

A\ = di is the rate parameter of the Poisson process.

°d;; is the Euclidean distance between a UAsnd taskl’; and
V; is UAV j's average speed

one single task is present and the maximum of its utility is

5To avoid collisions, the UAVs were flown at separate altiside
(20m and40m).
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Figure 3: The “Hexacopter” UAVs used in the flight tests
presented in Section 5.

obtained when it is assigned to both the UAVs (due to the

exponential factor in Equation 3). As soon as the new task Figure 4: A snapshot of the video summarising the three
appears, the setting becomes the same as per fligkus, flight tests.

the maximum of each task’s utility is obtained when the task

is assigned to the closest UAV. Two coordinated decisions ) ]

then maximise Equation 1. Initially, the best decision is th Our future work will be focused on demonstrating that

one in which both the UAVs are assigned to the only avail- the algorithm scales beyond two UAVs. Thus far this was

each UAV is assigned a single task. Again, this is what we hicles. Obviously, the complexity of operating large num-
observed during our test. bers of UAVs simultaneously greatly increases the complex-

ity of the flight tests. Furthermore, we intend to study the
applicability of our methodology to domains different than
situational awareness, such as the energy domain or grid
computing, where a large number of agents needs to be con-
sidered.

Flight 3 — Heterogeneous TasksTwo identical tasks (nor-
mal priority and urgency; min duration) are submitted to
the UAVs. However, here, one UAV receives the informa-
tion about one single task, while one receives the informa-
tion about both. Aftei60s a new task (same properties as
the previous ones) is submitted to both the UAVs. The aim
of this is to test the behaviour of the system when the capa- . ) ] o
bilities of the UAVs are heterogeneous. Initially, only one Al S- M., and McEliece, R. J. 2000. The Generalized Distrive
assignment is possible since one UAV can only attend one -2 !EEE Trans. on Inf. Theory6:325-343. .

task. Thus, the maximum of this task’s utility is obtained Bethke, B.; Valenti, M.; and How, J. 2008. Uav Task Assigntnen
when the former UAV is assigned to it (Equation 3). The !EEE Robotics & Automation Magaziris(1):39-44.

same applies for the remaining vehicle and task. As soon Bourgault, F.; Furukawa, T.; and Durrant-Whyte, H. F. 20D&-
as the new task appears, as per flighthe maximum of its centralized Bayesian Negotiation for Cooperative seafofPro-
utility is obtained when it is assigned to the closest UAV. ggg‘i'”%%géthse 'EdE'.E Bnt. Cont. on Intelligent Robots andetys
Thus, two coordinated decisions maximise Equation 1. Ini- o - Senaa, apa_n_' ) ]
tially, the best decision is the one that assigns each UAV to Chitale, R. H. 2008Probability and Queueing Thearyfechnical
a single task. However, as soon as one UAV completes its " ublications.

task, the best decision becomes the one in which this UAV Dias, M.; Zlot, R.; Kalra, N.; and Stentz, A. 2006. Marketbd
is assigned to the new task. Multirobot Coordination: A Survey and Analysi®roceedings of

the IEEE94:1257 — 1270.
6 Conclusions and Future Work Endsley, M. R. 2000Situation Awareness, Analysis and Measure-
ment Lawrence Erlbaum Associates.

We hqve presented a rr_1etho_d0|ogy thaF provides the first sys- Fitzpatrick, S., and Meertens, L. 2003. Distributed Cooation
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in order to evaluate max-sum’s performance when deployed Rogers, A.: Farinelli, A.: Stranders, R.; and Jennings, N2&L1.

on real vehicles. These tests indicated that the system per-gounded approximate decentralised coordination via thesnan
forms well when confronted with the dynamism and the het- algorithm. Artificial Intelligence175(2):730—759.

erogeneity of the real world. Thus, they helped validate gianders, R.; Delle Fave, F. M.; Rogers, A.; and Jennings, N
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