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Abstract—This paper focuses on visual sensing of 3D large-
scale environments. Specifically, we consider a setting where a
group of robots equipped with a camera must fully cover a
surrounding area. To address this problem we propose a novel
descriptor for visual coverage that aims at measuring visual
information of an area based on a regular discretization of the
environment in voxels. Moreover, we propose an autonomous
cooperative exploration approach which controls the robot move-
ments so to maximize information accuracy (defined based on
our visual coverage descriptor) and minimizing movement costs.
Finally, we define a simulation scenario based on real visual
data and on widely used robotic tools (such as ROS and
Stage) to empirically evaluate our approach. Experimental results
show that the proposed method outperforms a baseline random
approach and an uncoordinated one, thus being a valid solution
for visual coverage in large scale outdoor scenarios.

I. INTRODUCTION

In recent years mobile robots emerged as a crucial technol-
ogy for applications such as rescue operations in dangerous or
hostile environments or for surveillance of safety critical areas.
To date, much of the work related to this field focus either on
building accurate maps of the environment by using sensors
that provide dense measurements (such as laser range finder)
[1], [2] or on methodologies for autonomous exploration [3],
[4], [5], where robots must be able to plan their movements
requiring only limited interactions with the human operator.
In such regard, an interesting problem related to autonomous
exploration is that of search, where robots explore the envi-
ronment with the end goal of detecting possible victims that
may require assistance[6], [7], [8].

Here we take a different perspectives on the problem
and we focus on visual coverage of outdoor, large scale
environments. Our aim is then to provide accurate 3D coverage
of an unknown area by using a team of mobile robots equipped
only with cameras. In particular, we focus on cameras mainly
because they are very well suited for large scale environments,
as their field of view typically span hundreds of meters. In such
regard they might easily cover large extent of the surrounding
environment with a relatively small cost. Moreover, cameras
can provide crucial information for rescue operators to perform
risk and damage assessment, or to detect possible intruders in
areas with restricted access.

Now, visual coverage based on cameras has been addressed
from different perspective in several fields such as sensors net-
work, computer vision and robotics. The recent comprehensive
review of Mavrinac and Chen [9] reveals that, even if the
camera coverage problem is an active field, many problems are
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Fig. 1. The figure shows two robots (red and green) moving in a large-scale
outdoor 3D map. The grey areas represent the coverage of the past and present
moves while the black rays show the visible 3D points from each robot. The
map has been obtained by processing images acquired in Trafalgar Square,
London, UK [10].

still unsolved. This is clearly given by the fact that the coverage
problem in 3D is ill-posed for several reasons: lack of a
priori information about the 3D structure of the scene, possible
occluders and misaligned readings in multi-sensor/multi-robot
configurations. Moreover visual sensors often present different
“dis-functions” compared to standard range sensors such as
laser range finders. For instance, since 3D reconstruction is
typically based on the initial detection and matching of feature
points, the camera might be too far and the resolution too small
in order to extract visual features. Similarly the camera might
be too close to the object (focus problem). Finally, cameras
have also a Field of View (FoV) which restrict the number of
points visible in the scene.

Given this scenario, here we consider a set of mobile robots
that move in an outdoor environment and our goal is to drive
the robots so to maximize the coverage of the inspected area.
Figure, 1 provides an overview of our application scenario,
where two robots navigate in a large 3D environment and
acquire visual observations. The 3D scene is built by using
data from [11], [10] which are obtained by performing large
scale 3D reconstruction on a collection of images1.

In more details, we propose a measure of 3D coverage
based on a regular discretization of the environment in vox-
els, and we devise an automatic approach to decide which
is the best position that each robot should reach to maxi-
mize information accuracy while minimizing movement costs.

1The 3D data used in this paper is available online at http://grail.
cs.washington.edu/projects/bal/ and http://www.diegm.uniud.it/fusiello/demo/
samantha/



Specifically, this paper makes three main contributions to the
state of the art: First, we propose a novel coverage metric for
3D environments. Such metric takes into account the average
penetration of the camera bundle of rays towards the 3D points
which fall within each voxel, where a voxel is the discretization
unit of the map. Second, we provide a cooperative strategy to
drive a team of robots in the environment so to maximize the
coverage metric described above while minimizing movement
costs. Exploration is formalized as an optimization problem
and our strategy is a greedy strategy that guides the robots
in the map towards positions that are most promising for
information acquisition. Robots share their observations and
operate on the basis of a global visual coverage map that fuses
such observations. Third, we empirically evaluate our approach
by using ROS (for the robot navigation stack) and Stage for
simulating 2D navigation of the robots. The 3D observations
are obtained by a custom simulation environment that provides
to the robot the observed features.

Our empirical evaluation validates the approach in three
large-scale datasets (Trafalgar Square, Piazza San Marco and
Piazza Bra) [11], [10]. Moreover, we compare our approach
to a baseline randomized method (where the next position is
randomly chosen) and to an uncoordinated approach (where
each robot chooses the next position maximising its own
coverage map without sharing any observations with its team
mates). The results allow us to draw encouraging conclusions
on the effectiveness and applicability of our method.

The rest of the paper is organized as follows. Section II
presents the related works that deal with similar coverage
problems. Section III describes our coverage descriptor and
Section IV our approach to single and multi-robot coverage.
Section V describes our empirical settings and achieved results.
Finally Section VI presents conclusions and discussions for
future work.

II. RELATED WORK

In recent years, there has been a growing interest towards
autonomous robotic systems that can accomplish sensing and
surveying tasks in their surrounding environments. Application
scenarios of such autonomous systems range from surveillance
and security [12], [1], to environmental surveying [13]. In
particular, a large body of work focuses on reconstructing the
3D structure of the environment which is a key information
for several tasks such as victim detection and localization
in search and rescue [8], [6], [7]. In this scenario, most
previous approaches focus on the use of dense sensors that
can provide accurate information from the environments such
as 2D or 3D laser range finders [14], [15], [16], or more
recently the Kinect system [6]. Much of this work is based on
exploration strategies for single and multi-robot systems that
aim at maximising the information that each robot can acquire
given the next possible moves. In particular, the idea of frontier
based exploration, originally proposed by Yamauchi [5], is a
widely used approach to address autonomous exploration and
information gathering problems. For example, Burgard et al.
[2] propose a multi-robot exploration approach where robots
cooperatively choose next sensing positions by considering
both the utility (in terms of information) of frontier points as
well as the cost that robot would incur to reach such position.
In a similar way, we also base our approach on a utility

function that consider both possible information acquired by
robots and movement costs. However, in contrast to such
approach, we do not use a frontier based method to allocate
utility to points. This is because our goal is not only to explore
the whole environment but to provide an accurate visual
coverage of the surroundings (i.e., to maximize our coverage
descriptor). In this perspective, the work of Stachniss and
Burgard [17] proposes an autonomous approach for exploration
that considers coverage maps: an extension of occupancy maps
that maintain occupancy probability for each map cell. Based
on such representation, authors propose a decision-theoretic
approach for autonomous exploration based on the concept of
information gain. With respect to this method, we consider a
different concept of coverage, as we are interested in visual
coverage which measures the number of 3D visual features
observed by the robots rather than a probabilistic measure of
occupancy.

Another important strand of works focuses on 3D digital-
ization of objects or environments and proposes the use of
dense sensors such as 2D/3D laser or the Kinect systems. For
example, Whaite and Ferrie in [14] propose an exploration
approach for a robotic arm equipped with a 2D laser scan-
ner to reconstruct the structure of 3D objects. Surmann and
colleagues in [15] propose an approach to determine the next
best view of a mobile platform for digitalization of 3D indoor
environments using a 3D laser scanner. Finally, Dornhege and
Kleiner in [6] propose a frontier-like exploration strategy for
a 3D environment based on the Kinect system, focusing on
unstructured scenarios (typical of rescue applications). With
respect to previous approaches, here we focus on visual
coverage, hence explicitly restricting our attention to cameras.
Moreover, our goal is not to provide an accurate digitalization
of the environment but to capture as many visual information
as possible. Consequently, a crucial point for our approach is to
propose a visual coverage descriptor which is then used by our
autonomous exploration strategy. Finally, unlike most previous
approaches we focus on large-scale outdoor environments.

III. THE VISUAL COVERAGE DESCRIPTOR

The two main elements of our approach are the definition of
suitable metrics for visual coverage and the definition of a
utility function that controls robots’ movements considering
both the reward in terms of increased degree of visual coverage
and the cost for movements.

In this Section, we start by proposing a visual coverage
descriptor that can measure coverage for each voxel of the 3D
map. This 3D map is given by large scale 3D reconstruction
algorithms using multiple images [10], [11]. In our simulation
scenario, the robot starts from an initial position with no a-
priori information on the map and by moving in a new position
it checks if a set of points is visible given a visibility model
(Sec. III-B). At each movement new points become visible
given the robot location and orientation in the map. In such
context, our general idea for the descriptor is that a certain 3D
volume is covered if it is possible to view through it, hence
the measure of coverage is related to how much of the voxel
volume is “penetrated” by the bundle of rays towards the 3D
points which fall inside the camera field of view.

In general a 3D point is considered visible if the point
is inside the camera field of view, the range distance, and it



is not too close to the camera (focus effect). These criteria
are the one used in the most complex modelling scenarios for
sensor camera networks [9]. If a 3D point satisfies the field of
view, camera range and focus constraints, it is considered as
observed in our model. In what follows, we first describe our
visibility model and then propose our coverage descriptor.

A. The camera visibility model

In order to formally describe the concept of coverage with
visual sensors we first need to define our mathematical and
geometric settings. We adopt the General Camera Model [18],
[19] which defines the imaging model as rays travelling in a
straight line, as this is a convenient formalisation for modelling
coverage using ray bundles. We also assume that the robot
position tn in the world coordinates coincides with the camera
optical center. The 3D position of a generic 2D image point
l onto the camera plane is defined in the camera coordinate
system as:

onl = RT K−1

[
wnl

1

]
, (1)

where R is the camera rotation, K is the 3 × 3 intrinsic
camera parameter matrix and wnl contains the 2D point
coordinates. Given the robot orientation, we align onl in the
world coordinate system such that:

ηnl = [Ryaw (ϕ) | tn]

[
onl
1

]
,

where Ryaw is the orientation of robot as a rotation on the
z-world axis and tn is the camera translation with respect to
the world origin2. Now it is possible to derive the direction of
the ray projected from the camera center and passing through
a generic 2D point on the image plane as the unit-vector:

rnl =
tn − ηnl
|tn − ηnl|

. (2)

Thus we can now define the line crossing the 3D space starting
from the camera as rnl.

Given our camera model, we need to define a set of criteria
to compute the visibility descriptor for each camera position
and orientation. As mentioned before, we consider the field of
view, resolution and focus.

Field of View. We model the field of view by first defining
the angle between the ray rnl and the ray departing from the
camera center and intersecting the principal point q given by
rnq . Such angle for each 3D point l is defined as:

φ(l) = arccos(rnq · rnl). (3)

Now given a robot orientation ϕ, the set Λfovϕ ⊂ Λ of the
3D reconstructed points that are visible to the camera, can be
defined as:

Λfovϕ = {xl ∈ Λ |
(

0 < φ(l) <
fov

2

)
, l ∈ {1, . . . , |Λ|}, (4)

where fov is the field of view of the camera. This value was
set to 30◦ in the experiments but it might be customised given
the specific camera model.

2Notice that here we constrain the robot to move on a planar surface.
However our approach can be easily generalized for unconstrained 3D motion.

Resolution. Camera resolution is closely related to the concept
of range in classical laser systems. In practice, to reconstruct a
3D point from image observations, it is necessary to match 2D
feature points from different views. If a feature is too far from
the camera center it might not have enough image support to
detect the point in the image and subsequently to match it
in other views. In most systems, this effect is modelled as a
distance constraint that limits the visibility of faraway points
[20], [21]. Thus we can define such distance from the current
camera position tn to the l-th 3D point xl as:

εln = |xl − tn| .

The points Λresϕ ⊂ Λ that have enough resolution to be
detected can be defined as:

Λrest = {xl ∈ Λ | εln < δmax}, l ∈ {1, . . . , |Λ|}. (5)

where δmax is the the maximum range. An analysis of image
feature detectors recall with respect to resolution can be found
in [22] and it can be used as a guideline for setting the
parameter δmax.

Focus. Likewise, the scene has to be imaged at the proper
focus in order to avoid misdetection of the 2D image features.
In practice this constraint rules out elements in the scene that
are too close to the camera. This can be implemented as a
minimum range constraint [23] such that:

Λfoct = {xl ∈ Λ | εln > δmin}, l ∈ {1, . . . , |Λ|}. (6)

These three constraints as defined in Eq. (4), (5), (6) gives the
visibility of a 3D point given a certain camera position and
orientation such that:

Λvis = Λfovϕ

⋂
Λrest

⋂
Λfoct . (7)

B. Computing the coverage descriptor

Having defined the visibility model for the 3D points we can
now define the descriptor for each voxel vk in the map. First,
let us consider the set Λvk

of the visible 3D points for each
voxel such that:

Λvk
= {xl ∈ Λvis | xl ∈ µvk

},

where µvk
represents the boundaries of the voxel vk.

The intersection of the line projection from the camera
center to each reconstructed 3D point xl ∈ Λvk

localises the
point xkl on the voxel vk’s boundaries.

To give our definition of coverage, it is necessary to include
also the information regarding how much the intersecting
ray “penetrates” each voxel. We define such length as the
Euclidean distance between point xkl and xl normalized by
the maximum length dkl of the ray intersecting the voxel,
i.e. pkl = |xkl − xl| /dkl . This creates a vector dk =
[pk1

, . . . , pk|Λvk |
]
T measuring the penetration of the bundle

rays inside the voxel.

We now define the coverage metric for each voxel vk ∈ V
as the average penetration of the camera bundle of rays towards



Fig. 2. The image shows an x, y view of the metric 3D space with
the length of the bundle ray going through the voxel vk. xkl and xke

are the entry and exit points respectively, with an overall lenght dkl .
xl is the reconstructed 3D point and the distance dl = |xkl − xl|
represents how much the ray penetrates the voxel.

the 3D points xl ∈ Λvk
which fall within its boundaries. The

coverage descriptor is given by:

ψvk
:=


(∑|Λvk |

l=1

|xkl
−xl|

dkl

|Λvk |

)
, if |Λvk

| > 0,

0, if |Λvk
| = 0.

(8)

Thus, each time the camera is located in a position on the
map from which it has to (re)-compute the coverage (say at the
position t assuming orientation ϕ), the algorithm computes a
vector ξϕt as:

ξϕt =

 ψv1

...
ψv|V|

 ,
which stores for each voxel the average degree of coverage.

Since the camera is moving in the map, we need to keep
track of all the voxels that has been seen and to update
the coverage values. We assume that the camera stops in D
different positions pi = [ti, ϕi] of the map, to re-calculate the
coverage and we indicate with P = {p1, · · · ,pD} the vector
of all such positions. We can now define:

Vpi

full = {vk ∈ V | ψpi
vk
> 0}

Vpi
empty = {vk ∈ V | ψpi

vk
= 0},

where ψpi
vk

represents the value of our coverage descriptor for
voxel vk (see Equation (8)) when observed from position pi.
Moreover, we keep track of all the full and empty voxels seen
from p1 to pD in the map by taking the union of the voxels
observed in each position:

FP =
⋃

pi∈P
Vpi

full,

EP =
⋃

pi∈P
Vpi

empty.

Finally, we define ψP
vk

as the coverage value for vk calculated
given the vector P of camera positions. In particular, for each
voxel, we store the average coverage value calculated so far
considering only the positions from which we have a positive

value (i.e., we consider only the camera positions from which
the voxel is visible):

ψP
vk

=


∑

i∈P+
k
ψ

pi
vk

|P+
k |

, if vk ∈ FP

0 otherwise
(9)

where P+
k = {pj ∈ P : ψ

pj
vk > 0} represents the vector of

position from which we have positive observations of voxel vk
(i.e., observations that give a positive value for the descriptor).

IV. COVERAGE APPROACH

Having detailed our coverage descriptor, we now describe our
approach to drive the robots so to maximize coverage and
minimize movement costs. The basic idea is to devise a utility
function that, based on the level of visual coverage for all
the voxels that we observed so far, drives the robot towards
points in the map that can have useful visual information (i.e.,
that avoids voxels that have a high level of coverage). In the
following, we first define the utility function and how we select
the next position that the robot should visit based on such
function, then we detail our approach for Multi-Robot coverage

A. Single robot utility function

Our utility function aims at estimating the reward in terms
of visual coverage that the mobile robot would have for a
specific position assuming a particular orientation. Our goal
is then to find the next robot position that maximizes such
reward. Notice that, since we do not know the visual features
in the environment, but only what we already observed, we
must estimate the value of the reward for a future position
given the known data only.

Now, given the complexity of the 3D structure for our
reference applications, it is not easy to capture such reward
in a closed form solution. Hence we proceed by computing
an estimation of the gain for each possible future position
of the robot. However, for computational reasons, we restrict
this calculation to a square local grid of n voxel per side,
constructed around the current robot location. Moreover, for
each such position we consider only the set Θ of the eight
principal angles as possible orientations for the robot. Here
we define the camera position and orientation with the vector
ti and ϕi ∈ Θ respectively. Then the vector ni = [ti, ϕi]
represents the generic next possible position for the robot.

The estimated coverage value associated to ni is given by
the value LimCov. Notice that this value for a fully covered
voxel corresponds to LimCov = 0.5. In fact for each visual
point that is inside a voxel, if we observed that point from
all the possible directions, we would obtain an average ray
penetration of 0.5. This can be briefly explained if we call
0 ≤ f ≤ 1 the ray penetration ratio for a given point inside
a voxel from a given observation point. Now, if we consider
a second observation point which is opposite to the first one
with respect to the point itself we can easily verify that the
ray penetration ratio is now 1 − f . For this reason a fully
covered voxel will have an average value of f+(1−f)

2 = 0.5.
We then assume that a new observation for any full (i.e., FP)
or unseen voxel (i.e., V \ (FP ∪EP)) will give a value of 0.5,
while observations for empty voxels (i.e., EP), will provide no
further information.



Next, we define the set Vni ⊆ V of voxels that are visible
from position ni. In more detail, we have:

Vni ={vk ∈ V |
(

0<φ(k)<
fov

2

)
∧ (δmin<εik<δmax)},

where, as in Equations (4) (5) (6), we implement the FoV,
resolution and focus constraints using the next position ti
instead of the current camera position and the center of the
k-th voxel vk ∈ V . We can now define ΨP

ni
as the vector of

size |Vni | which stores our estimated coverage values for all
the voxels in Vni as follows:

ΨP
ni

=

∣∣P+
k

∣∣ψP
vk

+ ψ̂vk∣∣P+
k

∣∣+ 1
, (10)

where ψP
vk

has been defined by Equation (9). The value ψ̂vk

is the expected value of a new observation for voxel vk and
is given by:

ψ̂vk
:=

{
0 if vk ∈ EP
LimCov otherwise.

(11)

We can now compute the reward function associated to ni as
follows:

rewP (ni) =
∑
k∈Vni

δP(k), (12)

and

δP(k) = |ΨP
ni
− ψP

vk
| =
|ψ̂vk

− ψP
vk
|

|P+
k |+ 1

. (13)

The intuitive explanation is that we want to focus on
positions of the local grid that avoid observing again voxels
that are already well covered or empty, while at the same time
we want to explore new voxels. Specifically, the definition of
δni

P (k) aims at measuring the difference that a new observation
would make to the level of coverage of a voxel, and the
final equation can be easily derived by substituting Eq. (10)
in (13). Such term shows that a new observation is more
important if the average coverage value of the voxel is far
from the expected value of such new observation and if the
voxel has been observed few times (i.e., |P+| is small).
Moreover, for unobserved voxels this term reduces to LimCov
which correctly shows that we give high expected gain when
exploring new voxels. Finally, the gain correctly reduces to 0
for the empty voxels that have been already observed, as we
have no interest in gaining new observations for such voxels

Figure 3 reports a visual representation of rewP (ni) com-
puted given a specific robot position ti and considering a
constant ϕi. Figure 3 super-imposes a color coded represen-
tation of rewP (ni) on a 3D portion of the map where colors
represents reward values (dark is low and light is high).

To have an effective exploration, we must also consider
the movement costs for the robot and favour exploration
policies that reduce such costs. Hence we define a cost function
moveCost that expresses the cost incurred by the robot to
reach the next position. In more detail, moveCost(nc,ni) es-
timates the travel distance from nc = (tc, ϕc) to ni = (ti, ϕi)
by considering the Euclidean distance between tc and ti and
the rotation cost to reach ϕi from ϕc.

Finally, we define a utility function that combines
two objectives: i) maximise rewP (ni), and ii) minimise

Fig. 3. Visual representation of the rewP (ni) function for each voxel and
constant ϕi. The colors from dark to light represents reward values ranging
from lower to higher respectively. The angle ϕi for which the reward function
is displayed is at the same orientation of the previous move. As a result, we
have higher reward (and gain in coverage) if we do sideways moves instead of
backward/forward. Moreover the right direction is more interesting since the
most of the observed points are located on the front-left area of the camera.

moveCost(nc,ni). In this work, we aggregate these two
objectives with a weighted sum, as this is the most straight-
forward and widely used approach to address multi-objective
optimization3. Consequently, our utility function is expressed
as follows:

utilP (nc,ni) = α · rewP (ni)︸ ︷︷ ︸
reward

−moveCost(nc,ni)︸ ︷︷ ︸
cost

, (14)

where α is a scaling factor to weight differently the two
components and must be tuned to address the trade-off between
gaining new information and minimizing robot movements.

B. Multi-Robot Visual Coverage

Our approach to Multi-Robot coverage is based on a greedy
method that merges information from the robotic platforms
and assigns each robot to the best position given the current
visual information acquired by all team members. In more
detail, the global visual map is maintained by a central
controller that merges information coming from the different
robotic platforms. Each robot, sends the observed features to
such centralized controller and since robots have homoge-
neous sensors, the controller updates ψP

vk
for each specific

voxel vk by using Equation (9). Each robot then queries the
controller to obtain the next target point. When the target
point is reached by the robot it sends new acquired visual
information to the controller and asks for a new target point.
To compute the next target point the controller determines
n∗ = arg maxni util

P (nc,ni). Notice that, following the
classification provided in [25], our approach can be considered
as a centralized weakly-coordinated approach, where robots
exchange only their current state (position and observation)
and the next position to go to is computed on the merged visual
information provided by all robots. While this approach could
poorly perform when robots start from the same position, our
empirical results show that if the initial positions are taken
from a random distribution, our approach is able to provide

3We note that more advanced techniques (such as the ones proposed in
[24]) could be applied but leave this as a future direction.



good performance significantly outperforming a completely
randomized approach and an uncoordinated method.

V. EXPERIMENTS

In this section we detail the empirical evaluation of our
approach. Specifically, we first introduce our methodology,
then we describe our empirical settings and finally we discuss
the results.

A. Empirical methodology

Our empirical methodology is based on a 3D simulation
environment where a set of mobile cameras navigate in a given
2D map using Stage 2D. The 3D environment is based on real
3D reconstructions from images and the 2D map is built by
pre-processing the same data. In more detail, we simulate a
mobile robotic platform that is able to localize and navigate
autonomously in the 2D map. To this end, we adopt ROS
(Robot Operating System) to control our simulated platforms.
For the simulation of the 2D navigation environment we use
Stage 2D, a ROS module that simulates virtual 2D worlds and
mobile platforms with sensors and actuators for which various
level of noise can be considered (in this work we use the
gaussian odometry error provided by Stage 2D with variance of
0.2 for all the variables4). As for sensing, each mobile platform
is equipped with a laser range finder (used only for navigation
and simulated by Stage 2D) and with a fixed camera, heading
in the front direction of the robot (used for visual coverage
and simulated using ad-hoc procedures described below). As
for the navigation control stack, we use the amcl ROS module
for localization and move base ROS module for path planning
and motion control.

As mentioned before, we developed specific procedures to
run our tests. These procedures are implemented in MATLAB:
part of them are used to simulate the visibility model in our
synthetic world, and the rest of them are used to update
the coverage descriptor and to use it to compute the utility
function.

For what concerns the visibility model, it is necessary to
simulate the observations of cameras given the robot move-
ments and to compute the associated gain for visual coverage.
For this reason, specific procedures implement the visibility
constraints: they define the set of 3D points that are visible to
each camera, given the camera position and orientation. This
information is the input of other procedures that use the visible
features to update the coverage descriptor (defined in Section
III), which is then used to compute the utility function. Finally,
another set of procedures are dedicated to the computation of
the utility function: when the robot pools for a new position
to move to, these procedures use the information stored in the
coverage descriptor to compute the utility function which can
be used to create a ranking of desiderable positions and to
choose the one with the highest value. The MATLAB code is
executed by ROS (C++) routines via the MATLAB Engine5.

4Check the odometery model parameters at: http://www.ros.org/wiki/amcl
for further details.

5A set of API that allow C/C++/Fortran code to execute and query an
instance of MATLAB. For more info: http://www.mathworks.it/it/help/matlab/
matlab external/using-matlab-engine.html

In order to test the system in a realistic scenario, we use 3D
reconstructions of three different environments obtained from
real world images [11], [10]: Trafalgar Square (London, United
Kingdom), Piazza San Marco (Venice, Italy) and Piazza Bra
(Verona, Italy). We pre-process these maps to remove outliers
and to convert them in a suitable format to be used by Stage
2D6. Notice that, the 2D map is used only for navigation (i.e.,
path planning and localization) and that we assume planar
movements for robots.

B. Empirical setting

The information that we use to evaluate the performance of
our algorithm are the total number of explored voxels and the
sum of coverage level of every voxel. In more detail, the metric
measure used in the experiments is defined as the ratio between
the total number of voxels observed during the exploration and
the distance travelled so far by the robots. This gives us an
estimate on how well the robots make use of their energy.

The first phase of our experiments consists in tuning the
parameter α, used to compute the utility function. The value
α expresses the reward that has the “same” value for moving
1 meter or rotating by 180 degrees. Such tuning phase was
performed by trial and error on all the scenarios. This was
achieved by restricting with incremental steps the parameters
range so to reach satisfactory values for each of them. This
phase showed that, on average, the best results were obtained
with α = 15; thus this is the value we used for all the other
tests.

The core of our experiments consists in testing our algo-
rithm by evaluating the above mentioned metrics. In more
details, we compare our coordinated and uncoordinated ap-
proaches against a baseline method based on random move-
ments of the robot which randomly picks a location inside
the local grid as the next one to visit. In all the experiments
the initial positions of the robots are randomly chosen from
a selected area in the center of each map, and we run 10
repetitions for each experimental configuration (i.e., for each
map and robot number). The exploration is performed until
each robot reaches a fixed maximum travel distance (i.e. until
the battery is too low).

C. Results

The results show that our cooperative and uncooperative
approaches to visual coverage both outperforms the random
baseline method. In more detail, Figure 4 reports the average
number of voxels observed per meter (along with the standard
error). For every map the coordinated algorithm achieves the
best results. Furthermore, our algorithm achieves the best re-
sults for the average occupancy; that is, its average occupancy
level is the closest to 0.5, as reported in Table I.

It is worth noticing, that the number of explored voxels
per meter decreases as the number of robots increases (see
again Figure 4). This is because, when the number of robot
increases, each robot has less chances of observing new voxels.
In other words, the robots can easily cover the whole map

6We divide the 3D map in voxels and the 2D map in corresponding squares,
we then consider a square to be occupied if the corresponding voxel contains
a number of 3D points that is greater than a given threshold (which is specific
for every map).
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(a) Results for Piazza Bra.

1 2 3 5 8

50

100

150

Number of robots

D
is

co
ve

re
d

vo
xe

ls
pe

r
m

et
er

coordinated
uncoordinated

random

(b) Results for Trafalgar Square.
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(c) Results for Piazza San Marco.

Fig. 4. The plots show the voxels observed per meter. The bars represent the mean values while the whiskers represent the standard error.

with few moves and hence each of them observes less new
voxels. Finally, by analysing data of the robots’ trajectories, we
also noticed that our algorithm performs much more rotations
than the random approach (i.e., three times more). This is an
interesting result, as far as in our setting, rotating allows to
discover new voxels using a much lower amount of “battery”.

map random uncoordinated coord
Piazza Bra 0.00015 0.00977 0.01351
Trafalgar Square 0.0206 0.00244 0.01163
Piazza San Marco 0.0544 0.02842 0.02651

TABLE I. AVERAGE OCCUPANCY DEVIATION FROM LimCov = 0.5
FOR THE CASE OF 2 ROBOTS.

Fig. 5. Visual representation of the third move for two robots (red and green)
in Piazza San Marco. The grey areas represent the coverage of the past and
present moves (best viewed in color).

Figure 5 presents an exemplar navigation scenario with
two robots (green and red) for Piazza San Marco. Here we
visualise in gray the overall coverage at each movement and
the respective visible points for the last move. Finally Figure
6 shows five moves of the coordinated strategy against the
random one for the Trafalgar Square scenario with two robots.
The coordinated approach movements clearly show a better
coverage of the area. Qualitatively, a larger part of the map
is coloured in grey denoting a better coverage. Moreover,

with respect to the random robots, the coordinated ones avoid
movements that overlap their field of view hence making a
better use of energy (i.e., minimizing movement costs).

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel perspective for visual coverage
of large-scale 3D environments. Specifically, we define a
descriptor that measures the amount of information acquired
by a visual sensor. We also provide an autonomous cooperative
control method for mobile robots that aims at maximising
acquired visual information while minimizing movement costs.
Moreover, we developed a simulation environment to evaluate
visual coverage approaches that uses real images from large-
scale outdoor scenarios (i.e., Trafalgar Square in London,
Piazza San Marco in Venice and Piazza Bra in Verona) for
simulating 3D visual sensing, and which employs widely used
robotic tools (such as ROS and Stage) for 2D navigation.
When evaluated in such environments, our approach gives
evident benefits over a random baseline method and over an
uncoordinated approach.

We believe that this work is a first and significant step
towards the understanding of the 3D visual coverage prob-
lem for autonomous mobile robots and that it can have a
significant impact on robotic systems for rescue and security
applications, where collecting 3D information for large scale
outdoor environments is crucial. Our future work in this space
includes considering more complex aspects of the multi-view
geometry problem, such as modelling possible mismatches of
2D image features due, for example, to wide baselines among
different robot moves [26]. Moreover, we plan to investigate
decentralized approaches to multi-robot coverage, where each
robot maintains its own visual map and exchanges with peers
only relevant information. In this regard, we might also apply
cooperative strategies driving robots under different tasks such
as one maximizing 3D reconstruction quality and the other
maximizing area coverage.
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