
Autonomous Navigation and Exploration in a
Rescue Environment

Daniele Calisi, Alessandro Farinelli, Luca Iocchi, Daniele Nardi
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

E-mail: <lastname>@dis.uniroma1.it

Abstract— In this paper we present an approach to au-
tonomous exploration of a rescue environment. Exploration is
based on unexplored frontiers and navigation on a two-level
approach to the robot motion problem. Our method makes
use of a motion planner capable of negotiating with very fine
representations of the environment, that is used to move in
a cluttered scenario. A topological path-planner “guides” the
lower level and reduces the search space.

The two algorithms are derived from two widely-used
probabilistic algorithms, currently successfully deployed in
many robot applications, the Probabilistic RoadMap and the
Rapid-exploring Random Trees; however, their adaptation to
the rescue scenario requires significant extensions.

I. INTRODUCTION

Exploring the environment is one of the main tasks of
a rescue robot. Exploration is needed in order to build the
map and find victims. Our goal is to provide the robot with
autonomous navigation capabilities, that ease operator’s
tasks and become necessary in presence of communication
failures, thus increasing the effectiveness of navigation and
victim search.

Exploration in a rescue scenario can be divided in two
subtasks: i) decide where to go next, considering that the
environment has to be explored as fast as possible and
that there are places in which there are more chances to
find victims; ii) move the robot to the target position,
that involves the motion in a cluttered and rough-terrain
environment.

The first decision involves various issues, depending on
the kind of environment to be explored. In order to explore
an unknown environment, a SLAM algorithm is needed,
and in general it has to be coordinated with exploration
choices (e.g. [10]). However, in small environments, like
the ones that are considered in Rescue Arenas, the error
accumulated in the localization or SLAM process is small
enough and does not lead to serious difficulties when
closing loops. Consequently, one can safely assume that
exploration can be accomplished independently of SLAM
(i.e. without specific requirements by the SLAM process,
e.g. to re-visit well-known place in order to refine current
localization hypothesis). In our system we use a scan-match
based approach to localization ([2]), while the choice of
which position to explore is based only on unexplored
frontiers, as described in [12]. The choice of using a
frontier-based exploration is due to the consideration that
our focus is on unexplored areas of the map and the use of

frontiers allows us to focus on unexplored areas, but also
on the possibility of reaching them.

For what concerns the second decision, the solution of
the general motion planning problem is computationally
very expensive, even in the most basic formulations. The
so-called “generalized mover’s problem” has been proven
to be PSPACE-hard [8]. This motivates the development of
heuristic algorithms that are able to quickly find a solution
in many cases of interest, though often relaxing some
requirements such as completeness and optimality.

Moreover, in a rescue environment, some of the assump-
tions, made in order to solve this problem, do not hold. For
example:
• one cannot assume that the robot moves at a safe

distance from the obstacles and so the real shape and
size of the robot have to be considered in order to
negotiate narrow passages;

• the sensors are not accurate and suffer from a dis-
cretization error; moreover, some manoeuvre could
unexpectedly fail, due to the presence of undetected
obstacles, so one cannot assume to be able to do
whatever manoeuvre;

• the map is not known a priori.
A straightforward application of path-planning and ex-

ploration techniques is therefore not successful in a rescue
domain. Most notably, the major difficulties are caused by
the need of a very accurate manoeuvring, but at the same
time it is necessary to plan long paths, trying to avoid
potentially difficult/blocked passages.

Recently, probabilistic methods have been introduced in
robot motion in order to reduce the computational cost
of the classical deterministic and geometric approaches.
They are currently successfully used for solving many
dofs manipulators and kinodynamic vehicles autonomous
control. Those methods relax the completeness requirement
to a probabilistic completeness, but provide computational
tractability and formal guarantees on the behaviour of
the algorithm. Two main probabilistic algorithms used in
robot motion are the Probabilistic RoadMap [5] and Rapid-
exploring Random Trees [6]; they both rely on the idea of
computing a graph or a tree of feasible trajectories and then
use one of them to reach the target.

We adopt a very common approach to robot navigation
which makes use of a local planner, that uses as input the
sensors readings and a local small map and can be more
precise in steering the robot, and a global planner, that takes



into consideration the whole knowledge of the environment.
In this way, one can decouple the problem by first solving
a simple path-planning problem and then find a trajectory
that is able to follow that computed path.

In our approach we build a topological graph of the
environment on which we can compute a topological path
that subsequently the low-level motion planner will follow.

The main novelties of the proposed approach are the
following:
• with respect to global path-planning, a new combi-

nation of Probabilistic RoadMap and Growing Neural
Gas is proposed, featuring the ability to be used with
a map that is built incrementally while exploring;

• with respect to the local motion planning, the Ran-
domized Kinodynamic Planning approach has been
extended with interleaved planning and execution,
feedback control and on-line pruning.

In the rest of the paper we first introduce the local motion
planner and then the topological high-level path planner,
which computes the path that guide the execution of the
local planner, in order to reduce the search space and speed
up the computation.

II. THE MOTION PLANNER

In this section we first summarize the main features of
the Randomized Kinodynamic Planner algorithm and then
focus on our extensions, that make this method feasible for
the use in a rescue environment.

A. Randomized Kinodynamic Planning
For the local motion planner we use an algorithm

based on the Randomized Kinodynamic Planner (RKP) [7],
which, in turn, is an extension of the well-known Rapid-
exploring Random Tree (RRT) [6] that considers kinematic
and dynamic constraints. These algorithms are probabilistic
and build a tree which quickly and uniformly explore
the search space. One of their strength is that motion
constraints, such as robot kinetic and dynamic constraints,
are easy to integrate into the algorithm. Moreover, the ex-
ploration of the search space is biased towards unexplored
portion of the space, by random sampling points in that
portions and “pulling” the tree towards those points. The
features of this algorithm make it suitable for application
in the rescue scenario, because it allows for planning
movements, making it possible to know in advance if
a trajectory could be followed (in contrast with reactive
methods), and for fast (partial) replanning, that is necessary
where the map is built incrementally and may change over
time.

The Randomized Kinodynamic Planner starts by initializ-
ing a tree τ with the current robot position. A random pose
x is then randomly generated (with some bias), and the
node n in the tree, nearest to x is selected from the tree. A
finite set of feasible motion commands C is then randomly
generated and applied to the robot in the pose n, integrating
over a finite time ∆t. From the poses resulting from this
process we choose the command c ∈ C that moves the
robot nearest to x, without colliding with an obstacle; then,
we add a node in τ , which contains the resulting pose and

the commands used to move the robot in that pose, linking
this node with the one from which we started to integrate
the motion command.

B. Extended RKP
The search space of the algorithm we use is that of

poses (i.e. position and orientation) and velocities (speed
and jog). We do not take into account dynamic constraints,
due to the low velocities involved (caused by the fact that
the environment is cluttered and partially unknown).

The use of an RRT-like approach allows for an easy
specification of the set of constraints needed in order to
navigate in the environment. Each constraint, indeed, needs
only to be checked over the set C of motion commands.
We can also indicate which manoeuvres are forbidden in a
particular area of the environment (because, for example,
they result in a stall, i.e. the robot is blocked by an
undetected obstacle).

The main choices when using a RKP algorithm are:
• how to random generate the pose x;
• a distance function between poses;
• how to generate the set C of motion commands.

In order to speed up the tree building process, the genera-
tion of the pose is often somehow biased towards the target
position. In a space without obstacles, the best solution is
to use always the target position as input to the algorithm;
random picking is necessary in order to create those ma-
noeuvres that avoid obstacles and local minima. Since the
use of the global path-planner reduces the possibility of
local minima, we can increase the bias towards the goal,
thus decreasing the time needed in the building process to
reach the target. In addition, among the random commands
generated, we can always insert the optimal command, i.e.
the one that we would like to use in free space. In this way,
if obstacles do not cause a collision from a certain point to
the target, we quickly find the (optimal) trajectory.

We compute the distance between two poses using the
following formula:

dist =
√

(∆x)2 + (∆y)2 + k(∆θ)2

that is a euclidean distance in the space of (x, y, θ) with
a constant weighting factor k that measures how much the
robot orientation is relevant (e.g. with a high k the robot
first tries to turn in the right direction and then steers to
reach the (x, y) position). For the generation of the set C of
motion commands we join random motion commands with
heuristic commands, e.g. those given by a control law in a
space free from obstacles. We discard those commands that
do not meet the initial constraints on motion commands.

The RRT and the RKP algorithms, assume to have
the whole map and that it does not change over time;
consequently they do not deal with the possibility to correct
the plan once it has been computed and is being executed.
In our case we have to deal with the imprecision and the
discretization errors of the sensors and with the fact that the
map is partially unknown; moreover, motion commands do
not always lead to the desired behaviour because of the
roughness of the terrain and because we cannot assume
to be able to execute a motion command for exactly the



amount of time needed. It is therefore necessary to consider
a fast method to re-plan if the previous plan becomes invalid
(i.e. it will bring the robot to a collision).

Furthermore, RRT and RKP usually build two trees, one
from the current robot pose and one from the target pose,
trying to connect them during each cycle, because this
reduces the planning time. On the contrary, we build only
one tree starting from the robot pose. In fact the target
pose is usually near the unknown portion of the map and
is likely to change a lot while the robot approaches that
position. Moreover in our approach the target position for
the low-level motion planner moves on a path generated by
the high-level path-planner.

Summarizing, the main extensions to the RKP algorithm
are the following:

1) Interleaved planning and execution: One of the main
issues of our algorithm is that we interleave planning and
execution of the plan. This has some advantage over the
two-phase approach, as the plan is generated when (and
where) we have information about the environment and we
can build the plan while the robot is moving; the results
are very small plans, that are indeed just parts of the global
plan.

In this way we can use the algorithm to quickly move in
the environment, without having to plan long trajectories,
that in general will be made invalid during the subsequent
exploration. While following the current plan step, we
check the current error in robot pose and translate and rotate
the tree accordingly, in order to keep the result of the tree
(and hence the current plan) up to date.

2) Feedback control: Though the low speed used to
explore the environment causes only a small error in
trajectory following and the use of a good localization and
mapping method minimizes the input errors, we believe that
a closed-loop control is still needed to correct errors in the
trajectory execution. For this reason we correct the motion
commands using a feedback on the final foreseen position
of the current plan. Another approach to feedback in RKP
can be found in [3], that uses a single motion command (a
feedback control law) at each iteration, making the method
not suitable to easily set constraints on the plan.

3) On-line pruning: In narrow passages, the trajectory
found on the tree becomes easily invalid, due to control
and sensors errors, thus a re-planning phase is necessary.
During this phase we can save a lot of computation if
we partially maintain the tree previously computed. In [1]
a different method is used, based on the computation of
waypoints along the trajectory. Since our environment is
not as dynamic as the one considered in that paper, we
can keep a lot more information (i.e. the whole tree) and
“prune” only branches that begin with a collision. Since the
robot is moving, we can also prune the root and all branches
that do not belong to the current tree of possibilities. In this
way we have, at each cycle, only a limited set of nodes and
branches, from which we can continue to grow the tree, in
order to further explore the search space. The trajectory
is computed on the current tree and this cannot lead to
oscillations because at each node we only make a choice
on which branch to follow; all other choices (branches) will

then be pruned, thus limiting the size of the tree.

III. THE TOPOLOGICAL PATH-PLANNER

In the following subsection we briefly describe the two
algorithms that we successfully combined in order to obtain
our global high-level path-planner, which is introduced in
the next subsection.

A. The Probabilistic RoadMap and the Growing Neural
Gas

Using complete algorithms to find the topology of the
environment (e.g. Voronoi diagram) is very expensive and
since we have a different map each cycle a probabilistic
approach is more convenient also for the topological path-
planner.

The most widely used probabilistic algorithm that builds
a graph representing a roadmap of the environment is the
Probabilistic RoadMap (PRM) [5]. The algorithm works
by picking random positions in the configuration space
and trying to connect them with a fast local planner. The
problem with this algorithm is that it expects as input a
map that does not change over time.

In order to overcome this limitation, we combine the
PRM algorithm with Growing Neural Gas (GNG) [4]. GNG
is a neural network with unsupervised learning, used to
reduce the dimensionality of the input space. In this kind
of network, nodes represent symbols and edges represent
semantic connections between them; the Hebbian learning
rule is used in many approaches to update nodes and create
edges between them. Given a system which has a finite set
of outputs, applying the Hebbian rule allows for modifying
the network in order to strengthen the output in response to
the input. Otherwise, given two outputs that are correlated
to a given input, it is used to strengthen their correlation.
For our concerns, the nodes (symbols) represent locations
and the edges the possibility to go from one location to
another. In this sense, we can use, together with the Hebbian
learning rule, a simple visibility check in order to create a
link between two nodes, as PRM does. GNG cannot be
straightforwardly used in a robot motion problem, because
the topological information is valid only when the graph
has reached a state of equilibrium.

B. The Dynamic Probabilistic Topological Map

Our algorithm, that we call Dynamic Probabilistic Topo-
logical Map (DPTM), successfully combines PRM and
GNG, taking into account the characteristics of the con-
sidered rescue environment. There are two main issues in
this kind of algorithm: 1) when to add a new node; 2) when
to add a new edge between two nodes.

First of all, in order to connect nodes we use the simple
straight-line local planner to connect two nodes, usually
used in PRM algorithms. We say that a node can “see”
another if it can be connected through a straigh-line local
path to the other. This relation is obviously symmetric.

1) Nodes: Since we want to have only those nodes that
are needed to represent the topology of the environment,
we do not add a new milestone each time a new position
is presented to the network, but only if:



• the position cannot see any other node already in the
network;

• the introduction of a new node makes it possible to
connect two nodes already in the network.

If a node does not have to be added, we can use the
Hebbian learning rule in order to reduce the error distortion
in the set of positions represented by the node. In this
way, we actually move the node in the center of place it
represents (where the error distortion is minimum), thus
incrementing the chance of connecting it with other nodes
(as experimented in [11]). The second criterion is similar
to that used in [9], but in our case each node could be a
connection between two nodes, there is no fixed role.

2) Edges: For what concerns edges, we avoid to connect
a node with all its neighbours, because they can be redun-
dant for the topology representation of the environment.
Instead, we use the Hebbian learning rule to connect the
two nodes nearest to the current input position. We clearly
add also the two edges that connect the new position to two
nodes that cannot see each other.

The few nodes in the topological map make it easy to
move them to different positions as topology modifies and
check, at each cycle, if some edges are no longer valid, i.e.
two nodes cannot see each other, and remove them.

C. Differences with PRM and GNG
In order to reach the same topological representation of

the environment, the DPTM has a number of nodes that is
in the order of 1% with respect to PRM. Moreover, with
respect to GNG, the density of nodes is a function of the
complexity of each portion of the map (how many nodes
are needed to represent the topology), instead of being
uniform, thus providing for a good trade between accuracy
and relevance of the representation.

Moreover, using a DPTM we can extract the topology
information of the environment, i.e. each path in the en-
vironment can be represented on the DPTM, while the
PRM algorithm tries to achieve only the connectivity,
eventually losing in the graph some connection existent in
the environment. This means that with DPTM we can use
some method in order to find the optimal path between two
positions, while in general with PRM we cannot do it (we
are not interested in other ways to reach the same target).

Another important difference is that the PRM algorithm
needs to be stopped because it continues indefinitely to add
nodes and edges to the graph, while the DPTM, given a
static map, reaches a state in which the number of nodes
remains almost constant.

Finally, DPTM easily adapts to the topological changes
of the environment, making it useful in an environment
whose map is incrementally build during exploration. The
use of the the Hebbian rule moves the nodes in the center
of the ”places” they represent. Using a set of heuristics,
we are able to remove some redundant or invalid nodes
and edges. This process is done during the map building
process in order to have at each cycle a network which
turns to be very small and easy to maintain and to find
topological paths on it.

Algorithm 1, shows the main cycle of DPTM algorithm,
that can be run indefinitely. NEARESTNODE(N, q) returns a

Algorithm 1: Dynamic Probabilistic Topological Map
BUILDDPTM(metricMap)
(1) N ← ∅
(2) E ← ∅
(3) while true
(4) q ← RANDOMPOSITION()
(5) n1 ← NEARESTNODE(N, q)
(6) n2 ← NEARESTNODE(N \ n1, q)
(7) if ∃n1

(8) n∗1 ← UPDATE(n1, q)
(9) if ¬LOSEEDGES(n1, n

∗
1)

(10) n1 ← n∗1
(11) if ∃n2

(12) if VISIBILITY(n1, n2) ∧ (n1, n2) 6∈ E
(13) E.ADD(n1, n2)
(14) else
(15) N.ADD(q)
(16) E.ADD(n1, q)
(17) E.ADD(n2, q)
(18) else
(19) N.ADDNODE(q)

node n1 ∈ N which is the nearest to q and is visible from
q. This function is called another time to get the second
nearest node. If n1 does not exists (no node can see the
new position q), we add a new node to the graph in the
position q. The function UPDATE(n, q) returns a node n∗
resulting from the application of the Hebbian learning rule
to the node n and the new position q, i.e. applying the
following formula:

n∗.x = n.x+ η(q.x− n.x)

n∗.y = n.y + η(q.y − n.y)

in which η is the learning factor, a constant parameter.
In order to avoid to delete edges where a path between two
nodes still exists, we first check if the node, in the new
position, will lose some of its edges; this is done via the
function LOSEEDGES(n, n∗): we update the node if and
only if it does not lose any edge in the new position. The
visibility check (using the function VISIBILITY(n1, n2))
ensures that there exists a straight path between two nodes,
i.e. they can see each other. This function is used to check
if the two nodes nearest to q can see each other: in this
case, if they are not already connected, we make a link
between them. Otherwise we check if we can connect the
two nodes via the new position and eventually do it.

During each algorithm cycle, we also check the validity
of all edges and eventually remove those that have become
invalid.

IV. INTEGRATION

In this section we discuss how we integrate the high level
path-planner and the low level motion planner algorithms
in order to achieve a system able to steer the robot in a
partially known and cluttered environment.



A. The exploration module

This is the module that points out the next target position
to reach, i.e. the next frontier that has to be explored. This
target is given as input to the topological path-planner, that
tries to find a topological path from the current robot pose
to the target.

B. The “expanded” map

In order to reduce the search space, we can compute the
configuration space for a circular robot, whose radius is
that of a circle inscribed in the real robot. This fast pre-
computation will help to find the trajectories only along
those topological paths that could be feasible for the robot.
It is clear that if a path does not exists in this expanded
map, it cannot exists in the real space (the robot is too large
to pass through), while we cannot say anything if that path
exists (that topological path may exists while no finite set
of manoeuvres exists that can follow that path). This is the
first step towards the reduction of the search space for the
local motion planner.

C. Choosing the target for the motion planner

Once we compute a path in the graph (currently we
use the Dijkstra algorithm, that is essentially a semplified
version of the well known A* algorithm), we can try
to follow it using the local motion planner. We choose
the nodes along that topological path as target poses. We
tried two methods: using the nodes as “waypoints” (as in
[1]) or using the next topological node only if the plan
reached the current one. As stated before, we do not need
to reach exactly that pose, since topological path nodes
only represent topological places, i.e. the Voronoi region of
which they are generator. We experienced that the second
method finds trajectory faster than the first, mainly due to
the clutterness of the rescue environment.

D. Motion planner (pseudo) failure

The execution of the motion plan begins before the
construction process ends, so it is possible that the planner
cannot find the right trajectory that can steer the robot
through that branch of the topological path. After a reason-
able time, we request another topological path to the global
path-planner, to avoid to remain trapped along a topological
edge that cannot be traversed by the robot (though there
exists a topological link between the two nodes). Due to
the probabilistic nature of the algorithm, this cannot assure
that a trajectory does not exist.

V. RESULTS

In Figure 1 a partial map is shown and the corrispondent
DPTM build on it. The thick line is the topological path,
computed on the DPTM, that has to be followed by the
motion planner. In Figure 2 we can see an example showing
a difficult DPTM edge in a narrow passage, that the
algorithm is able to deal with. In the first two images the
trajectory found by the motion planner causes the robot first
to move backwards, because it cannot turn or go forward;
then, it find its way in the narrow passage. In the third
and fourth image, while the trajectory is being followed,

Fig. 1. The DPTM built on a partial explored map

the robot is shifted robot to the left, making the trajectory
invalid and making it necessary to compute a new one. The
whole process is done while the robot is running, it never
stops to re-plan (unless the collision is found on the current
step). The robot navigates at a speed of 10 cm/s and its size
is 48x50 cm while the narrow passage is only 60 cm wide
(the map is discretized at 50 pixels per meter).

In figure 3 we report the map built by our robot in
the NIST yellow arena set up in Paderborn during the
2005 RoboCup rescue competitions. The gray line is the
path done by the robot during the exploration. The robots
successfully completed the exploration fully autonomously
without ever colliding with any obstacles. As it is possible
to see the arena is very cluttered, moreover the obstacles
present in the arena are unstructured and difficult to identify.

VI. CONCLUSION

We presented an approach to autonomous exploration
that is based on unexplored frontiers and two-level method
for robot motion, based on two probabilistic methods that
have been suitably extended in order to adapt to a rescue
environment. The resulting method is able to steer a robot
in a cluttered environment and has been tested both in
simulation and in real rescue arenas. Thanks to the use
of a RRT-like algorithm, the introduction of constraints on
robot moving capabilities (e.g. minimum turning radius,
forbidden manoeuvres in particular areas of the arena due
to undetectable obstacles, ecc.), is straightforward.

Moreover, the use of a topological representation in the
global level makes it simpler to interact with an operator
or with a cognitive level.

We believe that during a rescue mission having au-
tonomous navigation capabilities can be beneficial to the
human operator. In fact, in such environments to correctly
interpret robot sensor readings and to safely steer the robot,
can be a hard and time consuming task for a human
operator. On the other hand, using our approach the human
operator can focus on more complex tasks (i.e. victim
identification) taking control over the robot only when
needed. Moreover, our system is robust to network failures.
In fact, if a network breakdown happens, the robot can
keep on safely exploring the arena until the connection is
reestablished.



(a) 1 (b) 2 (c) 3 (d) 4

Fig. 2. An example showing the behaviour of the low-level motion planning algorithm

Fig. 3. This map has been built while autonomously exploring the arena in the RoboCupRescue Real Robots League of Paderborn RoboCup German
Open competition

REFERENCES

[1] James Bruce and Manuela Veloso. Real-time randomized path plan-
ning for robot navigation. In Proceedings of IROS-2002, Switzerland,
October 2002, 2002.

[2] A. Censi, L. Iocchi, and G. Grisetti. Scan matching in the hough
domain. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA’05), 2005.

[3] E. Feron E. Frazzoli, M.A. Dahleh. Real-time motion planning
for agile autonomous vehicles. In 2000 AIAA Conf. on Guidance,
Navigation and Control., 2000.

[4] Bernd Fritzke. A growing neural gas network learns topologies.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances
in Neural Information Processing Systems 7, pages 625–632. MIT
Press, Cambridge MA, 1995.

[5] L. Kavraki and J. Latombe. Probabilistic roadmaps for robot
path planning. In Practical Motion Planning in Robotics: Current
Approaches and Future Challenges, pages 33–53. K.G. and A.P. del
Pobil, 1998.

[6] J. Kuffner and S. LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Proc. IEEE Int’l Conf. on Robotics
and Automation (ICRA’2000), San Francisco, CA, April 2000., 2000.

[7] S. LaValle and J. Kuffner. Randomized kinodynamic planning. In
Proc. IEEE International Conf. on Robotics and Automation, pages
473–479, 1999.

[8] J. H. Reif. Complexity of the mover’s problem and generalization.
In Proc. 20th IEEE Symp. on Foundations of Computer Sciences
(FOCS), pages 421–427, 1979.

[9] T. Simeon, J. Laumond, and C. Nissoux. Visibility-based proba-
bilistic roadmaps for motion planning. In Proc. of IEEE IROS 1999,
1999.

[10] C. Stachniss, G. Grisetti, and W. Burgard. Recovering particle
diversity in a rao-blackwellized particle filter for slam after actively
closing loops. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2005.

[11] S. Wilmarth, N. Amato, and P. Stiller. Maprm: A probabilistic
roadmap planner with sampling on the medial axis of the free space.
Technical report, Department of Computer Science, Texas A&M
University, College Station, TX, nov. 1998.

[12] B. Yamauchi. A frontier based approach for autonomous exploration.
In IEEE International Symposium on Computational Intelligence in
Robotics and Automation, Monterey, CA, July 10-11, 1997., 1997.


