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Abstract. Score functions induced by generative models extract fixed-
dimensions feature vectors from different-length data observations by
subsuming the process of data generation, projecting them in highly
informative spaces called score spaces. In this way, standard discrimina-
tive classifiers such as support vector machines, or logistic regressors are
proved to achieve higher performances than a solely generative or dis-
criminative approach. In this paper, we present a novel score space that
capture the generative process encoding it in an entropic feature vector.
In this way, both uncertainty in the generative model learning step and
“local” compliance of data observations with respect to the generative
process can be represented. The proposed score space is presented for
hidden Markov models and mixture of gaussian and is experimentally
validated on standard benchmark datasets; moreover it can be applied
to any generative model. Results show how it achieves compelling clas-
sification accuracies.

1 Introduction

Pursuing principled hybrid architectures of discriminative and generative classi-
fiers is currently one of the most interesting, useful, and difficult challenges for
Machine Learning [1-4]. The underlying motivation is the proved complemen-
tarity of discriminative and generative estimations: asymptotically! classification
error of discriminative methods is lower than for generative ones [5]. On the other
side, generative counterparts are effective with less, possibly unlabeled, data; fur-
ther, they provide intuitive mappings among structure of the model and data
features.

Among these methods, “generative score space” approaches grow in the re-
cent years their importance in the literature. Firstly one usually has to learn an
estimate of the parameters 6 of the generative model; we refer with 6 to this
estimate. Secondly, a score function ¢(x, é) is defined in order to map samples
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x in a fixed-size dimensional space built using the estimate of the parameters
[1, 2]. After the mapping, a space metric must be defined in order to employ
discriminative approaches.

Most of the literature on this topic exploits the hidden Markov models as gen-
erative frameworks, but any other generative methods can be employed [4].

In the literature, the most known score space is the Fisher space [2], in which a
single model for all the classes or a set of per-class models are fit on the data.
Then the tangent vector of the marginal log likelihood Vg log p(x\é) is used as
feature vector; the Fisher Kernel refers simply to the inner product in this space.
In general, the main intuition of generative score space approaches is to distill
the contribution of each parameter ; in the generation of a particular sample.

Similarly to [2], other score spaces have been proposed, like the Top Kernel [1]
derived from Vg(log p(y = +1|x,0) —log p(y = —1|x,0))?2, the tangent vector of
posterior log-odds, or the Fisher space variants presented in [3, 4].

Following this trend, in this paper we propose a novel feature extractor, intro-
duced here for hidden Markov models, that extracts features from a learned
generative model, moving the generative description of the data into a set of fea-
tures that can be used in a discriminative framework. The idea is to capture the
difference in the generative process between the samples, calculating a distance
between the statistics collected over all the samples, encoded in the parameter
estimate 6, and the individual j-th sample statistics p(y|zY)), where y represent
the set of hidden variables, possibly containing the class variable. The intuition
is that the samples of a particular class have to differ in the same way (i.e., have
to present the same generative behavior) from the parameters estimate 0.

The rest of the paper is organized as follows. In Sec. 2 technical preliminaries are
reported. In Sec. 3, the proposed framework is introduced and several general-
izations are discussed in Sec. 4. An exhaustive experimental section is presented
in Sec. 5, and, conclusions are drawn in Sec. 6.

2 Hidden Markov models

Hidden Markov models (HMMs) are generative models aimed at modeling se-
quential data. As visible in Figure 1, they are composed by a sequence of hidden
state variables S = {S;, }H<_ | and by a sequence of visible variables O = {Oy }£_|.
In the case of a first-order hidden Markov model, each state variable Sy depends
on the previous state variable S;_; via a conditional dependency, and influences
the visible observation variable Oy. Each value of k identifies a slice of the model.
More formally, a HMM X is defined by the number hidden states @, and by the
following parameters [6]:

1. A transition matrix A = {amn}, 1 < m,n < Q representing the probability
of moving from state m to state n,

A = P(Sg+1=n|Sy=m), 1<nm<Q, Vk=1,...,K

2 y is the label variable
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Fig. 1. On the left an hidden Markov model A =< A, B, 7 >. On the right the graphical
model that represent the mixture of Gaussians which can be viewed as a single slice of
an hidden Markov model with gaussian emission.

2. An emission matrix B = {b,,(v)}, indicating the probability of emission of
symbol v € V when the system state is m; V' can be a discrete alphabet or a
continuous set (e.g. V' = IR) and, in this case, b,,(v) is a probability density
function.

3. w = {my}, the initial state probability distribution, m,, = P(S1 = m)

For convenience, we represent an HMM by A = (A, B, 7).

The learning problem Given a model A and a set of training observation
sequences {O(j )}'j]:l, the goal of a learning algorithm is to choose the values of
the parameters A that maximize the data likelihood P({O(j)}le\)\). The pro-
cedure that exploits the model learning is a generalization of the well known
Expectation-Maximization algorithm, known as Baum-Welch procedure [6].
The E-step consists in first calculating the standard forward and backward vari-
ables « and 3 using the forwards-backwards procedure [6]. From these variables
key quantities can be obtained, such as the conditional probability of two consec-
utive hidden states in an observation sequence at site k, i.e., P(Sy =m, Sky1 =
n|AO(j)) = §i,(m, n) and the conditional P(Sy = m|OU))= Zﬁzl fi(m,n) =
71(m). In the M-step the prior distribution 7 and the transition A and the
emission B matrices and are updated using these quantities.

3 Entropy features for hidden Markov models

Given C hidden Markov models Aq,...,A¢, to perform generative classifica-
tion of a sequence O, one has to solve the evaluation problem for each class
c=1,...,C obtaining P(OU)|X,), and then assign the most likely class label ¢,
after computing the posterior distribution P(c|O")) via Bayes rule ( Mazimum-a-
posteriori (MAP) classification). Nevertheless, as stated in [7], generative classi-
fication often yields to poor accuracies if compared with discriminative methods.
To get the best from both frameworks, an alternative hybrid framework has been



proposed: the idea is to exploit the generative process in a discriminative frame-
work, trying to extract features from a generative model previously learned.
Here, we focus on hidden Markov models, and unlike generative classification,
we want to move the focus from likelihoods, to the different behaviors of the
samples under the generative model. To do this we learn a single hidden Markov
model pooling all the samples of all C' classes together, trying to capture the
different generative process for each pair of examples O7) and O looking at
their posterior distributions. The intuition is that the samples of the different
classes have to “use” different paths over the hidden Markov models states Sy
in order to fit the model parameters 6.

To catch this difference we use, as feature for a discriminative classifier, the dis-
tance between the posterior distribution of each sample P(S|OU), A) and the
joint distribution P(S, O|A) which is calculated collecting statistics over all the
samples. In this way we can see where the samples of a class differentiate from
the others.

Since we are calculating a distance between two distributions, we employ the
entropy distance, defined as H(p, ¢) = —plog ¢; therefore the final feature vector
becomes

H = —P(S|0Y), \)log P(S,0|\)

(e ) i)

Q
==Y P(S =m|0Y), X)logm,, Z Z > P(Sk =m|OY), X)log by, (v)
m=1

k=1m=1 v
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Instead of calculating the sums present in equation 1, we keep all the addends
separated in order to have many descriptive features. In this way, for each j-th
sample, we can extract a feature vector using the following three step procedure.

Transition probabilities The statistics collected over all the sequences are
encoded in the transition matrix P(Sk4+1 = n|Sk = m) = @y, which represent
the probability of transition between states n and m. The same quantity, referred
to a single sample j, is the probability that it moves from the state m to state
n, i.e. P(Sg = m, Spy1 = n|OU) X) = & (m,n). In this way we can calculate a
entropic distance term for each bhce k, for each couple of states m,n as

Hy (m7 n, k) = 751@ (ma n) . IOg Qm,n (2)

Emassion probabilities The probability that the hidden Markov model emits
a symbol v being in the state m is b,,(v), the statistics collected over a single
sample is the probability that the sequence is in the state m if the current



symbol is v, otherwise is 0. Therefore the distance between the generative process
of a sample referring to the emission process and the emission matrix, can be
calculated for each state m, for each symbol v and for each slice k as

He(m,v, k) = —y(m) - 650 , - 1og bm (v) (3)
k
where d; ; is the Kronecker delta.

Prior Probability Similarly we can calculate a distance vector for each state
value m between the sample posterior and the prior state distribution as

Hp(m) = —y1(m) - log my, (4)

These distances can be concatenated and used as a feature vector for discrim-
inative classification, since they encode the generative process that created the
examples. Finally, we define the feature extractor ¢ that maps an observation
00) into a vector of entropy distances as:

Q-V-K long Q-Q-K long Q long
(O HMM) : O — [, Ho(m, v, k), ..oy Helmyny k), ooy Hy(m), . ]
(5)
The classification protocol is simple, an HMM X is learned using the training
data, then the extractor ¢ is applied to both training and testing data obtaining
the data for the discriminative classifier.

4 Generalizations: variable length sequences and other
models

The major problem that (space) projection methods solve effectively is the clas-
sification of variable length sequences, such as audio recordings, DNA strings
or shapes. Using the proposed feature extractor ¢, each sequence is mapped in
a space whose dimension depends on the length of the sample (see equations
2-3). In fact, if the j-th sample has length K(j), the feature vector would be
Q- -K(j) - (Q+V)+Q long, making it unusable for discriminative methods.
To solve this problem, we can simply sum over the slices k = 1... K(j). Note
how this operation is eligible and natural, since each piece of equations 2-4 is an
entropy and so it is their sum. Therefore we define a second set of features as:

He(m,v) = — ZHe(m,v, k), Hi(m,n)= —ZHt(m,n,k) (6)
k k

consequently, the mapping operator ¢ would result in

Q-V long Q-Q long Q long
POV HMM) : OU) — [, He(m, ), ..oy, He(mynyt), .oy, Hp(m), .. ]



This framework can be further generalized to any generative model that
contains a mixture variable that can separate the behaviors of the samples.
Probably the most famous and simple generative model with such characteristics
is the mixture of gaussians (MOG), which can be thought as a single slice of an
hidden Markov model (see Figure 1).

Given a set of samples X = {X(j )};.121, the joint distribution of a mixture of
gaussians is

J
P(C,X)=)Y P(C=c)-PX[C=c)=]] (Z Te - N(X9): g, EC)> (8)
c j=1 c

where C is the number of the mixture components. For each sample, in the E-
step, the responsibilities P(C' = ¢/[X)) are calculated, then these statistics are
collected to calculate the means fi. and the covariance matrices X, (M-step).
At this point, the derivation of the entropy features can be easily written as:

H,u(c) = —P(C = ¢| X)) 1og N (XD e, ) Hy(c) = —P(C = ¢|XD)-log 7,
9)

leading to the following feature extractor operator:

C' long C long
H(XD MOG) : 2t — [..., Hu(c), .y Hylc), .. ] (10)

5 Experiments

Having the feature set ¢(X,-) been extracted, as discriminative classifier we
employ support vector machines with gaussian RBF kernel [8] even though any
other discriminative classifier could be employed. The choice of the particular
kernel used, is guided by the fact that the feature vectors contain entropies,
whose distance is usually calculated using the Ly norm [9].

5.1 Mixture of gaussians

These experiments aim to show how the proposed features bring generative in-
formation to the discriminative classifiers boosting the classification accuracies.
We compared the results with the MAP estimate of the generative model used to
extract the features (MOG), with support vector machines (SVM) with RBF
kernel, using directly the data as feature, and with an SVM on the proposed
features (¢(X,MOG) + SVM). For each experiment we learned a mixture of
gaussians from the training data with C' components®, where C' is the number
of the classes of the particular dataset.

The first dataset is the Fisher’s Iris dataset [10], perhaps the best known dataset

3 The number of classes in a classification task is a-priori known, so we do not have
to investigate on C'.



in the pattern recognition. The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant.

The second dataset is the Wine dataset [10]. Data points are the results of a
chemical analysis of wines grown in the same region in Italy but derived from
three different cultivations. The analysis determined the quantities of 13 con-
stituents found in each of the 3 types of wines.

The Blood dataset [10] is composed by 748 samples described by 5 features. The
associated task is to predict if samples had their blood drawn on a particular
date (2 classes).

To perform generative classification, we learned a separate mixture of gaussian
(C = 2) for each class, and we classify testing data using the Bayes rule. Results

Mixture of Gaussians

Dataset Wine Iris Blood
Classes 3 3 2

MOG (MAP) 73,0% 87,1% 69,9%
SVM 83,1% 97,1% 76,3%
#»(X,MOG) + SVM |86,6% 98,9% 78,3%

Table 1. Mixture of gaussians numerical results. All the improvements are statistically
significant however the main benefit of the method is that differently from SVM, it
can deal with missing data or multiple length sequences (see Sec. 5.2).

for all datasets are shown in Table 1 and confirm that discriminative methods
outperform generative classification, but the same discriminative method (SVM)
obtains better performances when used with the proposed features since the map-
ping ¢(X, MOG) additionally encodes the generative process that created the
data.

5.2 Hidden Markov models

To evaluate our approach using HMMSs, we focused on some standard datasets
considering as comparative results, the classification accuracies reported by the
dataset’s authors, the generative classification based on likelihoods (HMM)
and the Fisher and TOP Kernels [1, 2] in their original definition (indicated
respectively with FK and TK).

The number of states of the hidden Markov model ) has been chosen using
a validation set extracted from the training set and the same HMM used for
generative classification is used for the extraction of the Fisher, Top and Entropy
features.

In the first test we generated 800 fixed-length sequences, sampling 8 hidden
Markov models (100 sequences per class). We classified the sequences using the
50% of the data for training and the rest for testing (50-50), repeating the process
10 times. The mean results are reported in table 2, where one can note that the
improvement with respect to HMM, FK and TK is evident and statistically
significant.
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Fig. 2. On the left, examples from each of the 5 classes of the Chicken Pieces database.
On the right examples from the Characters database.

The first dataset is the Chicken Pieces Database? [11], which consists of 446
binary images of chicken pieces, belonging to one of the five classes that repre-
sent specific parts of a chicken: “wing”, “back”, “drumstick”, “thigh and back”
and “breast”. Despite the limited number of classes, this is a challenging dataset
where the best result do not go over 81% of accuracy, at best of our knowledge.
The shapes are usually first described by contours, which are further encoded
by suitable sequences; this makes the classification task even more difficult. In
order to compute curvature sequences, the contours are first extracted by using
the Canny edge detector, and the boundary is then approximated by segments of
approximately fixed length. Finally, the curvature value at point x is computed
as the angle between the two consecutive segments intersecting at x, resulting in
continuous valued sequences of different length. Some images from this dataset
are depicted in Figure 2.

Results published in [11] report a baseline leave-one-out accuracy of 67% by using
the 1-NN on the Levenshtein (non-cyclic) edit distance computed on the con-
tour chain code. In [12] the authors characterize the contour of each object using
the multifractional Brownian motion (mBm), using Horst coefficients to derive a
fixed length vector, which characterizes each shape. After that a 1-NN classifiers
(with the Euclidean and the Minkowsky distance) is used. In [13] a kernel based
method, based on a dissimilarity representation, was proposed. Note that each
of these three methods employs a different technique to deal with variable length
sequences. Moreover, we took as comparison the score space methods presented
in [1, 2]°.

We compared our method with [11, 12] using leave-one-out (LOO) and with
[1, 2, 13] using 50% of the data for training and the rest for testing (50-50),
repeating the process 10 times. Results are reported in Table 2, confusion ma-
trices are depicted in Figure 3; the proposed method strongly outperforms all
the comparisons used.

The second dataset is the characters dataset used for a Ph.D. study on prim-
itive extraction using HMM-based models [10, 14]. The data consists of 2858

4 http://algoval.essex.ac.uk:8080/data/sequence/chicken
5 A brief description of the two methods can be found in Section 1



character samples, divided in 20 classes (see Figure 2 for some example). Data
was captured using a WACOM tablet. Three dimensions were kept: x, y, and pen
tip force. Such data, captured at 200Hz, has been numerically differentiated and
smoothed using a Gaussian with a sigma value equal to 2. This process results
in a set of 3-dimensional continuous observations.

Classification has never been performed on this data, except some preliminary
result over a restricted subset (p vs q).

Results are summarized in Table 2; also in this case the proposed approach
outperforms the Fisher kernel [2], and generative classification with statistical
significance. Top Kernel obtains slightly superior accuracy than the proposed
method, but we cannot claim statistical difference between the two results. In
Figure 3 we reported the confusion matrices.

Chicken Pieces Dataset Characters Dataset
Hidden Markov model result Entropy feature result ; Hidden Markov model result Entropy feature result
Br Ba Dr Wi TB Br Ba Dr Wi TB 0

Fig. 3. Confusion matrices for generative hidden Markov classification and for the
proposed approach for the chicken and the character datasets.

Hidden Markov models

Dataset Synthetic |Chicken pieces Characters
Feature - Classes Continuous - 8| Curvature - 5 |WACOM tablet - 20
Validation 50-50 50-50  LOO 50-50

(O, HMM) + SVM 88,43% 80,80% 81,21% 92,91%
HMM (MAP) 71,31% 68,31% - 57,30%

FK [2] 81,19% 79,12% - 89,26%

TK [1] 82,95% 78,11% 93,67%

[11] n.a.

[12] n.a.

[13] 74,3%

Table 2. Hidden Markov Models numerical results for synthetic, chicken and charac-
ter datasets. Differently from MOG experiments, discriminative methods cannot be
applied directly here since the input sequences have different lengths. Best results are
highlighted using bold numbers if they are statistically significant.

6 Conclusions

In this paper, we presented a novel generative feature set based on the differences
in generative process. The features obtained by means of the proposed mapping



¢, encode ambiguity within the generative model, resulting from sub-optimal
learning, but, at the same time, they mirror discrepancies of the test samples
with respect to the generative data process. An large experimental section shows
the goodness of the approach and exhibits more than promising performances. In
almost all the tests performed our method achieves the best score, outperforming
with a large margin, the generative model upon which the proposed feature are
extracted. Moreover the tests show how the proposed method can successfully
deal with either fixed or variable length data of different natures.
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