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Abstract

The pedestrian detection literature has been recently
renewed by the availability of large-scale multisensory
datasets, able to capture complementary aspects of the ob-
jects of interest, namely, appearance, motion, and depth. In
this paper, we exploit this multimodal scenario to propose a
new set of composite descriptors dubbed CO2, COvariances
of visual features and CO-occurrences of depth fields. Co-
variances of visual features allow to integrate at low-level
heterogeneous visual cues related to intensity and texture.
Co-occurrences of depth fields are brand new descriptors,
which use range information for characterizing the global
shape of a pedestrian while being also able to identify its
occluded parts. This paper illustrates how these descrip-
tors can be instantiated and combined together for improv-
ing the detection capabilities, just taking benefit from the
proper handling of occlusions. Experimental results show
that CO2, fed into a standard discriminative classification
system, allow to set state-of-the-art performances on recent
multimodal intensity- and stereo-based pedestrian datasets.

1. Introduction
Pedestrian detection is a very important and complex

task for the computer vision community, with also signif-
icant implications in practical industrial applications, e.g.,
the surveillance and automotive sectors, to name a few. It
also represents a hard benchmark for many classification
theories and a testbed for the usage of novel image features,
which should be discriminant and computationally light to
cope with real-time requirements. Despite the impressive
advances reported in the literature, state-of-the-art detectors
seldom satisfy the strict specifications of such real applica-
tions and leave ample room for improvement. In particular,
a recent survey on pedestrian detection classifiers [3] has
revealed the importance of addressing two main problems
in order to reach acceptable detection capabilities for real
world applications, that is, the reduction of miss-detections
at smaller scales and the robustness to partially occluded
pedestrians.

Nowadays, the large release of cheap stereo/3D sensors
poses new interesting challenges due to the possibility to
exploit depth information for detecting people so as to im-
prove the system efficiency. An important lesson from the
recent literature is that combining complementary multi-
modal cues is vital to improve the state-of-the-art perfor-
mance, and in the last few years some works addressed this
issue. In general, earliest systems relied upon a stereo data
pre-processing step aimed at restricting the detector usage
in regions of well-defined depth, filtering out negative sam-
ples for both reducing the number of false positives and
lightening the computational cost [6, 10]. More recently,
Walk et al. [12] demonstrated good detection performance
by using a new stereo-based feature in combination with a
variant of HOG [2] adapted to disparity maps. Enzweiler
at al. [4] proposed a Mixture of Experts approach, where
each expert was trained with a single feature (HOG, LBP)
extracted from three different modalities (intensity, depth,
optical flow). The result of the detection was provided by
fusing the output of each expert, thus implementing a fusion
scheme at the classifier level. The same authors proposed a
part-based model for human detection using depth informa-
tion and motion for handling partial occlusions. To the best
of our knowledge, this approach and the pioneering work of
Wang et al. [13] are the only ones which tried to address the
problem of partial occlusion handling for pedestrian detec-
tion.

On the same line, our work proposes a simple yet ef-
fective way to exploit the stereo information to tackle the
problem of partial occlusions in pedestrian detection and
classification. The idea is based on some assumptions that
are valid in the detection task: i) fusing multiple cues at the
raw data level and learning a single classifier on this com-
posite feature is in general convenient; ii) visual features
should be extracted locally in the image; iii) since depth
information is strongly different from standard visual infor-
mation it deserves an ad-hoc treatment. The first and second
assumptions are witnessed by many recent detection strate-
gies, in which local visual features are embedded in com-
posite descriptors and fed into standard classifiers, showing
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good performances. For example, Tuzel et al. [11] pro-
posed covariance matrices of basic cues (image derivatives,
gradients’ magnitudes and orientations) to encode the ap-
pearance of local sub-regions. Actually, covariance matri-
ces naturally allow to encapsulate heterogeneous features,
also encoding inter-feature correlations in a compact man-
ner. Moreover, they are also robust to varying illumination
and invariant to rotations.

(a) (b)

(c) (d) (e) (f)

Figure 1. (a) The intensity map showing a pedestrian. (b) Corre-
sponding depth map. (c)-(f) Sub-windows of intensity (up) and
depth (down) maps: from left to right, head, torso, hipbone, and
legs.

The third assumption comes out after a statistical inves-
tigation of many stereo images of pedestrians: as visible
in Fig.1a-b, stereo data are able to codify the global hu-
man shape as a well-defined silhouette over the background
clutter, while they contains far less discriminant informa-
tion internally (i.e., to characterize the pedestrian). In par-
ticular, local patches of depth data are less descriptive than
local patches of visual information (see Fig.1c-f), and this
discourages a pure local analysis of stereo data. As an ex-
ample, Fig.1c-f show portions of the human body described
by intensity and depth fields, where the depth sub-windows
look very similar, whereas intensity sub-windows are char-
acterized by different intensity textural patterns, for exam-
ple see the head (c) and torso (d). These considerations
guided us to design our proposed technique, which is based
on local covariance features for describing the visual hu-

man aspect, and co-occurrences of depth information for
encoding the structure of the body and highlighting possi-
ble occlusions. We dubbed the ensemble of features CO2,
i.e., COvariances of visual features and CO-occurrences of
depth fields. The features proved to be quite expressive and
compact, as well as computationally light, being very fast to
compute and oriented to embedded implementations. As for
the effectiveness, we fed CO2 into off-the-shelf classifiers,
setting state-of-the-art performances on all the very recently
proposed datasets dealing with stereo data, considering oc-
cluded and not-occluded situations without tailoring special
solutions for one case or the other. In fact, this is a first
effort towards the design of detection systems working in
real environments, tailored to cope with pedestrians of any
structure and shape (i.e., occluded or not), not customized
for a single specific pedestrian class, as many of the works
published to date [2, 11, 12].

In the rest of paper, we first detail the structure of the new
composite feature in Sect. 2. In Sect. 3, the pedestrian de-
tector approach with the explicit management of occlusions
is described, and experimental results on the multimodal
dataset are reported in Sect. 4, showing the effectiveness of
the approach when dealing with both cases of occluded and
non-occluded pedestrians. Finally, conclusions are drawn
in Sect. 5.

2. The CO2 feature set
2.1. Covariances of visual features

Let us assume that the image in Fig. 1 (a) contains the
object of interest. We define 9 overlapped regions, corre-
sponding to the left, center and right part in horizontal di-
rection, and corresponding to head, torso and legs in vertical
direction. More details will be given in Sec. 4.

For every region, we sample a uniform set of overlapped
squared patches of size S = 12 × 12 pixels, called blocks
B. Given the set of {Nr}r=1,...,9 patches, we calculate
the corresponding set of covariance matrices denoted as
{Ci}i=1,...,Nr ∈ Sym+

d (the space of symmetric positive
definite d × d matrices), where d is the number of features
involved to build the matrices. In contrast to [11], we fed
the covariance matrix with both gradient- and texture-based
features. For each pixel (x, y) inside the patch, we extract
d = 8 features, that are:

[ x y |Ih| |Iv|
√
I2h + I2v |Ihh| |Ivv| LBP ]T , (1)

where Ih, Ihh, etc. are grey-level intensity derivatives, and
the last term represents the local binary patterns (LBP) fea-
ture (8-digit binary number [8]). From the features vector
in Eq. (1), a d× d covariance matrix can be estimated. The
space of covariance matrices can be equipped with a Rie-
mannian metric (i.e., Euclidean distances cannot be com-
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puted), as in [11], turning it into a Riemannian manifold
that we denote as M [9].

In order to disregard the expensive computation and the
complex management of geodesic distances, it is recom-
mended to project the covariance matrices in an Euclidean
space [9]. The projection has to be carried out by select-
ing a projection point, over which the tangent plane of the
projection is defined.

The most convenient projection point from the computa-
tional perspective is the d×d identity matrix Id ∈ M. More
precisely, this projection is called logarithmic mapping and
it is a standard Riemannian geometry operator which pro-
vide a linearized version of M. See [9] for more details.
Since Ci is a symmetric matrix, vectorization is applied to
extract its upper triangular part and to linearize the con-
tent. Hence, the projection and the vectorization translate
the covariances into {ci}i=1,...,Nr vector descriptors, such
that ci ∈ Rd·(d+1)/2. For every region, {ci}i=1,...,Nr are
concatenated and organized as a single vector cr, the multi-
feature covariance object descriptor COV .
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Step1: Histogram of Depth
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1

Figure 2. Co-occurrence Depth (CoD) feature vector.

2.2. Co-occurrences of depth
In real-world crowded scenes, pedestrians appear in a

continue range of poses. This variability represents a
hard issue for classical appearance-based human detection,
because the appearance significantly changes in different
views. On the contrary, depth information is similar for
humans standing in an upright position, and irrespective
of the point of view. These assumptions have been sup-
ported by the statistical analysis of depth maps extracted
from about 50000 un-occluded pedestrians, selected from a
public dataset [4]. Statistical evidence showed that the head,
shoulders and torso are usually more correlated in terms of
depth than legs or arms. Furthermore, the regions around
unoccluded pedestrians are also usually correlated, corre-
sponding to a flat background.

The idea underlying CoD features is to encode this depth
coherence of the different body parts. Given a depth map, as
preliminary operation, we apply a quantization procedure to

discretize the depth range. We define a minimum and max-
imum depth value respectively equal to 10 and 30 meters.
This range corresponds to the a priori defined search area
in the 3D camera set-up configuration. Out-of-range depth
data are saturated on the first and last histogram’s bins. The
histogram is calculated using a bin resolution of 0.5 meters.

In other words, CoD features are built through pairwise
comparisons of histograms of depth, calculated on regions
(blocks) inside the detection window. Fig. 2 illustrates the
CoD feature building process in details. In short, CoD fea-
tures are calculated in three steps. The first one is the his-
togram calculation. Given a depth map, we extract a re-
gion D which is equal in size to the detection window of
the COV descriptor. We define a regular grid of square re-
gions of size S, of the same size of the blocks defined in
2.1. In each block, B(m,n), we compute a local histogram
of depth, H(m,n), where m and n are respectively vertical
and horizontal block indexes.

In the second step, we compare every possible pair of
block descriptors (histograms). Each comparison is en-
coded as the distance between the two histograms. Experi-
mental results, not reported here, revealed that L1 distance
between histograms performs better than other distances
such as L2, Bhattacharyya [1].

In the final step, all the comparisons (k=210) are col-
lected in the CoD descriptor. These feature are employed
to estimate the partial occlusions, and drives the detector
accordingly, as described in the next section.

Intensity Map

Feature 

Extraction

Data Inputs

Output Value
Depth Map

Occlusion 

Estimation
Occlusion 

Management

Classifier

Occlusion Handling Sub-System

Control Logic

Figure 3. Architecture of the proposed system.

It is worth noting that both COV and CoD are fast to
compute and suitable for an embedded implementation. Ac-
tually, covariances take advantage of the integral image rep-
resentation for a rapid calculation (see [11]), and CoD do
not require resource-heavy operations such as multiplica-
tions, divisions or trigonometric functions. Furthermore,
there are no particular issues in terms of concurrent memory
accesses because they encode information extracted from
local patches (blocks) only.
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3. The pedestrian detector

The inability of handling partial occlusions is one of the
main limitations of current pedestrian classifiers as demon-
strated in a recent survey [3]. In our opinion, the weakness
of the current systems is that they rely only on intensity,
without taking advantage from different cues such as depth
and motion. Few authors have proposed effective solutions
to address the partial occlusion problem. One of the most
recent approaches [13] uses an heuristic to determine oc-
clusion maps looking at the responses of a monolithic (full-
body) SVM classifier. Based on the spatial configuration
of the estimated occlusions, they recompute the weights of
the linear SVM in order to give more importance to un-
occluded regions. Ensweiler and Gavrila [4] detect occlu-
sions by searching discontinuities on depth and optical flow
images, showing better performances than [13]. The system
is based on a component-based mixture of expert classifiers.
They adopt the mean shift clustering algorithm to extract ar-
eas of coherent depth and motion. Based on the segmenta-
tion result, they determine occlusion-dependent weights for
the component-based expert classifiers to focus the com-
bined decision on the visible parts of the pedestrian.

Our system is composed by four modules (see Fig.3).
The main core is the feature extraction module, that
builds the object descriptor, one for each of the 9 re-
gions, as described in Sec.2.1. This module is fed exclu-
sively with the intensity image, and, in turns, its output
is fed to the classifier module. The range map is fed
into the occlusion handling module, which is a pipeline
of two stages designed to find the partial occlusions and
to drive the classifier module. The first stage is the
occlusion estimation module, that estimates the occluded
regions inside the detection window and produces an occlu-
sion map. The second stage is the occlusionmanagement
module, that analyzes the occlusion map, and calculates the
binary control signals that drive the classifier module. Here
follow the details of the occlusion handling module and
the classifier.

3.1. Occlusion handling

Our assumption is that un-occluded pedestrians have
similar CoD features, representing the correlations of depth
among body parts. In contrast, partially occluded pedes-
trians generate different CoD configurations. In an off-
line fashion, we compute the CoD statistics of un-occluded
pedestrians, i.e., the mean and standard deviation m an σ of
the histogram distances calculated between each block pair.
During the test, first we compute CoD on the test image,
and than we compare it with our parameters, producing a
binary label vector L:

L(k) =






0 if m(k)− σ(k) < CoD(k) < m(k) + σ(k)

1 else
(2)

where k = 1, 2, ...C (C is the CoD vector’s lenght).
If L(k) = 1, we estimate an occlusion between the corre-
sponding pair of blocks. As a consequence, it is possible
to estimate how many elements of CoD, that refer to a par-
ticular block B(m,n), are occluded (B(m,n) is defined in
Sec. 2.2). For each block B(m,n) we count the number of
corrupted CoD features W(m,n):

W (m,n) =
∑

k∈B(m,n)

L(k). (3)

The whole matrix W can be reinterpreted as an occlusion
map. Fig. 4 is a qualitative evaluation of the proposed oc-
clusion estimation technique. It is evident that occluded
blocks have a much higher W score, usually localized on
the lowest part of the image.

Figure 4. First row: Pedestrian examples from Daimler Multi-Cue,
Occluded Pedestrian Classification Benchmark [4]. Second row:
occlusion maps W estimated using the CoD features.

We apply a thresholding to W as noise removal filtering.
If W (m,n) < T , W (m,n) = 0, otherwise the block is
labeled as occluded. Once the filtered occlusion map has
been built, we can generate the control signals in order to
activate/deactivate the region classifiers. A region classifier
is activated only if all the blocks belonging to the region
are labelled as not occluded. In practice, a control vector of
9 binary signals J is generated, one signal for each region
classifier.

3.2. The classifier
Given the region descriptors, we learn a set of binary

classifiers {Fr}r=1,...,9, one for each region, adopting a
linearSVM . When the 9 region classifiers are learnt, we
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combine their strong responses into a unique classification
response as follows:

F =
9∑

r=1

w(r) · J(r) · Fr(cr)∑9
r=1 w(r) · J(r)

, (4)

where w is a vector of region-dependent weights, heuris-
tically estimated during the training phase, and kept fixed
for all the experimental phase, and J is the binary vector
sent by the occlusion management unit. The denominator
acts as a normalization term, taking into account the differ-
ent number of region classifiers that can be active. The out-
put of the system is F , the classification confidence value.

4. Experimental results
The recently introduced Daimler Multi-Cue, Occluded

Pedestrian Classification Benchmark [4]1 is the only bench-
mark that incorporates stereo information of occluded and
non-occluded pedestrians, representing thus the most valid
testbed for multimodal, real-world detectors. It is com-
posed by a single training set of 52112 positives (non-
occluded human images) and 32465 samples for the back-
ground. The benchmark is equipped with two test sets, one
where the pedestrians are partially occluded (11160 sam-
ples), the other containing non-occluded pedestrians (25608
samples). Both share the same set of background images
(16235 samples). All the images have size 72×24 with a 12-
pixel border around each sample, and have been captured
from a vehicle-mounted calibrated stereo camera rig in an
urban environment.Intensity, depth and optical flow maps
are provided for each sample. Dense stereo is computed
using the semi-global matching algorithm [7]. At the mo-
ment, the best systems benchmarked on the adopted dataset
are those of Enzweiler and Gavrila [4] and a modified ver-
sion of Wang et al. [13], whose detection performance are
extracted from [4]. For all these approaches, SVM with lin-
ear kernel is adopted as baseline classifier.

Component Layout: 
9 Regions

1 2 3

36 px X 36 px

1

36

4 5 6

36 px X 36 px

25

60

7 8 9

48 px X 36 px

84

37

Figure 5. Component layout as used in our experiments.

4.1. Our system
As object model, we pick the central region of 84 × 36

pixels inside the pedestrian detection window (correspond-
ing to the 72 × 24 actual region where the pedestrian is

1See http://www.science.uva.nl/research/isla/downloads/pedestrians/

enclosed, with a 6-pixel border around each sample). We
divide the region in 13 × 5 square blocks of size 12 pixels,
overlapping half their size. A covariance matrix is calcu-
lated on each block. The set of covariance matrices is orga-
nized in 9 sub-sets, cr, one for each region ( see Sec. 2.1).
The component layout is illustrated in Fig. 5.

The CoD feature is calculated on a depth map, comput-
ing the histograms in square blocks of size 12 pixels. See
Sec. 2.2 for details.

For classification we employ linear SVM, one for each
region. The linear SVM classifiers have been trained using
Liblinear SVM tool [5] running on off-the-shelf Intel( c©)
Xeon( c©) CPU 2.33 GHz with 8 GB of RAM. To avoid
memory overflow issues due to the large pool of positive
and negatives training sets, bootstrapping is employed: an
initial SVM classifier is trained with the positive images
and 10000 background patches randomly selected from the
image database. Afterwards, the SVM classifier is used to
classify patches of non-pedestrian extracted from the 32465
non pedestrian samples. A set of false-positive are collected
and added to the initial negative training set. The process
has been repeated until no significant improvement of the
performance of the classifier has been noted.

We explore the capabilities of CO2 in detecting pedes-
trians, considering the two sets of test data: 1) Occluded
pedestrians and 2) Non-occluded pedestrians. The perfor-
mances are evaluated using the Receiver Operating Charac-
teristic (ROC) curve, that expresses the proportion of false
positives against the proportion of true positives. The curve
is estimated by varying the confidence threshold τ in the
range [−5, 5].

Figure 6. Classification performance on partially occluded testset
(best viewed in colors).
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4.2. Performance on partially occluded test data
In the first experiment we evaluate the performance of

our CO2-based occlusion-handling technique on the oc-
cluded dataset. As comparative methods, we consider the
approaches proposed by Enzweiler et al. [4] and Wang et
al. [13]. Detection performances are reported in Fig. 6. Our
approach is superior to both classifiers, demonstrating the
effectiveness of our covariance-based framework.The sec-
ond best performance reported are those of [4] which are
based on a mixture of experts of three independent classi-
fiers respectively trained on head, torso and legs. Our tech-
nique provides a better performance using a much simpler
algorithm to detect occlusion patterns, just by exploiting the
CoD feature.

Our detector performs better especially at low false pos-
itives rates; specifically, for a false positive rate of 0.01
the detection rate is increased by 15% with respect to [4].
We think this improvement is due to our partial occlusion
handling technique and to the well-known capabilities of
covariance matrices to encode inter and intra-feature cor-
relation, which is very effective especially with images of
medium/low resolution.

Figure 7. Classification performance on non-occluded testset (best
viewed in colors).

4.3. Performance on non-occluded test data
In the second experiment, we evaluate the detection per-

formances of all the algorithms on the non-occluded dataset.
Detection performances are reported in Fig. 7. Even in this
case, we outperform the two competitors, and this witnesses
once again the capability of the covariance to capture ro-
bustly the human visual nature.

5. Conclusions
In this paper, we proposed a new set of features suited

for pedestrian detection in stereo settings, i.e., when range
information is also available. Visual features, pooled to-
gether under the form of covariances, characterize human

body parts in a robust way. On the other side, depth in-
formation is organized as co-occurrence matrices encoding
the human shape, so allowing to individuate possible pedes-
trian occlusions. Such features, fed into a simple classifier,
give detection performances on recent multimodal datasets
that are definitely superior to all the other competitors in
the literature, while they show also the advantage of not be-
ing customised for a specific class of pedestrians (e.g., non
occluded), as many of the works in the literature to date.
In the end, they suggest a interesting recipe for designing
real-world commercial detection systems, especially in ap-
plications where a pedestrian is immersed in cluttered, real,
scenarios.
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