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PSBS: Practical Size-Based Scheduling
Matteo Dell’Amico, Damiano Carra, and Pietro Michiardi

Abstract—Size-based schedulers have very desirable performance properties: optimal or near-optimal response time can be coupled
with strong fairness. Despite this, however, such systems are rarely implemented in practical settings, because they require knowing a
priori the amount of work needed to complete jobs: this assumption is difficult to satisfy in concrete systems. It is definitely more likely
to inform the system with an estimate of the job sizes, but existing studies point to somewhat pessimistic results if size-based policies
use imprecise job size estimations.
We take the goal of designing scheduling policies that explicitly deal with inexact job sizes. First, we prove that, in the absence of
errors, it is always possible to improve any scheduling policy by designing a size-based one that dominates it: in the new policy, no jobs
will complete later than in the original one. Unfortunately, size-based schedulers can perform badly with inexact job size information
when job sizes are heavily skewed; we show that this issue, and the pessimistic results shown in the literature, are due to problematic
behavior when large jobs are underestimated. Once the problem is identified, it is possible to amend size-based schedulers to solve
the issue.
We generalize FSP – a fair and efficient size-based scheduling policy – to solve the problem highlighted above; in addition, our solution
deals with different job weights (that can be assigned to a job independently from its size). We provide an efficient implementation of
the resulting protocol, which we call Practical Size-Based Scheduler (PSBS).
Through simulations evaluated on synthetic and real workloads, we show that PSBS has near-optimal performance in a large variety of
cases with inaccurate size information, that it performs fairly and that it handles job weights correctly. We believe that this work shows
that PSBS is indeed pratical, and we maintain that it could inspire the design of schedulers in a wide array of real-world use cases.

F

1 INTRODUCTION

IN computer systems, several mechanisms can be modeled
as queues where jobs (e.g., batch computations or data

transfers) compete to access a shared resource (e.g., pro-
cessor or network). In this context, size-based scheduling
protocols, which prioritize jobs that are closest to comple-
tion, are well known to have very desirable properties: the
shortest remaining processing time policy (SRPT) provides
optimal mean response time [1], while the fair sojourn proto-
col (FSP) [2] provides similar efficiency while guaranteeing
strong fairness properties.

Despite these characteristics, however, scheduling poli-
cies similar to SRPT or FSP are very rarely deployed in
production: the de facto standard are size-oblivious policies
similar to processor sharing (PS), which divides resources
evenly among jobs in the queue. A key reason is that, in
real systems, the job size is almost never known a priori. It
is, instead, often possible to provide estimations of job size,
which may vary in precision depending on the use case;
however, the impact of errors due to these estimations in
realistic scenarios is not yet well understood.

Perhaps surprisingly, very few works tackled the prob-
lem of size-based scheduling with inaccurate job size in-
formation: as we discuss more in depth in Section 2, the
existing literature gives somewhat pessimistic results, sug-
gesting that size-based scheduling is effective only when
the error on size estimation is small; known analytical
results depend on restrictive assumptions on size estima-
tions, while simulation-based analyses only cover a limited
family of workloads. More importantly, no study we are
aware of tackled the design of size-based schedulers that are
explicitly designed with the goal of coping with errors in job size
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information. Our endeavor is to create a practical size-based
scheduling protocol, that has an efficient implementation
and handles imprecise size information. In addition, the
scheduler should allow setting weights to jobs, to control the
relative proportion of the resources assigned to them.

In Section 3, we provide a proof that it is possible to
improve any size-oblivious policy by simulating that pol-
icy and running jobs sequentially in the order in which
they complete in the simulated policy. The resulting policy
dominates the latter: no job will complete later due to the
policy change. This result generalizes the known fact that
FSP dominates PS [2] and gives strong fairness guarantees,
but it does not hold when job size information is not exact.

In Section 4, we give a qualitative analysis of the im-
pact of size estimation errors on scheduling behavior: we
show that, for heavy-tailed job size distributions, size-based
policies can behave problematically when large jobs are
under-estimated: this phenomenon, indeed, explains the
pessimistic results observed in previous works.

Fortunately, it is possible to solve the aforementioned
problem: in Section 5, we propose a scheduling protocol
that drastically improves the behavior of disciplines such as
FSP and SRPT when estimation errors exist. Our approach,
which we call PSBS (Practical Size-Based Scheduler), is a
generalization of FSP featuring an efficient O(log n) imple-
mentation and support for job weights.

We developed a simulator, described in Section 6, to
study the behavior of size-based and size-oblivious schedul-
ing policies in a wide variety of scenarios. Our simulator
allows both replaying real traces and generating synthetic
ones varying system load, job size distribution and inter-
arrival time distribution; for both synthetic and real work-
loads, scheduling protocols are evaluated on errors that
range between relatively small quantities and others that
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may vary even by orders of magnitude. The simulator is
released as open-source software, to help reproducibility of
our results and to facilitate further experimentation.

From the experimental results of Section 7, we highlight
the following, validated both on synthetic and real traces:

1) When job size is not heavily skewed, SRPT and FSP out-
perform size-oblivious disciplines even when job size
estimation is very imprecise, albeit past work would
hint towards important performance degradation; on
the other hand, when the job size distribution is heavy-
tailed, performance degrades noticeably;

2) The scheduling disciplines we propose (from which we
derive PSBS) do not suffer from the performance issues
of FSP and SRPT; they provide good performance for a
large part of the parameter space that we explore, be-
ing outperformed by a processor sharing strategy only
when both the job size distribution is heavily skewed
and size estimations are very inaccurate;

3) PSBS handles job weights correctly and behaves fairly,
guaranteeing that most jobs complete in an amount of
time that is proportional to their size.

As we discuss in Section 8, we conclude that our work
highlights and solves a key weakness of size-based schedul-
ing protocols when size estimation errors are present; the
fact that PSBS consistently performs close to optimally
highlights that size-based schedulers are more viable in real
systems than what was known from the state of the art; we
believe that our work can help inspiring both the design
of new size-based schedulers for real systems and analytic
research that can provide better insight on scheduling when
errors are present.

2 RELATED WORK

We discuss two main areas of related work: first, results
for size-based scheduling on single-server queues when
job sizes are known only approximately; second, practical
approaches devoted to the estimation of job sizes.

2.1 Single-Server Queues

Performance evaluation of scheduling policies in single-
server queues has been the subject of many studies in
the last 40 years. Most of these works, however, focus on
extreme situations: the size of a given job is either completely
unknown or known perfectly. In the first (size-oblivious) case,
smart scheduling choices can still be taken by considering
the overall job size distribution: for example, in the common
case where job sizes are skewed – i.e., a small percent-
age of jobs are responsible for most work performed in
the system – it is smart to give priority to younger jobs,
because they are likely to complete faster. Least-Attained-
Service (LAS) [3], also known in the literature as Foreground-
Background (FB) [4] and Shortest Elapsed Time (SET) [5],
employs this principle. Similar principles guide the design
of multi-level queues [6, 7].

When job size is known a priori, scheduling policies
taking into account this information are well known to
perform better (e.g., obtain shorter response times) than
size-oblivious ones. Unfortunately, job sizes can often be
only known approximately, rather than exactly. Since in our

paper we consider this case, we review the literature that
targets this problem.

Perhaps due to the difficulty of providing analytical
results, not much work considers the effect of inexact job
size information on size-based scheduling. Lu et al. [8] have
been the first to consider this problem, showing that size-
based scheduling is useful only when job size evaluations
are reasonably good (high correlation, greater than 0.75,
between the real job size and its estimate). Their evaluation
focuses on a single heavy-tailed job size distribution, and
does not explain the causes of the observed results. Instead,
we show the effect of different job size distributions (heavy-
tailed, memoryless and light-tailed), and we show how to
modify the size-based scheduling policies to make them
robust to job estimation errors.

Wierman and Nuyens [9] provide analytical results for
a class of size-based policies, but consider an impractical
assumption: results depend on a bound on the estimation
error. In the common case where most estimations are close
to the real value but there are outliers, bounds need to be
set according to outliers, leading to pessimistic predictions
on performance. In our work, instead, we do not impose
any bound on the error. Semi-clairvoyant scheduling [10, 11]
is the problem where the scheduler, rather than knowing
precisely a job’s size s, knows its size class blog2 (s)c. It can
be regarded as similar to the bounded error case.

Other works examined the effect of imprecise size in-
formation in size-based schedulers for web servers [12]
and MapReduce [13]. In both cases, these are simulation
results that are ancillary to the proposal of a scheduler
implementation for a given system, and they are limited
to a single type of workload.

To the best of our knowledge, these are the only works
targeting job size estimation errors in size-based scheduling.
We remark that, by using an experimental approach and
replaying traces, we can take into account phenomena that
are difficult to consider in analytic approaches, such as
periodic temporal patterns or correlations between job size
and submission time.

2.2 Job Size Estimation

In the context of distributed systems, FLEX [14] and
HFSP [15] proved that size-based scheduling can perform
well in practical scenarios. In both cases, job size estimation
is performed with very simple approaches (i.e., by sampling
the execution time of a part of the job): such rough estimates
are sufficient to provide good performance, and our results
provide an explanation to this.

In several practical contexts, rough job size estimations
are easy to perform. For instance, web servers can use file
size as an estimator of job size [16], and the variability
of the end-to-end transmission bandwidth determines the
estimation error. More elaborate ways to estimate size are
often available, since job size estimation is useful in many
domains; examples are approaches that deal with predicting
the size of MapReduce jobs [17, 18, 19] and of database
queries [20]. Estimation error can be always evaluated a
posteriori, and this evaluation can be used to decide if size-
based scheduling works better than size-oblivious policies.
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3 DOMINANCE RESULTS WITH KNOWN JOB SIZES

Friedman and Henderson have proven that FSP – a pol-
icy that executes jobs serially in the order in which they
complete in PS – dominates PS: when job sizes are known
exactly, no jobs complete later in PS than in FSP [2]. This
is a strong fairness guarantee, but in most practical cases
a policy such as FSP falls short because of its lack of con-
figurability: for example, it does not allow to prioritize jobs.
We show here that Friedman and Henderson’s results can be
generalized: no matter what the original scheduling policy
is, it is possible to simulate it and execute jobs in the order
of their completion: the resulting policy will still dominate
it. Our PSBS policy, described in Section 5, is an instance of
this set of policies which allows setting job priorities.

We consider here the single-machine scheduling prob-
lem with release times and preemption. In this section,
we consider the offline scheduling problem, where release
times and sizes of each job are known in advance. As we
shall see in the following, PSBS (like FSP) guarantees these
dominance results while also being appliable online, i.e.,
without any information about jobs released in the future.

Our goal, that materializes in the Pri scheduler, is to
minimize the sum of completion times (using Graham et
al.’s notation [21], the 1|ri; pmtn|

∑
Ci problem) with the

additional dominance requirement: no job should complete
later than in a scheduler which is taken as a reference for
fairness. Without this limitation, the optimal solution is the
Shortest Remaining Processing Time (SRPT) policy. We call
schedule a function ω (i, t) that outputs the fraction of system
resources allocated to job i at time t. For example, for the
processor-sharing (PS) scheduler, when n jobs are pending
(released and not yet completed), ω (i, t) = 1

n if job i is
pending and 0 otherwise. Furthermore, we call Ci,ω the
completion time of job i under schedule ω.

Definition 1. Schedule ω dominates schedule ω′ if Ci,ω ≤
Ci,ω′ for each job i.

Our scheduler prioritizes jobs according to the order in
which they complete in ω: its completion sequence.

Definition 2. A completion sequence S = [s1, . . . , sn] is an
ordering of the jobs to be scheduled. A schedule ω has
completion sequence S if Csi,ω ≤ Csj ,ω∀i < j.

Definition 3. For a completion sequence S, the PriS sched-
ule is such that PriS (i, t) = 1 if i is the first pending job to
appear in S; PriS (i, t) = 0 otherwise.

We now show that scheduling jobs in the order in which
they complete under ω′ dominates ω.

Theorem. PriS dominates any schedule with completion se-
quence S.

Proof. We have to show that Ci,PriS ≤ Ci,ω for each job i
and any schedule ω with completion sequence S. Let j be
the position of i in S (i.e., i = sj); we call M the minimal
makespan of the S≤j = {s1, . . . , sj} set of jobs,1 and we
show that Ci,PriS ≤M and M ≤ Ci,ω :

1. The makespan of a set of jobs is the maximum among their comple-
tion times, therefore M = minω∈Ω maxi∈{1,...,j} CSi,ω where Ω is the
set of all possible schedules.

• Ci,PriS ≤M : minimizing the makespan of S≤j is equiv-
alent to solving the 1|ri; pmtn|Cmax problem applied
to the jobs in S≤j : this is guaranteed if all resources
are assigned to jobs in S≤j as long as any of them are
pending [22]. PriS guarantees this, hence the makespan
of S≤j using PriS is M . Since i ∈ S≤j , Ci,PriS ≤M .

• M ≤ Ci,ω follows trivially from ω having completion
sequence S and, therefore, Ci,ω being the makespan for
S≤j using schedule ω.

This theorem generalizes Friedman and Henderson’s
results: FSP follows from applying PriS to the completion
sequence of PS. The generalization is important: in practice,
one can define a scheduler that provides a desired type of
fairness, and optimize the performance in terms of comple-
tion time by applying the PriS scheduler. If the system deals
with different classes of jobs that have different weights,
we can take discriminatory processor sharing (DPS) as a
reference: our theorem guarantees that PriS dominates DPS.
We have exploited exactly this results in our PSBS scheduler,
which, in the absence of errors, dominates DPS. Only when
errors are present – and this dominance result does not
apply – PSBS deviates from the behavior of PriS .

4 SCHEDULING BASED ON ESTIMATED SIZES

We now describe the effects that estimation errors have
on existing size-based policies such as SRPT and FSP. We
notice that under-estimation triggers a behavior which is
problematic for heavy-tailed job size distributions: this is
the key insight that will lead to the design of PSBS.

4.1 SRPT and FSP
SRPT gives priority to the job with smallest remaining
processing time. It is preemptive: a new job with size smaller
than the remaining processing time of the running one will
preempt (i.e., interrupt) the latter. When the scheduler has
access to exact job sizes, SRPT has optimal mean sojourn
time (MST) [1] – sojourn time, or response time, is the time
that passes between a job’s submission and its completion.

SRPT may cause starvation (i.e., never providing access to
resources): for example, if small jobs are constantly submit-
ted, large jobs may never get served; while this phenomenon
appears rare in practical cases [23], it is nevertheless wor-
rying. FSP (also known as fair queuing [24] and Vifi [25])
doesn’t suffer from starvation by virtue of job aging: FSP
serves the job that would complete earlier in a virtual em-
ulated system running a processor sharing (PS) discipline:
since all jobs eventually complete in the virtual system, they
will also eventually be scheduled in the real one.

With no estimation errors, FSP provides a value of MST
which is close to what is provided by SRPT while guar-
anteeing fairness due to the dominance result discussed
in Section 3. When errors are present, this property is not
guaranteed; however, our results in Section 7.5 show that
FSP preserves better fairness than SRPT also in this case.

4.2 Dealing With Errors: SRPTE and FSPE
We now consider SRPT and FSP when the scheduler uses
estimated job sizes rather than exact ones. For clarity, we will
refer hereinafter to SRPTE and FSPE in this case.
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Fig. 1. Examples of scheduling without (top) and with (bottom) errors.

In Fig. 1, we provide an illustrative example where a
single job size is over- or under-estimated while the others
are estimated correctly, focusing (because of its simplicity)
on SRPTE; sojourn times are represented by the horizontal
arrows. The left column of Fig. 1 illustrates the effect of over-
estimation. In the top, we show how the scheduler behaves
without errors, while in the bottom we show what happens
when the size of job J1 is over-estimated. The graphs shows
the remaining (estimated) processing time of the jobs over
time, assuming a normalized service rate of 1. Without
errors, J2 does not preempt J1, and J3 does not preempt
J2. Instead, when the size of J1 is over-estimated, both J2
and J3 preempt J1. Therefore, the only penalized job (i.e.,
experiencing higher sojourn time) is the over-estimated one.
Jobs with smaller sizes are always able to preempt an over-
estimated job, therefore the basic property of SRPT (favoring
small jobs) is not significantly compromised.

The right column of Fig. 1 illustrates the effect of under-
estimation. With no estimation errors (top), a large job, J4, is
preempted by small ones (J5 and J6). If the size of the large
job is under-estimated (bottom), its estimated remaining
processing time eventually reaches zero: we call late a job
with zero or negative estimated remaining processing time.
A late job cannot be preempted by newly arrived jobs, since
their size estimation will always be larger than zero. In
practice, since preemption is inhibited, the under-estimated
job monopolizes the system until its completion, impacting
negatively all waiting jobs.

This phenomenon is particularly harmful with heavily
skewed job sizes, if estimation errors are proportional to
size: if there are few very large jobs and many small ones,
a single late large job can significantly delay several small
ones, which will need to wait for the late job to complete for
an amount of time which is disproportionate to their size
before having an opportunity of being served.

Even if the impact of under-estimation seems straight-
forward to understand, surprisingly no work in the literature
has ever discussed it. To the best of our knowledge, we are the
first to identify this problem, which significantly influences

scheduling policies dealing with inaccurate job size.
In FSPE, the phenomena we observe are analogous:

job size over-estimation delays only the over-estimated job;
under-estimation can result in jobs terminating in the virtual
PS queue before than in the real system; this is impossible
in absence of errors due to the dominance result introduced
in Section 4.1. We therefore define late jobs in FSPE as those
whose execution is completed in the virtual system but not
yet in the real one and we notice that, analogously to SRPTE,
also in FSPE late jobs can never be preempted by new ones,
and they block the system until they are all completed.

5 OUR SOLUTION

Now that we have identified the issue with existing size-
based scheduling policies, we propose a strategy to avoid
it. It is possible to envision strategies that update job size
estimations as work progresses in an effort to reduce errors;
such solutions, however, increase the complexity both in
designing systems and in analyzing them. In fact, the effec-
tiveness of such a solution would depend non-trivially on
the way size estimation errors evolve as jobs progress: this is
inextricably tied to the way estimators are implemented and
to the application use case. We propose, instead, a solution
that requires no additional job size estimation, based on the
intuition that late jobs should not prevent executing other ones.
This goal is achievable with simple modifications to pre-
emptive size-based scheduling disciplines such as SRPT and
FSP; the key property is that the scheduler takes corrective
actions when one or more jobs are late, guaranteeing that
newly arrived small jobs will execute soon even when very
large late jobs are running.

We conclude this section by showing our proposal,
PSBS; it implements this idea while being efficient (O(log n)
complexity) and allowing the usage of different weights
to differentiate jobs. Our experimental results show that
PSBS achieves almost optimal mean sojourn times for a
large variety of workloads, suggesting that more complex
solutions involving re-estimations are unlikely to be very
beneficial in many practical cases.

5.1 Using PS and LAS for Late Jobs

From our analysis of Section 4.2, we understand that current
size-based schedulers behave problematically when one or
more jobs become late. Fortunately, it is possible to under-
stand if jobs are late from the internal state of the scheduler:
in SRPT, a job is late if its remaining estimated size is less
than or equal to zero; in FSP, a job is late if it is completed
in the virtual time but not in the real time.

As outlined above, approaches that involve job size re-
estimation are difficult to design and evaluate, especially
from the point of view of this work, where we do not make
any assumption on the job size estimators; our approach,
therefore, requires only one size estimation per job.

The key idea of our proposal is that late jobs should not
monopolize the system resources. The solution is to modify
the scheduler such that it provides service to a set of jobs,
which we call eligible jobs, rather than a single job at a time.
In particular, we consider the following jobs as eligible when
at least one job is late: for our amended version of SRPTE, all
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the late jobs, plus the non-late job with the highest-priority;
for our amended version of FSPE, only the late jobs.

The two cases differ because, in SRPTE, jobs only become
late while they are being served since remaining processing
time decreases only for them; therefore, non-late jobs need
a chance to be served. We serve only one non-late job to
minimize unnecessary deviations from SRPTE. In FSPE,
conversely, jobs become late depending on the simulated
behavior of the virtual time, independently from which jobs
are served in the real time.

We take into account two choices for scheduling eligible
jobs: PS and LAS (see Section 2.1). PS divides resources
evenly between all jobs, while LAS divides resources evenly
between the job(s) that received the least amount of service
until the current time.

The alternatives proposed so far lead to four scheduling
policies that we evaluate experimentally in Section 7:

1) SRPTE+PS. Behaving as SRPTE as long as no jobs are
late, switching to PS between all late jobs and the
highest-priority non-late job;

2) SRPTE+LAS. As above, but using LAS instead of PS;
3) FSPE+PS. Behaving as FSPE as long as no jobs are late,

switching to PS between all late jobs;
4) FSPE+LAS. As above, but using LAS instead of PS.

We point out that, in the absence of errors or just of size
underestimations, jobs are guaranteed to be never late; this
means that in such cases these scheduling policies will be
equivalent to SRPT(E) and FSP(E), respectively. For a more
precise description, we point the interested reader to their
implementation in our simulator.2

5.2 PSBS
In Section 7.1 we show how the scheduling protocols we
propose outperform, in most cases, both existing size-based
scheduling policies and size-oblivious ones such as PS and
LAS. Betweeen the scheduling protocols just introduced, we
point out that FSPE+PS is the only one that guarantees
to avoid starvation: every job will eventually complete in
the virtual time, and therefore will be scheduled in a PS
fashion. Conversely, both SRPTE and LAS can starve large
jobs if smaller ones are continuously submitted. Due to this
property and to the good performance we observe in the
experiments of Section 7.2, we consider FSPE+PS a desirable
policy. It has, however, a few shortcomings: first, it does
not handle weights to differentiate job priorities; second, its
implementation is inefficient, requiring O(n) computation
where n is the number of jobs running in the emulated sys-
tem. Here, we propose PSBS, a generalization of FSPE+PS
which solves these problems, both allowing different job
weights and having an efficient O(log n) implementation.

5.2.1 Job Weights
Neither FSP nor PS support job differentiation through job
weights. In particular, FSP schedules jobs based on their
completion time in a virtual time that simulates an envi-
ronment using PS, which treats all running jobs equally.

To differentiate jobs in PSBS, we use Discriminatory
Processor Sharing (DPS) [26] in the place of PS, both in

2. https://github.com/bigfootproject/schedsim/blob/
4745b4b581029c4f9cbbb791f43386d32d0ef8f6/schedulers.py
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Fig. 2. Example of virtual time t and virtual lag g, used for sorting jobs.

the virtual time and in the scheduling for late jobs. DPS is a
generalization of PS whereby each job is given a weight,
and resources are shared between processes proportionally
to their weight. By assigning a different weight to jobs, we
can therefore prioritize important jobs. When all weights
are the same, DPS is equivalent to PS; when each job has the
same weight PSBS is equivalent to FSPE+PS.

Our handling of weights follows classic algorithms like
Weighted Fair Queuing (WFQ) and Weighted Round Robin
(WRR), accelerating aging (i.e., the decrease of virtual size)
proportionally to weight, so that jobs with higher weight are
scheduled earlier. Our result from Section 3 guarantees that
PSBS dominates DPS if job sizes are known exactly, while
at the same time being an online scheduler, implemented
without any knowledge of jobs released in the future.

5.2.2 Implementation
FSP emulates a virtual system running a processor sharing
(PS) discipline and keeps track of its job completion order;
FSP then schedules one job at a time following that order.
Whenever a new job arrives, FSP needs to update the re-
maining size of each job in the emulated system to compute
the new virtual finish times and the corresponding job
completion order. Existing implementations of FSP [2, 27]
have O(n) complexity due to the job virtual remaining size
update at each arrival.

In our implementation, we reduce the complexity of
the update procedure. Before showing the details of the
algorithm, we introduce an example to help understand
our solution. Consider three jobs (J1, J2 and J3) with
sizes s1 = 10, s2 = 5 and s3 = 2 respectively, weights
w1 = w2 = w3 = 1, which arrive at times t = 0, t = 3
and t = 5 respectively. Fig. 2 shows the evolution of the
virtual emulated system, i.e., how the remaining virtual size
decreases in the virtual time. For instance, when job J3
arrives, since it will complete in the virtual time before jobs
J1 and J2, it will be executed immediately in the real system
(job J2 will be preempted). To compute the completion time,
it is possible to calculate the exact virtual remaining size of
the jobs currently in the system.

We instead introduce a new variable, which we call
virtual lag g. The key idea is that we store, for each job i,

https://github.com/bigfootproject/schedsim/blob/4745b4b581029c4f9cbbb791f43386d32d0ef8f6/schedulers.py
https://github.com/bigfootproject/schedsim/blob/4745b4b581029c4f9cbbb791f43386d32d0ef8f6/schedulers.py
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a job virtual lag gi so that i completes in the virtual time when
the virtual lag g = gi. We fulfill this property by updating g
at a rate that depends on the number of jobs in the system:
for each time unit in the virtual time, g increases by 1/wv ,
where wv is the sum of the weights wi of each job i running
in the virtual emulated system.

Given a job i with weight wi and size si that arrives at
the system when the virtual lag g has a value g = x, the job
virtual lag is given by gi = x + si/wi. The job virtual lag
gi is computed just once, when the job arrives, and it does
not need to be updated when other jobs arrive. In fact, only
the global virtual lag g needs to be updated according to the
number of jobs in the system. Fig. 2 shows the job virtual
lag computed when each jobs arrives (value of gi below si)
and the value of the global virtual lag g (below the virtual
time t). Indeed, each job i completes when g = gi, but the
only variable we update at each job arrival is g, leaving
untouched the values gi of the job virtual lags. For instance,
when job J3 arrives, the virtual lag g has value 4, therefore
the job virtual lag will be g3 = 4 + 2 (since the size and
the weights of job J3 are s3 = 2 and w3 = 1). It takes 6
time units (in the virtual time) to complete job J3, which
corresponds to 2 time units in the virtual lag.

It is simple to show that, given any positive value for
si and wi, the order at which jobs complete in the virtual
time and in the virtual lag is exactly the same. Therefore, at
each job arrival, it is sufficient to update the global virtual
lag g, compute the job virtual lag gi and store the object in
a priority queue, where the order is kept according to the
values of gi. The overall complexity is dominated by the
maintenance of the priority queue, which is O(log n), since
it is not necessary to update the virtual remaining size of all
jobs in the system to compute the completion order.

The implementation of our solution, shown in Algo-
rithm 1, follows the nomenclature used in the original
description of FSP [2, Section 4.4]. We remark that, in the
absence of errors and when all job weights are the same,
PSBS is equivalent to FSP: therefore, our implementation of
PSBS is also the first O(log n) implementation of FSP.

Computation is triggered by three events: if a job i
of weight wi and estimated size si arrives at time t̂,
JobArrival(t̂, i, si, wi) is called; when a job i completes,
RealJobCompletion(i) is called; finally, when a job completes
in virtual time at time t̂, VirtualJobCompletion(t̂) is called
(NextVirtualCompletionTime is used to discover when to
call VirtualJobCompletion). After each event, ProcessJob is
called to determine the new set of scheduled jobs: its output
is a set of (j, s) pairs where j is the job identifier and s is the
fraction of system resources allocated to it.

As auxiliary data structures, we keep two priority
queues, O and E . O stores jobs that are running both in the
real time and in the virtual time, while E stores “early” jobs
that are still running in the virtual time but are completed
in the real time. For each job i, we store in O or E an
immutable tuple (i, gi, wi) containing respectively the job id,
the virtual lag gi and the weight. We use binary min-heaps
to represent O and E , using the gi values as ordering key:
binary heaps are efficient data structures offering worst-
case O(log n) “push” and “pop” operations, O(1) lookup of
the first value and eassentially optimal memory efficiency,
by virtue of being an implicit data structure requiring no

”””Set up the scheduler state.
O and E contain (i, gi, wi) tuples: i is the job id, gi is
the value of g at which the job completes in the virtual
time and wi is the weight. They are sorted by gi. ”””

def Init:
g ← 0 # virtual lag (see text)
t← 0 # virtual time
# virtual time queue
O ← empty binary min-heap
# “early” jobs completed in real time
E ← empty binary min-heap
# mapping from job ids of late jobs to their weight
L ← empty hashtable
wL ← 0 #

∑
wi for each late job i

wv ← 0 #
∑
wi∀i running in virtual time

def NextVirtualCompletionTime:
if O and/or E are not empty:

ĝ ← min{first gi in O,first gi in E}
return t+ wv(ĝ − g)

else: return ∅

def UpdateVirtualTime(t̂):
if wv > 0: g ← g + (t̂− t)/wv
t← t̂

def VirtualJobCompletion(t̂):
UpdateVirtualTime(t̂)
if first gi in O ≤ g:

(i, , wi)← pop(O)
L[i]← wi
wL ← wL + wi

else: # the virtual job that completes is in E
( , , wi)← pop(E)

wv ← wv − wi

def RealJobCompletion(i):
if L is not empty: # we were scheduling late jobs

wi ← pop(L[i])
wL ← wL − wi

else: # we were scheduling the first job in O
push pop(O) into E

def JobArrival(t̂, i, si, wi):
UpdateVirtualTime(t̂)
push (i, g + si/wi, wi) into O
wv ← wv + wi

def ProcessJob:
if L is not empty: return {(i, wi/wL) : (i, wi) ∈ L}
elif O is not empty: return {(first job id of O, 1)}
else: return ∅

Algorithm 1: PSBS.

pointers [28]. In addition, the push operation has of O(1)
complexity on average [29]. The state of the scheduler is
completed by a mapping L from the identifiers of late jobs
to their weight, a counter t representing the virtual time, and
two variables wv and wL representing the sum of weights
for jobs that are respectively active in the virtual time and
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late. Some additional bookkeeping, not included here for
simplicity, would be needed to handle jobs that complete
even when they are not scheduled (e.g., because of error
conditions or after being killed): we refer the interested
reader to the implementation in our simulator.3 Additional
details can be found in the supplemental material.

Complexity Analysis: We consider here average
complexity due to the worst-case O(n) complexity of
hashtable operations.4 It is trivial to see that NextVirtual-
CompletionTime and UpdateVirtualTime have O(1) com-
plexity. Since inserting elements in hashtables has O(1)
average complexity, the cost of VirtualJobCompletion is
dominated by the pop operations on O and E : both of them
are bound by O(log n), where n is the number of jobs in the
system. Removing an element from a hashtable has O(1)
average cost, so the cost of RealJobCompletion is dominated
by the pop on O, which has again O(log n) complexity.
JobArrival has O(1) average complexity (remember that
pushing elements on a binary heap is O(1) on average).

The ProcessJob procedure, when L is not empty, has
O(|L|) complexity because the output itself has size L.
This is however very unlikely to be a limitation in prac-
tical cases, since real-world implementations of schedulers
allocate resources one by one in discrete slots: schedulers
such as PS or DPS are abstractions of mechanisms such
as round-robin or max-min fair schedulers, which can be
implemented efficiently; a real-world implementation of
PSBS would adopt similar strategy to mimick the DPS-like
resource sharing when L is not empty. We also note that,
when there are no job size estimation errors and PSBS is
used to implement FSP, L is guaranteed to always be empty
and therefore ProcessJob will have O(1) complexity.

As we have seen, with the exclusion of ProcessJob as
discussed above, all the procedures of the scheduler have at
most O(log n) computational complexity. Coupled O(log n)
operations having low constant factors because they are
implemented on binary heaps, which are very efficient data
structures, we believe that these performance guarantees
are sufficient for a very large set of practical situations: for
example, CFS – the current Linux scheduler – has O(log n)
complexity since it uses a tree structure [31].

6 EVALUATION METHODOLOGY

Understanding size-based scheduling when there are esti-
mation errors is not a simple task; analytical studies have
been performed only with strong assumptions such as
bounded error [9]. Moreover, to the best of our knowledge,
the only analytical result known for FSP (without estimation
errors) is its dominance over PS, making analytical com-
parisons between SRPTE-based and FSPE-based scheduling
policies even more difficult.

For these reasons, we evaluate our proposals through
simulation. The simulative approach is extremely flexible,
allowing to take into account several parameters – distribu-
tion of the arrival times, of the job sizes, of the errors. Pre-
vious simulative studies (e.g., [8]) have focused on a subset

3. https://github.com/bigfootproject/schedsim/blob/
4745b4b581029c4f9cbbb791f43386d32d0ef8f6/schedulers.py

4. A denial-of-service attack on hashtables has been designed by
forging keys to obtain collisions [30]. This attack is defeated in modern
implementations by salting keys before hashing.

of these parameters, and in some cases they have used real
traces. In our work, we developed a tool that is able to both
reproduce real traces and generate synthetic ones. Moreover,
thanks to the efficiency of the implementation, we were able
to run an extensive evaluation campaign, exploring a large
parameter space. For these reasons, we are able to provide
a broad view of the applicability of size-based scheduling
policies, and show the benefits and the robustness of our
solution with respect to the existing ones.

6.1 Scheduling Policies Under Evaluation

In this work, we take into account different scheduling
policies, both size-based and size-oblivious. For the size-
based disciplines, we consider SRPT as a reference for
its optimality with respect to the MST. When introducing
the errors, we evaluate SRPTE, FSPE and our proposals
described in Section 5.

As size-oblivious policies, we have implemented the
First In, First Out (FIFO) and Processor Sharing (PS) dis-
ciplines, along with DPS, the generalization of PS with
weights [6]. These policies are the default disciplines used
in many scheduling systems – e.g., the default scheduler
in Hadoop [32] implements a FIFO policy, while Hadoop’s
FAIR scheduler is inspired by PS; the Apache web server
delegates scheduling to the Linux kernel, which in turn im-
plements a PS-like strategy [16]. Since PS scheduling divides
evenly the resources among running jobs, it is generally
considered as a reference for its fairness (see the next section
on the performance metrics). Finally, we consider also the
Least Attained Service (LAS) [3] policy. LAS scheduling is
a preemptive policy that gives service to the job that has
received the least service, sharing it equally in a PS mode in
case of ties. LAS scheduling has been designed considering
the case of heavy-tailed job size distributions, where a large
percentage of the total work performed in the system is due
to few very large jobs, since it gives higher priority to small
jobs than what PS would do.

6.2 Performance Metrics

We evaluate scheduling policies according to two main
aspects: mean sojourn time (MST) and fairness. Sojourn time is
the time that passes between the moment a job is submitted
and when it completes; such a metric is widely used in
the scheduling literature. The definition of fairness is more
elusive: in his survey on the topic, Wierman [33] affirms
that “fairness is an amorphous concept that is nearly impossible
to define in a universal way”. When the job size distribution
is skewed, it is intuitively unfair to expect similar sojourn
times between very small jobs and much larger ones; a
common approach is to consider slowdown, i.e. the ratio
between a job’s sojourn time and its size, according to the
intuition that the waiting time for a job should be somewhat
proportional to its size. In this work we focus on the per-job
slowdown, to check that as few jobs as possible experience
“unfair” high slowdown values; moreover, in accordance
with Wierman’s definition [34], we also evaluate conditional
slowdown, which evaluates the expected slowdown given a
job size, verifying whether jobs of a particular size experi-
ence an “unfair” high expected slowdown value.

https://github.com/bigfootproject/schedsim/blob/4745b4b581029c4f9cbbb791f43386d32d0ef8f6/schedulers.py
https://github.com/bigfootproject/schedsim/blob/4745b4b581029c4f9cbbb791f43386d32d0ef8f6/schedulers.py
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Parameter Explanation Default
sigma σ in the log-normal error distribution 0.5
shape shape for Weibull job size distribution 0.25
timeshape shape for Weibull inter-arrival time 1
njobs number of jobs in a workload 10,000
load system load 0.9

TABLE 1
Simulation parameters.

6.3 Parameter Settings

We empirically evaluate scheduling policies in a wide spec-
trum of cases. Table 1 synthetizes the input parameters of
our simulator; they are discussed in the following.

Job Size Distribution: Job sizes are generated ac-
cording to a Weibull distribution, which allows us to evalu-
ate both heavy-tailed and light-tailed job size distributions.
The shape parameter allows to interpolate between heavy-
tailed distributions (shape < 1), the exponential distri-
bution (shape= 1), the Raleigh distribution (shape = 2)
and light-tailed distributions centered around the ‘1’ value
(shape > 2). We set the scale parameter of the distribution to
ensure that its mean is 1.

Since scheduling problems have been generally analyzed
on heavy-tailed workloads with job sizes using distributions
such as Pareto, we consider a default heavy-tailed case of
shape = 0.25. In our experiments, we vary the shape param-
eter between a very skewed distribution with shape = 0.125
and a light-tailed distribution with shape = 4.

Size Error Distribution: We consider log-normally
distributed errors. A job having size s will be estimated as
ŝ = sX , where X is a random variable with distribution

Log-N (0, σ2). (1)

This choice satisfies two properties: first, since error is
multiplicative, the absolute error ŝ− s is proportional to the
job size s; second, under-estimation and over-estimation are
equally likely, and for any σ and any factor k > 1 the (non-
zero) probability of under-estimating ŝ ≤ s

k is the same of
over-estimating ŝ ≥ ks. This choice also is substanciated
by empirical results: in our implementation of the HFSP
scheduler for Hadoop [15], we found that the empirical error
distribution was indeed fitting a log-normal distribution.

The sigma parameter controls σ in Equation 1, with a
default – used if no other information is given – of 0.5; with
this value, the median factor k reflecting relative error is
1.40. In our experiments, we let sigma vary between 0.125
(median k is 1.088) and 4 (median k is 14.85).

It is possible to compute the correlation between the
estimated and real size as σ varies. In particular, when sigma
is equal to 0.5, 1.0, 2.0 and 4.0, the correlation coefficient is
equal to 0.9, 0.6, 0.15 and 0.05 respectively.

The mean of this distribution is always larger than 1,
and, as sigma grows, the system is biased towards over-
estimating the aggregate size of several jobs, limiting the
underestimation problems that our proposals are designed
to solve. Even in this setting, the results in Section 7 show
that the improvements we obtain are still significant.

Job Arrival Time Distribution: For the job inter-
arrival time distribution, we use again a Weibull distribution
for its flexibility to model heavy-tailed, memoryless and

light-tailed distributions. We set the default of its shape
parameter (timeshape) to 1, corresponding to “standard”
exponentially distributed arrivals. Also here, timeshape
varies between 0.125 (very bursty arrivals separated by long
intervals) and 4 (regular arrivals).

Other Parameters: The load parameter is the mean
arrival rate divided by the mean service rate. As a default,
we use 0.9 like Lu et al. [8]; in our experiments we let it
vary between 0.5 and 0.999. The number of jobs (njobs)
in each simulation round is 10,000. For each experiment,
we perform at least 30 repetitions, and we compute the
confidence interval for a confidence level of 95%. For very
heavy-tailed job size distributions (shape ≤ 0.25), results
are very variable and therefore, to obtain stable averages,
we performed hundreds and/or thousands of experiment
runs, at least until the confidence levels have reached the
5% of the estimated values.

7 EXPERIMENTAL RESULTS

We now proceed to an extensive report of our experimental
findings. We first provide a high-level view showing that
our proposals outperform PS, excepting only extreme cases
of both error and job skew (Section 7.1); we then proceed to a
more in-depth comparison of our proposals, to validate our
choice of using FSPE+PS as a base for PSBS (Section 7.2).
We then evaluate the performance of PSBS against existing
schedulers, while varying the two parameters that most
influence scheduler performance: shape (Section 7.3) and
sigma (Section 7.4). We proceed to show that PSBS handles
jobs fairly (Section 7.5) and that job weights are handled
correctly (Section 7.6); we conclude our analysis on synthetic
workloads by showing that our results hold even while
varying settings over the parameter space (Section 7.7).
We conclude our analysis by comparing PSBS to existing
schedulers on real workloads extracted from Hadoop logs
and an HTTP cache (Section 7.8).

For the results shown in the following, parameters
whose values are not explicitly stated take the default values
in Table 1. For readability, we do not show the confidence
intervals: for all the points, in fact, we have performed a
number of runs sufficiently high to obtain a confidence
interval smaller than 5% of the estimated value. Where
not otherwise stated, all the wi parameters representing the
weight of each job i have always been set to 1.

7.1 Mean Sojourn Time Against PS

We begin our analysis by comparing the size-based schedul-
ing policies, using PS as a baseline because PS and its
variants are the most widely used set of scheduling policies
in real systems. In Fig. 3 we plot the value of the MST
obtained using SRPTE, FSPE and the four alternatives we
propose in Section 5.1, normalizing it against the MST of
PS. We vary the sigma and shape parameters influencing
respectively job size distribution and error rate; we will
see that these two parameters are the ones that influence
performance the most. Values lower than one (below the
dashed line in the plot) represent regions where size-based
schedulers perform better than PS.
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(b) SRPTE+PS.
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(c) SRPTE+LAS.

shape

0.125 0.25 0.5 1
2

4

sig
ma

0.125
0.25

0.5
1

2
4

M
ST

/
M

ST
(P

S)

0.25
0.5
1
2
4
8
16
32
64
128

(d) FSPE.
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(e) FSPE+PS.
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(f) FSPE+LAS.

Fig. 3. Mean sojourn time against PS: the dashed line is the boundary where MST is equivalent to that of PS. We recall that a low shape value is
associated to high job size skew, while high sigma entails imprecise job size estimates.

In accordance to intuition and to what is known from
the literature, we observe that the performance of size-
based scheduling policies depends on the accuracy of job
size estimation: as sigma grows, performance suffers. In
addition, from Figures 3a and 3d, we observe a new phe-
nomenon: job size distribution impacts performance even more
than size estimation error. On the one hand, we notice that
large areas of the plots (shape > 0.5) are almost insensitive
to estimation errors; on the other hand, we see that MST
becomes very large as job size skew grows (shape < 0.25).
We attribute this latter phenomenon to the fact that, as we
highlight in Section 4, late jobs whose estimated remaining
(virtual) size reaches zero are never preempted. If a large
job is under-estimated and becomes late with respect to its
estimation, small jobs will have to wait for it to finish in
order to be served.

As we see in Figures 3b, 3c, 3e and 3f, our proposals outper-
form PS in a large class of heavy-tailed workloads where SRPTE
and FSPE suffer. The net result is that the size-based policies
we propose are outperformed by PS only in extreme cases
where both the job size distribution is extremely skewed and
job size estimation is very imprecise.

It may appear surprising that, when job size skew is
not extreme, size-based scheduling can outperform PS even
when size estimation is very imprecise: even a small cor-
relation between job size and its estimation can direct the
scheduler towards choices that are beneficial on aggregate.
In fact, as we see more in detail in the following (Section 7.3),
sub-optimal scheduling choices become less penalized as
the job size skew diminishes.

7.2 Comparing Our Proposals

How do the schedulers we proposed in Section 5.1 compare?
In Fig. 4 we examine the empirical cumulative distribution
function (ECDF) of the slowdown for all jobs we simulate
while varying the shape parameter (sigma maintains its
default value of 0.5); we plot the results for PS as a reference
and observe that the staircase-like pattern observable in
Fig. 4a is a clustering around integer values obtained if a
small job gets submitted while n larger ones are running.

We observe that, in general, our proposals pay off: for
all values of shape considered, the slowdown distribution
of our proposals is well lower than the one of PS. We
also observe a difference between the schedulers based on
SRPTE and those based on FSPE: a noticeably larger number
of jobs experience an optimal slowdown of 1 when using
a scheduler based on FSPE. This is because, when using
FSPE-based scheduling policies, the number of jobs that are
eligible for PS- or LAS-based scheduling is higher: when
late jobs exist, only they are eligible to be scheduled, unlike
what happens in SRPTE-based policies; as a consequence,
several small jobs suffer in SRPTE-based policies because
they are preempted too aggressively: as soon as they become
late, even if they are the only late job in the system. This
confirms the soundness of the design policy we adopted in
Section 5.1: minimizing the number of eligible jobs for PS-
or LAS-based scheduling. Fig. 4 shows that even allowing
to schedule a single non-late job can hurt performance.

Since the number of late jobs is generally small, differ-
ences in scheduling between FSPE+PS and FSPE+LAS are
rare. This is confirmed by noticing that the lines for the two
schedulers in Fig. 4 are essentially analogous; we conclude
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Fig. 4. Distribution of per-job slowdown. The two FSPE-based policies perform best, with negligible differences between them.
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Fig. 5. Impact of shape. PSBS behaves close to optimally in all cases.

that FSPE+PS and FSPE+LAS have essentially analogous
performance. This fact and the property that FSPE+PS
avoids starvation, as noted in Section 5.2, motivated us to
develop PSBS as a generalization of FSPE+PS.

7.3 Impact of Shape

After validating the choice PSBS as a generalization of
FSPE+PS, we now examine how it performs when compared
to the optimal MST that SRPT obtains. In the following
Figures, we show the ratio between the MST obtained with
the scheduling policies we implemented and the optimal
one of SRPT, while fixing sigma to its default value of 0.5.

From Fig. 5, we see that the shape parameter is fun-
damental for evaluating scheduler performance. We notice
that PSBS has almost optimal performance for all shape values
considered, while SRPTE and FSPE perform poorly for highly
skewed workloads. Regarding non size-based policies, PS
is outperformed by LAS for heavy-tailed workloads (shape
< 1) and by FIFO for light-tailed ones having shape > 1;
PS provides a reasonable trade-off when the job size dis-
tribution is unknown. When the job size distribution is
exponential (shape = 1), non size-based scheduling policies
perform analogously; this is a result which has been proven
analytically (see e.g. the work by Harchol-Balter [35] and the
references therein). It is interesting to consider FIFO: in it,
jobs are scheduled in series, and job priority is not correlated
with size: indeed, the MST of FIFO is equivalent to the
one of a random scheduler executing jobs in series [36].
FIFO can be therefore seen as the limit case for a size-based
scheduler such as FSPE or SRPTE when estimations carry no
information at all about job sizes; the fact that errors become
less critical as skew diminishes can be therefore explained
with the similar patterns observed for FIFO.

7.4 Impact of Sigma
The shape of the job size distribution is fundamental in
determining the behavior of scheduling algorithms, and
heavy-tailed job size distributions are those in which the be-
havior of size-based scheduling differs noticeably. Because
of this, and since heavy-tailed workloads are central in the
literature on scheduling, we focus on those.

In Fig. 6, we show the impact of the sigma parameter
representing error for three heavily skewed workloads. In
all three plots, the values for FIFO fall outside of the plot.
These plots demonstrate that PSBS is robust with respect
to errors in all the three cases we consider, while SRPTE
and FSPE suffer as the skew between job sizes grows. In
all three cases, PSBS performs better than PS as long as
sigma is lower than 2: this corresponds to lax bounds on
size estimation quality, requiring a correlation coefficient
between job size and its estimate of 0.15 or more.

In all three plots, PSBS performs better than SRPTE; the
difference between PSBS and FSPE, instead, is discernible
only for shape < 0.25. We explain this difference by noting
that, when several jobs are in the queue, size reduction in
the virtual queue of FSPE is slow: hence, less jobs become
late and therefore non preemptable. As the distribution
becomes more heavy-tailed, more jobs become late in FSPE
and differences between FSPE and PSBS become significant,
reaching differences of even around one order of magnitude.

In particular in Fig. 6b, there are areas (0.5 < sigma < 2)
in which increasing errors decreases (slightly) the MST of
FSPE. This counterintuitive phenomenon is explained by
the characteristics of the error distribution: the mean of the
log-normal distribution grows as sigma grows, therefore
the aggregate amount of work for a set of several jobs is
more likely to be over-estimated; this reduces the likelihood
that several jobs at once become late and therefore non-
preemptable. In other words, FSPE works better with esti-
mation means that tend to over-estimate job size; however, it
is always better to use PSBS, which provides a more reliable
and performant solution to the same problem.

In additional experiments – not included due to space
limitations – we observed similar results with other error
distributions; in cases where errors tend towards underes-
timations, we find that the improvements that PSBS gives
over FSPE and SRPTE are even more important.

7.5 Fairness
We now consider fairness, intending – as discussed in Sec-
tion 6.2 – that jobs’ running time should be proportional to
their size, and therefore slowdowns should not be large.
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Fig. 6. Impact of error on heavy-tailed workloads, sorted by growing skew.
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Fig. 7. Mean conditional slowdown. PSBS outperforms PS, the sched-
uler often taken as a reference for fairness.

Conditional Slowdown: To better understand the
reason for the unfairness of FIFO, SRPTE and FSPE, in Fig. 7
we evaluate mean conditional slowdown, showing average
slowdown (job sojourn time divided by job size) against job
size, using our default simulation parameters. The figure
has been obtained by sorting jobs by size and binning
them into 100 job classes having similar size and containing
the same number of jobs; points plotted are obtained by
averaging job size and slowdown in each of the 100 classes.

The lines of FIFO, SRPTE and FSPE are almost parallel
for smaller jobs because, below a certain size, job sojourn
time is essentially independent from job size: indeed, it depends
on the total size of older (for FIFO) or late (for SRPTE and
FSPE) jobs at submission time.

We confirm experimentally that the expected slowdown
in PS is constant, irrespectively of job size [34]; PSBS and
LAS, on the other hand, have close to optimal slowdown
for small jobs. PSBS has a better MST because it performs
better for larger jobs, which are more penalized in LAS.

Per-Job Slowdown: Our results testify that, for PSBS
and similarly to LAS, slowdown values are homogeneous
across classes of job sizes: neither small nor big jobs are
penalized when using PSBS. This is a desirable result, but
the reported results are still averages: to ensure that sojourn
time is commensurate to size for all jobs, we need to investi-
gate the per-job slowdown distribution.

In Fig. 8, we plot the CDF of per-job slowdown for our
default parameters. By serving efficiently smaller jobs, size-
based scheduling techniques and LAS manage to obtain
an optimal slowdown of 1 for most jobs. However, some
jobs experience very high slowdown: those with slowdown
larger than 100 are around 1% for FSPE and around 8% for
SRPTE. PS, LAS, and PSBS perform well in terms of fairness,
with no jobs experiencing slowdown higher than 100 in
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Fig. 8. Per-job slowdown: full CDF (top) and zoom on the 10% more
critical cases (bottom).

our experiment runs.5 While PS is generally considered the
reference for a “fair” scheduler, it obtains slightly better
slowdown than LAS and PSBS only for the most extreme
cases, while being outperformed for all other jobs.

7.6 Job Weights
We now consider how PSBS handles job weights. We con-
sider workloads generated with all the default values shown
in Table 1. Since we are not aware of representative work-
loads where job priorities and job sizes are known together,
we resort to a simple uniform distribution. We randomly
assign jobs to different weight classes numbered from 1 to
5 with uniform probability: a job i in weight class ci has
weight wi = 1/cβi , where β ≥ 0 is a parameter that allows
us to tune how much we want to skew scheduling towards
favoring high-weight jobs. A β = 0 value corresponds to
uniform weights, wi = 1 for each job; as β grows, job
weights differentiate so that more and more resources are
assigned to high-weight jobs.

In Fig. 9, we plot the mean sojourn time for jobs in
each weight class. Jobs have a mean size of 1: therefore,

5. Fig. 8 plots the results of 121 experiment runs, representing there-
fore 1,210,000 jobs in this simulation.
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Fig. 9. Using weights to differentiate jobs: PSBS outperforms DPS.

the best MST obtainable would be 1, which corresponds to
the bottom of the graph. We compare the results of PSBS
with those obtained by generalized processor sharing (DPS)
while using the same weights.

For workloads ranging between heavily skewed
(shape = 0.25) to close to uniform (shape = 4), PSBS
outperforms DPS. Obviously, β = 0 leads to uniform MST
between weight classes; raising the values of β improves
the performance of high-weight jobs to the detriment of
low-weight ones. When β = 2, the MST of jobs in class
1 is already very close to the optimal value of 1; we do
not consider values of β > 2 because it would impose
performance losses to low-weight jobs without significant
benefits to high-weight ones. It is interesting to point out
that the trade-off due to the choice of β is not uniform across
values of shape: when the workload is close to uniform
(shape = 4), improvements in sojourn times for high-weight
jobs are quantitatively similar to the losses paid by low-
weight ones; this is because high-weight jobs are likely to
preempt low-weight ones with similar sizes. Conversely,
with heavily skewed workloads (shape = 0.25) sojourn time
improvements for high-weight jobs are smaller than losses
for low-weight ones: this is because, in skewed workloads,
large high-weight jobs are likely to preempt small low-
weight ones: this results in small improvements in sojourn
time for the high-weight jobs, counterbalanced by large
losses for the low-weight ones.

7.7 Other Settings

Until here, we focused on the sigma and shape parameters,
because they are the ones that we found out to have the
most influence on scheduler behavior. We now examine the
impact of other settings that deviate from our defaults.

Pareto Job Size Distribution: In the literature, work-
loads are often generated using the Pareto distribution.
To help comparing our results to the literature, in Fig. 10
we show results for job sizes having a Pareto distribution,
using xm = 0 and α = {1, 2}. The results we observe
for the Weibull distribution are still qualitatively valid for
the Pareto distribution; the value of α = 1 is roughly
comparable to a shape of 0.15 for the Weibull distribution,
while α = 2 is comparable to a shape of around 0.5, where
the three size-based disciplines we take into account still
have similar performance.

Impact of Other Parameters: We have studied the
impact of other parameters, such as the load, the timeshape
and the njobs, and the results are consistent with the ones
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Fig. 10. Pareto job size distributions, sorted by growing skew.

showed in the previous sections. The interested reader can
find the details in the supplemental material.

7.8 Real Workloads
We now consider two real workloads to confirm that the
phenomena we observed are not an artifact of the synthetic
traces that we generated, and that they indeed apply in
realistic cases. From the traces we obtain two data points
per job: submission time and job size. In this way, we move
away from the assumptions of the GI/GI/1 model, and
we provide results that can account for more general cases
where periodic patterns and correlation between job size
and submission times are present.

Hadoop at Facebook: We consider a trace from a
Facebook Hadoop cluster in 2010, covering one day of job
submissions. The trace has been collected and analized by
Chen et al. [37]; it is comprised of 24,443 jobs and it is
available online.6 For the purposes of this work, we consider
the job size as the number of bytes handled by each job
(summing input, intermediate output and final output): the

6. https://github.com/SWIMProjectUCB/SWIM/blob/master/
workloadSuite/FB-2010 samples 24 times 1hr 0.tsv

https://github.com/SWIMProjectUCB/SWIM/blob/master/workloadSuite/FB-2010_samples_24_times_1hr_0.tsv
https://github.com/SWIMProjectUCB/SWIM/blob/master/workloadSuite/FB-2010_samples_24_times_1hr_0.tsv
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Fig. 12. MST of the Facebook workload.

mean size is 76.1 GiB, and the largest job processes 85.2 TiB.
To understand the shape of the tail for the job size distri-
bution, in Fig. 11 we plot the complementary CDF (CCDF)
of job sizes (normalized against the mean); the distribution
is heavy-tailed and the largest jobs are around 3 orders of
magnitude larger than the average size. For homogeneity
with the previous results, we set the processing speed of the
simulated system (in bytes per second) in order to obtain a
load (total size of the submitted jobs divided by total length
of the submission schedule) of 0.9.

In Fig. 12, we show MST, normalized against optimal
MST, while varying the error rate. These results are very
similar to those in Fig. 6: once again, FSPE and PSBS perform
well even when job size estimation errors are far from neg-
ligible. These results show that this case is well represented
by our synthetic workloads, when shape is around 0.25.

We performed more experiments on these traces; exten-
sive results are available in a technical report [38].

Web Cache: IRCache7 is a research project for web
caching; traces from the caches are freely available. We
performed our experiments on a one-day trace of a server
from 2007 totaling 206,914 requests;8 the mean request size
in the traces is 14.6KiB, while the maximum request size
is 174 MiB. In Fig. 11 we show the CCDF of job size; as
compared to the Facebook trace analyzed previously, the
workload is more heavily tailed: the biggest requests are
four orders of magnitude larger than the mean. As before,
we set the simulated system processing speed in bytes per
second to obtain a load of 0.9.

In Fig. 13 we plot MST as the sigma parameter control-
ling error varies. Since the job size distribution is heavy-
tailed, sojourn times are more influenced by job size esti-

7. http://ircache.net
8. ftp://ftp.ircache.net/Traces/DITL-2007-01-09/pa.

sanitized-access.20070109.gz.
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Fig. 13. MST of the IRCache workload.

mation errors (notice the logarithmic scale on the y axis),
confirming the results we have from Fig. 3. The performance
of FSPE does not worsen monotonically as error grows,
but rather becomes better for 0.5 < sigma < 1; this is a
phenomenon that we also observe – albeit to a lesser extent
– for synthetic workloads in Fig. 6b and for the Facebook
workload in Fig. 12. The explanation provided in Section 7.4
applies: since the mean of the log-normal distribution grows
as sigma grows, the aggregate amount of work for a given
set of jobs is likely to be over-estimated in total, reducing
the likelihood that several jobs at once become late and
therefore non-preemptable. Also here, we still remark that
PSBS consistently outperforms FSPE.

8 CONCLUSION

This work shows that size-based scheduling is an applicable
and performant solution in a wide variety of situations
where job size is known approximately. Limitations shown
by previous work are, in a large part, solved by the approach
we took for PSBS; analogous measures can be taken in other
preemtpive size-based disciplines.

PSBS is a generalization of FSP, and we have proven
analytically that, in the absence of errors, it dominates DPS;
to the best of our knowledge, PSBS is also the first O(log n)
implementation of FSP.

With PSBS, system designers do not need to worry
about the problems created by job size under-estimations.
PSBS also solves a fairness problem: while FSPE and SRPTE
penalize small jobs and results in slowdown values which
are not proportionate to their size, PSBS has an optimal
slowdown equal to 1 for most small jobs.

We maintain that, thanks to its efficient implementation,
solid performance in case of estimation errors, and support
for job weights, PSBS is a practical size-based policy that can
guide the design of schedulers in real, complex systems. We
argue that it is worthy to try size-based scheduling, even if
inaccurate estimates can be produced to estimate job sizes:
our proposal, PSBS, is reasonably easy to implement and
provides close to optimal response times and good fairness
in all but the most extreme of cases.

We released our simulator as free software; it can be
reused for: (i) reproducing our experimental results; (ii) pro-
totyping new scheduling algorithms; (iii) predicting system
behavior in particular cases, by replaying traces.

http://ircache.net
ftp://ftp.ircache.net/Traces/DITL-2007-01-09/pa.sanitized-access.20070109.gz
ftp://ftp.ircache.net/Traces/DITL-2007-01-09/pa.sanitized-access.20070109.gz
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APPENDIX A
SUPPLEMENTAL MATERIAL

A.1 Simulator Implementation Details
Our simulator is available under the Apache V2 license.9

It has been conceived with ease of prototyping in mind:
for example, our implementation of FSPE as described in
Section 4 requires 53 lines of code. Workloads can be both
replayed from real traces and generated synthetically.

The simulator has been written with a focus on compu-
tational efficiency. It is implemented using an event-based
paradigm, and we used efficient data structures based on B-
trees.10 As a result of these choices, a “default” workload of
10,000 jobs is simulated in around half a second, while using
a single core in our 2011 laptop with an Intel T7700 CPU.
We use IEEE 754 double-precision floating point values to
represent time and job sizes.

A.2 Additional experiments
In Fig. 14, we show the impact of load and timeshape,
keeping sigma and shape at their default values. Fig. 14a
shows that performance of size-based scheduling protocols
is not heavily impacted by load, as the ratio between the
MST obtained and the optimal one remains roughly con-
stant (note that the graph shows a ratio, and not the absolute
values which increase as the load increases); conversely,
size-oblivious schedulers such as PS and LAS deviate more
from optimal as the load grows. Fig. 14b shows the impact
of changing the timeshape parameter: with low values of
timeshape, job submissions are bursty and separated by
long pauses; with high values job submissions are more
evenly spaced. We note that size-based scheduling policies
respond very well to bursty submissions where several jobs

9. https://github.com/bigfootproject/schedsim
10. http://stutzbachenterprises.com/blist/
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Fig. 14. Impact of load and timeshape.

are submitted at once: in this case, adopting a size-based
policy that focuses all the system resources on the smallest
jobs pays best; as the intervals between jobs become more
regular, SRPTE and FSPE become slightly less performant;
PSBS remains close to optimal.
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Fig. 15. PSBS against PS.

With Fig. 15, we show that the results of Fig. 14 gen-
eralize to other parameter choices: by letting shape vary
together with load, timeshape and njobs, we notice that
PSBS always performs better than PS. The V-shaped pattern,
where the difference in performance between the two sched-
ulers is larger for “central” values of the shape parameter is
essentially caused by PS performing closer to optimal for
extreme values of the shape parameter, as we can see in
Fig. 5.

https://github.com/bigfootproject/schedsim
http://stutzbachenterprises.com/blist/
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