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1 Introduction

In recent years, exponential integrators (see, e.g. [7]) became an attractive
choice for the time integration of large stiff systems of differential equations.
The efficient implementation heavily relies on the fast computation of the
action of certain matrix functions on a given vector. Standard methods such
as Padé approximation or diagonalization are only reasonable if the dimension
of the system is small. For large scale problems other methods have to be
considered.

In this article we are concerned with the comparison of four commonly
used classes of methods for approximating the action of large scale matrix
functions on vectors, namely Krylov subspace methods, Chebyshev methods,
Taylor series methods and a new version of the so-called Leja point method.
All used codes are implemented in Matlab and therefore easily comparable in
efficiency.

Most exponential integrators make use of linear combinations of the expo-
nential and the related ¢ functions (see, e.g. [7]). Moreover, since the computa-
tion of ¢ functions can be rewritten in terms of a single matrix exponential by
considering a slightly augmented matrix (see, e.g. [2,10,11]), we will concen-
trate in this article on the numerical approximation of the matrix exponential
applied to a vector. The comparisons are carried out in the following way. For
a prescribed absolute or relative tolerance we measure the CPU time that the
codes need to calculate their result. Furthermore we check whether the results
meet the prescribed accuracy. To make a fair comparison in Matlab all codes
are tested using a single CPU only.

The outline of the paper is as follows. In Section 2 we recall the idea of
the Leja point method and introduce a new numerical realization. In Section 3
we present the competing methods used in our numerical experiments. Finally
Section 4 is devoted to the comparison of the methods. As test examples we
use spatial discretizations of linear operators arising from partial differential
equations in either two or three space dimensions. We conclude in Section 5.

2 Leja approximation of the action of the matrix exponential

The Leja approximation of the matrix exponential exp(A)v is based on inter-
polation of the underlying scalar exponential function at Leja points. Their
selection is governed by the spectral properties of A. The method was first pro-
posed in [6] for the ¢ function. In the following we briefly recall the method,
some modifications will be discussed in Section 2.1.

In our applications the spectrum of A satisfies

a<Rec(A)<v <0, —fB<Imog(A)<p.

We recover the values o (smallest real), v (largest real) and 3 (largest imagi-
nary part) by separately considering the symmetric and skew-symmetric part
of A. By using Gershgorin’s disk theorem we approximate their spectra. This
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provides us with the interval [, v] for the symmetric part and i[—/3, 8] for the
skew-symmetric part. Therefore, the field of values F(A) of A (and hence its
spectrum) is contained in the rectangle R with vertices of vertexes (a, —f),
(o, B), (v, B) and (v, —3). The number v represents the real part of the smallest
eigenvalue in magnitude. This, or even a reasonable approximation of it, might
be hard to obtain, e.g. in the case of operator functions where Gershgorin’s
disks cannot be computed. From our experience, in such cases v can safely
be set to 0. On the other hand, accurate enough approximations of the values
« and (3 can be obtained by a few iterations using the direct power method
(or more sophisticated methods, such as implicitly restarted Arnoldi methods,
used by ARPACK [8] and eigs of Matlab) applied to the symmetric and the
skew-symmetric part of the operator, respectively.

Now we can construct the ellipse £ with semiaxes a and b circumscrib-
ing the rectangle R with smallest capacity (a + b)/2. We take Leja points
on the focal interval (i.e. the interval between the foci) of this ellipse. From
the maximal convergence properties of scalar interpolation at Leja points, we
have superlinear convergence in the matrix case as well (see [6] and references
therein).

For a compact set K C C a sequence of Leja points is defined recursively
by

m—1
Zm € arg max H |z — z;|, 2o given.
zeK =0

They lie on 0K by the maximum principle. In our application, K is the focal
interval T of the ellipse €. If I C R is horizontal (this happens when v—a < 23)
it is possible to use a set of precomputed Leja points on the reference interval
[-2,2]. Now one interpolates the function exp(c + v¢), & € [-2,2] in the
Newton form, where ¢ is the midpoint of the focal interval and v a quarter of
its length. The resulting scheme (for simplicity written for the approximation
of the scalar function exp(z)) is

pm(z) = pm—l(z) + d7rsz—1(Z) for m > 0,
rm(2) = ((Z —c)/v— §m)rm_1(z,)

with
po(z) =do, 710(2) = ((z — ) /v — &),

where {d;}]", are the divided differences of the function exp(c + 7¢) at the
Leja points {{;}72; of the interval [-2,2]. On the other hand, if the focal
interval I of the ellipse is parallel to the imaginary axis (this happens when
v —a < 20), then the Leja points are complex and even the approximation of
a real matrix function would be performed in complex arithmetic. Instead we
consider conjugate pairs of Leja points which are symmetric, by construction.
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They are defined by zp = ¢ € R and

m—1
Zm € arg max H |z = zi|,  2Zm+1 = Zm for m odd.
=€l o

They can also be precomputed on the reference interval i[—2, 2], and the New-
ton interpolation can be written in real arithmetic (if the argument z is real),
ie.

pm(z) = pm—Q(Z) + Re(dm—l) 7nm—2(Z) + dm‘]m(z)a for m > 0 even,
T (2) = %(Z —C)qm + Im(fm—l)QTm—Q(Z)a

4n(2) = L(z = Irm-a(2)

with
po(2) = do, 70(2) = (2= ¢)/7,
where now {d;}*, are the divided differences (real for even j) of the function

exp(c+v§) at the conjugate complex Leja points {€;}, of the interval i[—2, 2].
In Figure 2.1 we see an example of Newton interpolation at complex Leja points

|1- complex Leja points@conjugate complex Leja points
| |
100 ,.Q.......o N
(-X )
°Q
[}
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: %
[}
00
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%0
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iterations

Fig. 2.1 Convergence rates for the interpolation of exp(z), z € i[—8,8] at complex Leja
points and conjugate complex Leja points,respectively.

and conjugate complex Leja points, respectively, with no evident difference in
the convergence rates. In the practical implementation in the matrix case it is
sufficient to use two (three) vectors p = p,,, and r = ry,, (¢ = ¢, ) and to update
them at each iteration. Moreover, a quite good a posteriori estimate e,, of the
interpolation error is given by the difference of two successive approximations
(see [5])

eXp(Z) - pm—l(z) N em = dmrm—l(z), (213,)
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for interpolation at Leja points and
exp(z) — pm—2(2) = em = Re(dm—1) rm—2(2) + dmgm(2), (2.1b)

for interpolation at conjugate complex Leja points.
In the notion of the e-pseudospectrum of A

Ae(A) = {z €C: ||(:T = A)7H, 271}

it is possible to derive an a priori error estimate for the convergence rate in
the matrix case (see [6]). It is essentially based on the scalar convergence rate.
Unfortunately, this estimate leads in practice to a considerable overestimate,
since the ellipse containing A.(A) is usually much larger than A.(A) itself.

108 —

10° |y 2

error

1078 1 =

1 —16 L L L L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200 220 240

iterations

Fig. 2.2 Convergence rate (a posteriori error estimate) for a 2D advection-diffusion operator
discretized by finite differences (see Example 1 below).

In Figure 2.2 a typical behavior for interpolation of a matrix function can be
observed. We display the a posteriori error estimate (norm of e,, in (2.1a)) for
the evaluation of exp(7A)v in Example 1 (N = 100, Pe = 0.495,7 = 5-1073).
The large hump is produced by the globally (not monotonically) decreasing
divided differences and the increasing magnitude of the matrix polynomial
m—1- This behavior is hardly seen in the scalar case but in the context of
matrix functions referred to as the hump effect, see [9,11].

A second observation, drawn from Figure 2.2, is that even if the terms
em decrease eventually (this is true as the divided differences are computed
as described in [4] and not in the standard way) they very more than 16
orders of magnitude. Therefore it is not possible to reach an error below 10~
in double precision (bottom line). A remedy for this problem is to use the
functional equation of the exponential and introduce a sub stepping procedure
to approximate exp(A)v by

exp(A)v = exp(A/s) ...exp(A/s)v,

s inner steps

where each of the s inner steps is computed by the above algorithm.
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2.1 The new strategy for the Leja interpolation

Our aim is to speed up the Leja interpolation in terms of CPU time by keeping
a simple user interface. For large matrices the most resource consuming part is
the Newton interpolation, in particular the computation of the matrix-vector
products and the error estimation. In this context we start from the reasonable
assumption that the underlying LAPACK and BLAS routines are implemented
in an optimal way. Therefore we can not influence the computational cost
of the matrix-vector products. Consequently we concentrate on implementing
the Newton interpolation in the most efficient way using the smallest possible
number of interpolation points. If the amount of inner steps and the amount
of interpolations points per step are known a priory, the interpolation can be
optimized.

As mentioned above the Leja interpolation highly depends on the smallest
real eigenvalue « as well as the largest imaginary eigenvalue 3 of the matrix A.
These values define the confocal interval of the used Leja points. The smallest
matrix that has the same spectral properties is the 2 x 2 matrix

s=[50)

If we perform an interpolation with S to compute exp(S)w, the convergence
rate should roughly be the same as for interpolating exp(A)v. We can then,
once and for all, compute the convergence range of the Leja interpolation for
varying a and (8 and use this as an a priory estimate of our unknown properties.
There are some constraints, the most important one is the acceptable number
of Leja points for one inner step. Tests show that an upper limit of 150 points
is reasonable for one inner step. The selection procedure is then rather simple.
If we are in the convergence range, i.e. the interpolation for S converged in
¢ < 150 iterations, we use ¢ iterations for the interpolation of A as well.
Otherwise we introduce additional inner steps, reduce o and (§ accordingly
and make a new guess on the interpolation points. It is necessary to compute
convergence ranges for various tolerances and distinguish between real and
complex conjugate Leja points.

This procedure is working well for normal matrices, however, it gives prob-
lems for nonnormal matrices. In the latter case the obtained amount of in-
terpolation points from S is to low, in general. Nevertheless by analyzing the
promising results for normal matrices we where able to define an upper and
a lower estimate for the number of iterations. For each of the sampling toler-
ances 1074,107%,1078,1071°, and for real and complex conjugate Leja points
independently we define the following procedure with the help of those two
estimates.

(a) Compute the values o and [ of the rectangle R surrounding o(A).

(b) Predict the amount of inner steps and compute upper and lower limits
of required iterations per step (s,m,n). Here the sampling tolerance is
chosen smaller than the prescribed tolerance.
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(¢) Compute m divided differences for the step size 1/s.
(d) Perform a Newton interpolation for s inner steps. The error is checked the
first time after n iterations and then after every fifth iteration.

The error estimate is based on (2.1). Henceforth this code will be called
Leja. The code computes the relative error scaled to the computed solution.
Due to the selection of n, the superlinear convergence and the discrete range of
sampling tolerances, it is possible that the obtained results are too accurate.
We also note that this approach is extendable to allow a dense output for
several values of 7 (time step size) as described in [2].

3 Further methods for computing the action of a matrix function

There are a large number of codes for computing the action of matrix function
on a given vector. However, many of these codes are described only in a paper,
implemented in other program languages (such as FORTRAN or C), or not
freely accessible. Such codes will not be considered here. There is also a large
class of algorithms that compute the full matrix function and not its action on
a given vector. Whereas such an approach works fine for small-scale problems
it is too costly for situations that we have in mind. Finally we will not consider
rational approximations, such us rational Krylov methods or contour integrals,
since they need to solve linear systems which is too expensive in general.

We will now briefly describe the other codes that we considered in the
numerical tests. We divided them into three classes.

3.1 Krylov subspace methods

The computation of exp(A)v with a Krylov method basically consists of two
steps. The first step finds an appropriate Krylov subspace and the second
computes the matrix exponential of a smaller matrix using standard methods.

We consider two codes based on Krylov subspace methods, namely the
implementation used in [11] (Expokit) and an implementation by Hochbruck!
(Krylov2). Both methods compute the Krylov subspace using the Arnoldi
method. Given the matrix A € C"*™ and the vector b € C" the Arnoldi
method computes an orthonormal basis V,,, € C"*™ of the Krylov subspace
K (A, b) and an upper Hessenberg matrix H,, € C™*™. Here the mth Krylov
subspace is defined by

K (A, b) = span{b, Ab,..., A" 1b}.
For this basis and the Hessenberg matrix one gets the relation
(A — A)Vpy = Vi (NI — Hpp) + Bt m U 1€

where el denotes the mth unit vector in R™.

1 'We thank M. Hochbruck, T. Pazur and A. Demirel for providing us with a Matlab code.
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Using the fact that V,,, (A — H,,) " 'e; is a Galerkin approximation to (A —
A)~71b one then gets, by Cauchy’s integral formula

exp(A)b = i/ A — A)71bd
r

- 2mi
1 _
~— | V(M — Hp) ter d\ =V, exp(Hy, e,
2771 T
where the curve I" surrounds the field of values of the matrix A.

Both codes use the matlab routine expm to compute exp(H,,). A crucial pa-
rameter is the maximally allowed dimension of the Krylov subspace. Whereas
Expokit requires m < 30, Krylov2 allows m < 1000. If Krylov2 is not able to
find an reliable solution in K199 (A4, b) it stops with an error, Expokit performs
a substep strategy to find an acceptable approximation.

3.2 Taylor series methods

The code expmv (see [2]) approximates the exponential of a given matrix A €
C™*™ acting on v € C" by

exp(A)v ~ (T (s A)%)v,

with T}, denoting the truncated Taylor series expansion of exp(x). For a fixed
integer m, the parameter s has to guarantee that

stAe{MeC™":ple MT,,(M)—1)<1}

with p(M) denoting the spectral radius of M. For each m, it is possible to
choose the optimal value of the integer s in such a way that ||AA|| < TOL || A]]
for any matrix norm and given tolerance TOL, where ||AA| is implicitly de-
fined by T,,(s71A)* = exp(A + AA). The value of m is chosen in such a
way to minimize the computational cost of the algorithm, taking into account
that the evaluation of a too long Taylor expansions for matrices s 'A with
large norm could lead to numerical instability. Therefore, it is required that
m < Mmax = 99.

The code expmv allows only three different sizes of tolerances TOL, namely
half, single, and double precision.

3.3 Chebychev methods

The idea to use a Chebychev polynomial for approximating a matrix function is
quite established (see [1,3]). Chebychev methods work efficiently if the matrix
A is Hermitian or skew-Hermitian. The code Cheb by Giittel® is designed for
Hermitian matrices. For a given Hermitian matrix A € C"*" with eigenvalues
in [o,v] C R the action of the exponential of A on v is approximated by a

2 We thank S. Giittel for providing us with a Matlab code.
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Chebychev expansions with points in [«,v]. In the code Cheb the necessary
Chebychev coefficients are computed with fft, even though they are values
of known Bessel functions. A similar approach is used for solving ordinary
differential equations (e.g. [1]) but is not considered in this paper.

4 Numerical comparisons

In this section we outline some differences between the different methods de-
scribed above as well as our new implementation on the basis of four test
examples. All of the following numerical comparisons are computed with Mat-
lab 2012a on a 64bit (glnxa64) Fedora 16 workstation with a 3GHz Intel Core
2 vPro and 8GB RAM. Matlab is restricted to a single computational thread,
on a single core, by the -singleCompThreat command and in addition the
JVM is deactivated with the -nojvm command. This configuration allows a
comparison without any parallel computations. We are looking at these com-
putations from the exponential integrator point of view. Therefore we are not
interested in results that are as accurate as possible but up to a typical accu-
racy of 6 digits. We used expmv from [2] with maximal precision to compute
a reference solution.

In the following we will briefly describe each of the examples and the con-
figuration for the respective numerical experiment. In each of the test cases we
compute exp(7A)v for a prescribed tolerance TOL. Each of the codes is only
provided with 7, A, v and TOL to keep the user interface simple. The time step
size T allows us to control the magnitude of the eigenvalues of the example
matrices and therefore to vary between stiff and nonstiff situations.

Example 1 (advection-diffusion equation) We start to investigate the
behaviour of the methods by an example that allows us easily to vary the
spectral properties of the discretization matrix. We consider the advection-
diffusion equation

Ou = eAu + cVu

on the domain 2 = [0,1]? with homogeneous Dirichlet boundary conditions.
This problem is discretized by finite differences with grid size Ax = ﬁ, N >
1. This results in a sparse N x N matrix A and a problem with df = N2

degrees of freedom. We define the grid Péclet number

Pe = CA—:U
2e

as the ratio of advection to diffusion, scaled by Az. By increasing Pe the
normality of the discretization matrix can be controlled. For the computations
displayed in Figures 4.1-4.3 the parameters are chosen as follows: € = 1 and
¢ = 2L As initial function we use uo(z,y) = 256 - 2%(1 — 2)?y*(1 — y)2.

In Figure 4.1 the matrix changes from normal (8 = 0) to nonnormal
(8 = —0.45«). The Chebyshev method is only working reliable for normal
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matrices whereas the other methods work fine for all cases. The methods Leja
and expmv have approximately the same computational effort, independently
of the normality of the input matrix. For Expokit, the computational cost
slightly increase with increasing grid Péclet number, whereas Krylov2 shows
a considerable increase of the computational cost. In Figure 4.1 we used the
maximum norm. We note that the discrete L? norm gave almost identical
pictures.

In Figure 4.2 we take a closer look for Pe = 0.5 and also include the actual
error for each of the methods (except Cheb for the above described reasons).
For this choice of Pe, the exact solution becomes very small and the distinction
between relative and absolute error gets important. We can see that Expokit
and Krylov2 effectively only consider the absolute error, whereas expmv and
Leja match the specified relative tolerance.

In our third test case for this example, see Figure 4.3, we fix the dimen-
sion of A but vary the grid Péclet number between 0 and 1. The results are
somewhat similar to those in Figure 4.1. One observes again that the compu-
tational cost increase for higher degrees of freedom but is almost constant, for
the methods Leja, expmv and Expokit, for varying Pe. These three method
also have about the same computational cost (varying by a factor 3). The
Krylov2 method experiences more and more difficulties for increasing nonnor-
mality of A and in the worst case has a almost 40 times higher cost than Leja.
The errors in this example are measured in a discrete L? norm but again the
pictures stay almost the same for the maximum norm.

Throughout this experiments one could see that for small matrices the
overhead produced by the computation of the divided differences in Leja is
slowing down the method. For higher and higher dimensions however, the
percentage of this (almost) fixed cost decrease in comparison to the overall cost
and the method improves with respect to the other methods, see Figure 4.1.
The difference between expmv and Leja can be explained by the amount of
matrix-vector products needed by each of the methods.

Example 2 (reactive transport in heterogeneous porous media [12])
The advection-diffusion-reaction equation
Dy 0
¢(z)0u =V - (DVu) — V- (¢(x)u) + R(z,u), D= 0 D,

is used to model many applications in geo-engineering. A finite volume dis-
cretization with N x N points in the domain 2 = [0,1]? results in a sparse
discretization matrix with a more complex structure than the one in the pre-
vious example. In particular, we are using the matrix L of Eg. (6) from [12,
p. 3959].% For the computation displayed in Figure 4.4 the diffusion parame-
ters are set to D; = 1072, Dy = 10~%, and the dynamical viscosity is chosen

p = 1. As initial function we use ug(z,y) = 256 - 2%(1 — x)%y?(1 — y)%.

3 We thank A. Tambue for providing us with a Matlab code.
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In Figure 4.4 we investigate the behavior of the considered methods for
increasing matrix dimensions. In this experiment we prescribed a higher ac-
curacy but but due to the super-linear convergence this does not result in a
considerably higher cost. The spectral properties of L are similar to Example 1
with Pe = 0.9. As soon as the overhead of Leja is compensated by the reduced
amount of matrix-vector products Expokit, expmv and Leja have roughly the
same computational cost with an almost negligible disadvantage for Expokit.
The Krylov2 implementation on the other hand has a considerable increase
in computational cost. Even though the computational cost are high, Krylov2
produces the largest errors of all methods. the absolute error, however, is still
below the prescribed tolerances. For this example we do not have a monotonic
growth of computational cost, due to the definition of the permeability and the
porosity ¢(x) of the heterogeneous media, which includes random variables.
The experiments show however that all the methods are effected almost in the
same way.

Example 3 (Schrédinger equation with harmonic potential in 3D)
Our next example is the 3D Schrédinger equation

i

Opu = 3 (A—clzf?)u

with harmonic potential. We discretize this problem with finite differences in
N3 points on the domain 2 = [0, 1]3. This results in a discretization matrix
with pure imaginary spectrum and allows us to test the stability of the meth-
ods on the imaginary axis. Like described in Section 2 this forces the Leja
implementation to use complex Leja points. Although the spectrum lies on
the negative imaginary axis, we decided to use complex conjugate Leja points.
As initial function we use ug(z,y, z) = 4096 - 22(1 — x)%y%(1 — y)222(1 — 2)2.

In Figure 4.5 Leja, expmv and Expokit show a nearly parallel linear growth
of computational cost, this time with a slight advantage for Leja, even though
the implementation achieves about 3 digits more accuracy than required. This
example shows that the procedure described in Section 2.1 might not always
result in the least possible computational cost. However, it is still fast. The
CPU time of Leja, expmv and Expokit is varying only by a factor of about
2, whereas for Krylov2 the CPU time increases by a factor of almost 3000.
Already for this moderately stiff example Krylov2 has problems. This seems
curious as Expokit and Krylov2 are both Krylov subspace methods that rely
on the expm method of Matlab. The main difference seems to be that Expokit
only allows a Krylov subspace of up to dimension 30, whereas Krylov2 uses
1000 as a default upper limit. From our experiments expm is only feasible for
low dimensional problems. For a 1000 x 1000 matrix one call of expm almost
needs as much time as the whole computation Leja needs to solve the above
problem for N = 24. This might have a weakened effect when the computa-
tion is done on a multi-core machine but for the single core computation the
differences are considerable.
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Example 4 (Molenkamp—Crowley in 2D with radial basis functions)
In order to include an example with a dense matrix we consider the Molenkamp—
Crowley equation

O = Ora(z, y)u + dyb(z, y)u.

with a(z,y) = 27x and b(x,y) = —27y in [—1, 1]2. This problem is discretized
on a regular N x N grid with Gaussian radial basis functions. The form factor
is chosen in such a way that the approximation error in space is smaller than
TOL. For a further discussion of the example and some literature on radial
basis functions, see [5]. This kind of discretization results in a matrix where
more than 90% of the entries are nonzero. As initial function we use

wolz,y) = 11734 67100((z70.2)2+(y70.2)2) (@? = 122 — 1)

The results of this example are summarized in Figure 4.6. For a dense ma-
trix the matrix-vector products are more expensive and therefore Leja and
expmv need significantly more CPU time, compared to the sparse situation
in the previous examples. The cost for Krylov2 and Expokit are increased as
well. Altogether the methods vary only by a factor of about 3. In comparison to
the previous examples our implementation of Leja needs more matrix-vector
products than expmv and therefore consumes slightly more CPU time. Due to
the storage limitations it is not feasible to include higher dimensional matrices
in this experiment as it can not be guaranteed that Matlab is not starting to
swap storage to the hard drive. The results in Figure 4.6 are given for the max-
imum norm. The corresponding results in a discrete L? norm look very similar,
only Krylov2 has some problems to keep the relative error requirements.

5 Concluding remarks

In this paper a new method for computing the action of the matrix expo-
nential is proposed. It is based on a polynomial interpolation at Leja points
and provides an a priory estimate of the required degree. This enables us to
determine the required number of inner steps for an efficient computation.

From the numerical comparisons we can draw the following conclusions. All
methods with the very exception of Cheb work well for the considered exam-
ples. The later gives satisfactory results only for nearly self-adjoint problems.
For Krylov subspace methods, the maximal dimension of the subspace should
not be too large since the exponential of a Hessenberg matrix of that dimension
has to be computed, which can be expensive. A large Krylov dimension and
a high degree in the interpolation methods can be avoided by choosing more
inner steps which results in a smaller field of values of the matrix. For small
step sizes 7, all methods are comparable and work well, but our interest lies
in stiff problems with 7 not too small as considered in the examples. A clear
advantage of our interpolation at Leja points is the low demand of storage due
to the employed short-term recursion.
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Fig. 4.1 Computational cost of various methods vs. number of points N per coordinate
for the evaluation of exp(7A)up in Example 1 for grid Péclet number Pe = 0,0.1 and
0.9 and 7 = 10~ 2. The error is measured in the maximum norm for prescribed tolerance
TOL = 10~%. The + indicates that the relative error is larger than TOL, the O indicates
that the absolute error requirement is slightly violated.
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Fig. 4.2 Computational cost and achieved accuracy of various methods vs. number of points
per N coordinate for the evaluation of exp(7A)ug in Example 1 for Pe = 0.5 and 7 = 10~ 2.
The error is measured in the maximum norm for prescribed tolerance TOL = 10~%. The
+ indicates that the achieved relative error is larger than TOL, the [J indicates that the
absolute error requirement is slightly violated.
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Fig. 4.3 Computational cost of various methods vs. grid Péclet number for the evaluation of
exp(TA)up in Example 1 with df = 2500, 12100 and 40000 degrees of freedom and 7 = 1072,
The error is measured in a discrete L? norm for prescribed tolerance TOL = 10~6. The +
indicates that the achieved relative error is larger than TOL.
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Fig. 4.4 Computational cost and achieved accuracy of various methods vs. number of points
N per coordinate for the evaluation of exp(TA)ug in Example 2 for 7 = 10~1. The error is
measured in a discrete L2 norm for prescribed tolerance TOL = 10~%. The + indicates that
the achieved relative error is larger than TOL.
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Fig. 4.5 Computational cost and achieved accuracy of various methods vs. number of points
N per coordinate for the evaluation of exp(rA)ug in Example 3 for e = 0.5 and 7 = 0.5.
The error is measured in a discrete L? norm for prescribed tolerance TOL = 10~6. The
+ indicates that the achieved relative error is larger than TOL, the [J indicates that the
absolute error requirement is slightly violated.
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Fig. 4.6 Computational cost and achieved accuracy of various methods vs. number of points

N per coordinate for the evaluation of exp(TA)ug in Example 4 for 7 = 0.5. The error is
measured in the maximum norm for prescribed tolerance TOL = 10~96.
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