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Course schedule

• May 31st, 8:30-10:30, alpha: Introduction to python

• June 07th, 8:30-10:30, alpha: How to obtain RM images and python lab (FFT)

• June 10th, 10:30-12:30, H: Bloch Torrey equation and homogenization techniques

• June 11th, 8:30-10:30, gamma: solution of Bloch Torrey equations in simple 2D 
geometry in FreeFem

• June 12th, 14:30-15:30, F: Numerical Convex Optimization applied to diffusion MRI
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What kind of information can we extract from dMRI?
• Intra-voxel tissue characterization
• Estimate microstructural features of the neuronal tissue

• Intra-voxel white-matter structure —> fiber tracking
• Estimate the number and orientation of fiber populations in each voxel
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intra-voxel tissue characterization
• Algorithms whose aim is to estimate microstructural features of the 

neural tissue inside each voxel

• Two main classes of algorithms
• Focus on angular information contained in the diffusion signal

• Reconstruct the geometry of the fiber bundles inside a voxel
e.g. number of fibers, their volume fraction, orientation…

• Tractography, connectivity estimation…

• Acquire and use also the radial component of the signal
• More advanced features of the tissue microstructure

e.g. axonal diameter and density
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Low b-value approximation
• A way to model anisotropic diffusion coefficients is

to use the tensor formalism

• Assumption: displacements of water molecules
follow a multivariate gaussian distribution
• Process fully characterized by its covariance matrix

• D is a 3×3 positive-definite symmetric matrix

• NOTE: signal decay is function of gradient direction
• is the orientation of the diffusion gradient
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[Basser et al., 1994]diffusion
tensor



Application 
• The principal direction of D is assumed to be co-linear

with the dominant fiber orientation within the voxel
• Basic principle that is used in tractography (see later)

• Advantages
• Fast acquisitions (≈ 3-4 min) clinically feasible
• Does not require special hardware
• Possibility to extract useful information about the neuronal tissue
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Accelerated Microstructure Imaging
via Convex Optimization (AMICO) 

from diffusion MRI data
Daducci et al. 2015



Micro-structure imaging (modelling ADC)
• State-of-the-art techniques

• Ball&stick (Behrens et al, 2003)
• no real link to micro-structure

• CHARMED (Assaf et al, 2005)
• models separately intra-axonal and extra-axonal water pools

• AxCaliber (Assaf et al, 2008)
• distribution of axonal diameters
• fiber direction must be known
• long acquisitions

• ActiveAx*(Alexander et al, 2010)
• orientationally invariant index of average axonal diameter
• strong gradients required

• NODDI* (Zhang et al, 2012)
• discard axonal diameter estimation
• focus on intra and extra compartments
• feasible with clinical scans

• One common limitation: computationally expensive!
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AMICO general idea
• Fact 1: based on a generic multi-compartment model

• Fact 2: we can (linearly) fit these models as long as we regularize the 
inverse problem

• Fact 3: dictionary-based reconstruction methods…
• do not consider the micro-structure but…rcl
• perform really well (≈5°) for identifying the

main diffusion directions (Daducci et al, 2013)

• Fact 4: they can be formulated as linear problems
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AMICO general idea
• Two-step procedure:

• identify in every voxel the main diffusion direction with classical algorithms

• construct a dictionary along this fixed direction and varying the signal responses
to model different possible micro-environments

• GOAL: find the contribution of each compartment
(inverse problem) using convex optimization
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Linearization of ActiveAx
• Dictionary construction:

• AIC explicitly models axons having a different radii
• AEC explicitly models distinct hindered environments (e.g. packing)
• AISO accounts for any isotropic contribution

• Regularization:
• Among all the possible regularizations the Tikhonov one was enough to improve condition number of A

• Formulation:
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Linearization of ActiveAx
• Computation of microstructure indices:
• Let’s partition x = [ xr | xh | xi ] into the corresponding compartments

(r=restricted, h=hindered, i=isotropic)
• Let Nr , Nh , Ni be the number of atoms in AIC , AEC , AISO

• Let Rj be the radius of the axons corresponding to the jth atom in AIC
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Numerical results
• Experimental setup
• 44 different substrates used in (Alexander et al, 2010)
• Compared to original ActiveAx implementation
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In-vivo results
• Experimental setup
• Dataset used in (Alexander et al, 2010)

• Fixed monkey brain acquired with Gmax = 140 mT/m
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Summary
• AMICO is a convex formulation for microstructure imaging

• Advantages
• It is much faster than original formulations
• Can provide higher quality reconstructions (avoid local minima)
• It is very flexible and easily extendable

• Ongoing work/future research
• Linearization of other models
• Extension to multiple fiber populations
• Addition spatial regularization
• Avoid the two-step procedure
• Investigate data under-sampling for microstructure imaging
• Inclusion of the correct noise model (low SNR regimes)
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Tractography



What is tractography?



Main idea and standard algorithms
• Deterministic tracking [Conturo et al., 1999; Mori et al., 1999; …]

• f(·) : fiber trajectory ( )
• d(·) : main diffusion direction

estimated in each voxel ( )
• f0 : seed/starting point ( )
• t : step size

• Notes
• ≃ few minutes/brain (real-time)
• Deterministic = the same trajectories are

reconstructed from same seed points
• Suffers from false negatives (low sensitivity)
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Example of deterministic tracking



Main idea and standard algorithms
• Probabilistic tracking [Parker et al., 2003; Behrens et al., 2003; …]

• d(·) : replaced by
• Next direction drawn from distribution

(uncertainty in the tracking)
• Seed a large number of fibers

(probability of connection)

• Notes
• ≃ 1 day/brain
• Adds confidence levels to tracts

(probabilities maps are difficult to interpret) [Jones et al. 2010;2013; Jbabdi et al., 2011]

• Suffers from false positives (low specificity)
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Example of probabilistic tracking



From tractography to structural brain connectivity
• Connectivity analysis of the brain with dMRI

• Consider all reconstructed fibers as a whole
• Subdivide them in bundles

(e.g. connecting different gray matter nuclei)

• Analyze their properties and organization
(e.g. to monitor progression of disease)

• Connectomics
• Connectomics: production and study of connectomes
• Connectome: comprehensive map of connections in the nervous system
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Unfortunately tractography is limited..
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v False positive connections are a major problem in tractography



Unfortunately tractography is limited..
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COMMIT: Convex Optimization 
Modeling for Microstructure 

Informed Tractography
Daducci et al. 2014



Idea ....

v A lot of information is lost on the way

v Tractography “alone” is not sufficient
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Streamlines hold also other properties...
v Streamlines are not “just lines”, they have a volume!
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Microstructure Informed Tractography

v COMMIT: Convex Optimization Modelling for Microstructure Informed Tractography [Daducci et al., 2013; 2014]

Ø streamlines are not “just lines”, they have a volume
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Assumption: the streamline volume is constant along its trajectory



Synthetic data results
• Experimental setup

• Dataset used for the FiberCup challenge

• 1 shell (64 b=1500 s/mm2), 64x64x3 voxels, 3x3x3 mm

• Candidate pathways

• estimated with front-evolution approach
• Two-compartment model

• 1 anisotropic tensor (estimated from the data) for the fibers + 1 isotropic in each voxel
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Tractometer	scores  
(Côté	et	al,	2013)

VB	 IB	 NC	
(%)

VC	
(%)

IC	
(%)

TIME	
(min)

GIBBS 7 12.5 76.5 19.8 3.7 43.6
COMMIT 7 1 0 97.9 2.1 0.4



In-vivo results

30 Simona SchiaviScientific Computing in MRI



Summary
• COMMIT is a novel convex formulation for tractography

• Advantages
• It is truly global
• It is quantitative
• It is fast, flexible and guarantees convergence

• Ongoing work/future research
• Model development

• improve/add more regularization terms to exploit all the redundancy
• develop a strategy to construct “good” dictionaries

• Investigate data-undersampling
• GPU implementation
• Embed COMMIT into an “active” tractography algorithm
• “Quantitative” structural connectivity functional connectivity
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Can we do better?



Axons in the CNS are naturally organized in bundles
COMMIT2 allows grouping streamlines together and injecting priors on them. 
[Daducci et al., 2018; Schiavi et al., 2019]

The groups are arbitrary and can be defined using anatomy information, atlases, other imaging modalities, ...
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Synthetic data results

Ground Truth

Schiavi et al., biorxiv 2019 
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Bundles are composed by fascicles
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Ocampo-Pineda ISMRM 2019



Modified COMMIT2 allows injecting hierarchical priors 
Streamlines are organized in bundles, and can be organized in a hierarchical structure
e.g. using cortical regions to define the groups and clustering the streamlines in sub-groups
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Grouping the streamlines
in a hierarchical structure

Groups

Sub-groups
Ocampo-Pineda ISMRM 2019



Synthetic results
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In-vivo results
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After COMMIT2
Group structure

After COMMIT2
Hierarchical structure

Ocampo-Pineda ISMRM 2019



Questions?


