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Course schedule

e May 315, 8:30-10:30, alpha: Introduction to python
* June 07, 8:30-10:30, alpha: How to obtain RM images and python lab (FFT)
 June 10", 10:30-12:30, H: Bloch Torrey equation and homogenization techniques

* June 11t 8:30-10:30, gamma: solution of Bloch Torrey equations in simple 2D
geometry in FreeFem

 June 12, 14:30-15:30, F: Numerical Convex Optimization applied to diffusion MRI
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What kind of information can we extract from dMRI?

* Intra-voxel tissue characterization
» Estimate microstructural features of the neuronal tissue

axonal diameter axonal density

diffusion coefficient diffusion anisotropy

* Intra-voxel white-matter structure —> fiber tracking
* Estimate the number and orientation of fiber populations in each voxel
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intra-voxel tissue characterization

* Algorithms whose aim is to estimate microstructural features of the
neural tissue inside each voxel

* Two main classes of algorithms
* Focus on angular information contained in the diffusion signal

* Reconstruct the geometry of the fiber bundles inside a voxel _‘
e.g. number of fibers, their volume fraction, orientation... ’ x ’ ’ e
* Acquire and use also the radial component of the signal
* More advanced features of the tissue microstructure
e.g. axonal diameter and density

* Tractography, connectivity estimation...

8 2 4 & B WX MM
Axon Diameter (um)
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Low b-value approximation

* A way to model anisotropic diffusion coefficients is
to use the tensor formalism

* Assumption: displacements of water molecules

follow a multivariate gaussian distribution
* Process fully characterized by its covariance matrix

diffusi D= Dy Da

ITfusion — D D D

tensor D ny Dyy Dyz
| Maxz Myz Mzz

* Dis a 3x3 positive-definite symmetric matrix

S(gk,b) = Soexp (—bgj Dgx)

 NOTE: signal decay is function of gradient direction
* isthe orientation of the diffusion gradient

Simona Schiavi
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Application

* The principal direction of D is assumed to be co-linear
with the dominant fiber orientation within the voxel

 Basic principle that is used in tractography (see later)

* Advantages
e Fast acquisitions (= 3-4 min) clinically feasible
* Does not require special hardware
* Possibility to extract useful information about the neuronal tissue
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Accelerated Microstructure Imaging
via Convex Optimization (AMICO)
from diffusion MRI data



Micro-structure imaging (modelling ADC)

e State-of-the-art techniques
* Ball&stick

* no real link to micro-structure

CHARMED

* models separately intra-axonal and extra-axonal water pools

AxCaliber

* distribution of axonal diameters
* fiber direction must be known

. s .
Iong acquisitions Axon diameter Fibre density

ActiveAx*

* orientationally invariant index of average axonal diameter
* strong gradients required

NODDI*
* discard axonal diameter estimation
* focus on intra and extra compartments
» feasible with clinical scans

 One common limitation: computationally expensive!
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AMICO general idea

* Fact 1: based on a generic multi-compartment model

-

e
restricted hindered isotropic

[ S ((]) _ !ICRIC(ql_*_!ECREC(ql+!ISORISO(q) }

* Fact 2: we can (linearly) fit these models as long as we regularize the
inverse problem

* Fact 3: dictionary-based reconstruction methods...

 do not consider the micro-structure but...rcl

» perform really well (=5°) for identifying the I |
main diffusion directions |

* Fact 4: they can be formulated as linear problems

5 A'f R ___"‘-______H_ [ 1 . ™ . N
j‘ ~_ Y~ "’q ”7 11 \' L S T

1
contributions of
basis functions in A
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AMICO general idea

* Two-step procedure:
* identify in every voxel the main diffusion direction with classical algorithms

¥ B (-

e construct a dictionary along this fixed direction and varying the signal responses
to model different possible micro-environments

i — y = [4}0 | AEg_l AISO ]a)\-l— 77 '[ ] is%trtlnpic%iﬁusion

' N
A A A A A - A a
[ I i ' ' ' nes ] [ ' . . nee ] — contributions of

every compartment

intra-axonal extra-axonal
signal responses signal responses

* GOAL: find the contribution of each compartment
(inverse problem) using convex optimization
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Linearization of ActiveAx

* Dictionary construction:

* A, explicitly models axons having a different radii
* A explicitly models distinct hindered environments (e.g. packing)
* Ao accounts for any isotropic contribution

/’__“\‘-‘ ] .:il:'m 'f-'lllyl':t"ur
[ A{Cf | AE(,' I AISO I atropic diffusion
1 1 8 './‘/ l\. . "

D] S[wwn -]

signal responses for sipral responses for
axons with different diameter different hindered environments

* Regularization:

* Among all the possible regularizations the Tikhonov one was enough to improve condition number of A

data Fit repularization

 Formulation: [ ]
argmin l||Ax —yll3|+ é||x||g
x>0 2 ?
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Linearization of ActiveAx

* Computation of microstructure indices:
* Let’s partition x = [ x" | x" | x'] into the corresponding compartments
(r=restricted, h=hindered, i=isotropic)
* Let N, N, N, be the number of atoms in A;c Aec Aiso
* Let R; be the radius of the axons corresponding to the j*" atom in A,

>
. . X
intra-axonal V = j=1"1
volume fraction EN' r EN“ h
1% T 251 %
3V 2R
mean d j=1°707
axonal diameter - N, or
Zj=1xj
| densit 0 4V
axonal densi -
Y na'?
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Numerical results

* Experimental setup
e 44 different substrates used in (Alexander et al, 2010)
* Compared to original ActiveAx implementation

SNR =20 SNR = O
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INn-vivo results

* Experimental setup

* Dataset used in
* Fixed monkey brain acquired with G,,,,, = 140 mT/m

ActiveAx . ActiveAx, .
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Summary

 AMICO is a convex formulation for microstructure imaging

Local Tissue
[ reconstruction ] AMICO [ microstructure ]

—

* Advantages
* It is much faster than original formulations

* Can provide higher quality reconstructions (avoid local minima)
* Itis very flexible and easily extendable

* Ongoing work/future research
* Linearization of other models

* Extension to multiple fiber populations

* Addition spatial regularization

* Avoid the two-step procedure

* Investigate data under-sampling for microstructure imaging
* Inclusion of the correct noise model (low SNR regimes)
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Tractography



What is tractography?

Corona

nternal
capsule
Thalamus

1) Output = streamlines/pathways/trajectories
2) Output # single axons
3) Resolution = differs by orders of magnitude




Main idea and standard algorithms

* Deterministic tracking N\ |/
df(t) \ [V !/
dt
VL]
o
e f(-): fiber trajectory (=) I / /
e d(:) : main diffusion direction
estimated in each voxel ()
 f,:seed/starting point (®)
* t:stepsize
* Notes
« ~ few minutes/brain (real-time) g @ o
* Deterministic = the same trajectories are
reconstructed from same seed points e
« Suffers from false negatives (low sensitivity) _
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Example of deterministic tracking




Main idea and standard algorithms 7] R
NREEAT G LILIL
* Probabilistic tracking T e
df () _ 0<t<1
T d(f(t)) with { FO) =f
| — —— /’,
° d() & replaced by .! l/’ girfifnuc;ir;ar:
* Next direction drawn from distribution '/ direction
(uncertainty in the tracking) A . S
* Seed a large number of fibers '\\
(probability of connection) \\ "

-~
- -
- ————

* Notes

=~ 1 day/brain

* Adds confidence levels to tracts
(probabilities maps are difficult to interpret)

» Suffers from false positives (low specificity)
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Example of probabilistic tracking
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From tractography to structural brain connectivity

e Connectivity analysis of the brain with dMRI
* Consider all reconstructed fibers as a whole

e Subdivide them in bundles
(e.g. connecting different gray matter nuclei)

* Analyze their properties and organization
(e.g. to monitor progression of disease)

#_‘(

—paip \\
"-‘)'_ e~

N st o, " /‘—--1

* Connectomics o
e Connectomics: production and study of connectomes T
* Connectome: comprehensive map of connections in the nervous system
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Unfortunately tractography is limited..

+*»* False positive connections are a major problem in tractography

Contents lists available at ScienceDirect

Neurolmage

Anatomical accuracy of brain connections derived from £ 80
diffusion MRI tractography is inherently limited b

Cibu Thomas™®, Frank Q. Ye?, M. Okan Irfanoglu®®, Pooja Modi®, Kadharbatcha S. Saleem®, David A. Leopold“?,
and Carlo Pierpaoli®®

Connectome sensitivity or specificity: which is

*Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, more important?
20892; PCenter for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; “Neurophysiology *
Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, Bethesda, MD 20892;

9Section on Cognitive Neurophysiology and Imaging and “Section on Cognitive Neuroscience, Laboratory of Neuropsychology, National Institute of Mental Andrew Zalesky a* Alex Fornito b' Luca Cocchi ¢, Leonardo L. Gollo €,
Health, Bethesda, MD, 20892 .. d aa: ce
Martijn P. van den Heuvel “, Michael Breakspear

PN AS

ROI: PCG

A Q-ball B&S-OT
1.00
075 80 (J=0.59)

Sensitivity

(True Positive Rate)
°
g

. )
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/:53 W/ =0.53)
3’ =0.18)
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Unfortunately tractography is limited..

ISMRM 2015
challenge

True Positives (TP)

23/25 found on average

Scientific Computing in MRI
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Can we helo?

COMMIT: Convex Optimization
Modeling for Microstructure
Informed Tractography



ldea ....

** A lot of information is lost on the way

Potentially a lot of information... ..."just lines”

One frustrating thing about tractography is that it takes a
quantitative acquisition method (diffusion MRI) and makes
it less quantitative. That is, less quantitative from the point
of view of connectivity. Of course, diffusion MR is a quantita-
tive method: it allows us to calculate the—albeit apparent—
diffusion coefficient with great accuracy. Hence we can use [Jbabdi et al., 2011]
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Streamlines hold also other properties...

¢ Streamlines are not “just lines”, they have a volume!
d k€, 0202000 o ) ’

Diffusion MRI
signal

$

Optimization procedure

tractogram
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Microstructure Informed Tractography

< COMMIT: Convex Optimization Modelling for Microstructure Informed Tractography [paducci et al.,, 2013; 2014]

» streamlines are not “just lines”, they have a volume

Acauired DWi image Assumption: the streamline volume is constant along its trajectory
<+ <D
CSF in CSF in CSF in
Fiber 1 Fiber 2 Fiber 3 voxel 1 voxel 2 voxel 3
Voxel 3 measured signal predicted signal
3 < E A
B JNE 8 ° I [5=y| |8)=an
Tractogram > >
v |/ o
/ argmin |Ax — y/||3
7 : : x>0
Forward model X= 0 0 @ @ ” @ °

s ’ | — ——
Stick Ball

ticl al
(for the fibers) (for the rest)
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Synthetic data results

e Experimental setup
» Dataset used for the FiberCup challenge

e 1shell (64 b=1500 s/mm?), 64x64x3 voxels, 3x3x3 mm

Tractometer scores VB IB NC VC IC TIME
(Cété et al, 2013) (%) (%) (%) (mln)
GIBBS 7 12.5 76.5 19.8 3.7 43.6
COMMIT 7 0 2.1 0.4

=
=
p—
oL
o
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ata) for the fibers + 1 isotropic in each voxel
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INn-vivo results

COMMIT Local NNLS

intra-cellular

NMSE

=40 hours =10 minutes =3 minutes
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Summary

« COMMIT is a novel convex formulation for tractography

Fiber Tissue
[ tracking j coMmIT [ microstructure ]

 Advantages
* |tis truly global

i It iS quantitative C .m'l.J‘uLJ,::,Lm[-_ 0 u| .L,i"[!,x,n_v-,
* |tis fast, flexible and guarantees convergence A

* Ongoing work/future research
* Model development
£

* improve/add more regularization terms to exploit all the redundancy

“\
* develop a strategy to construct “good” dictionaries -
* |nvestigate data-undersampling <
. . At L reasonable Lo pxpect
¢ GPU implementation £C and 130 cantribut

* Embed COMMIT into an “active” tractography algorithm
e “Quantitative” structural connectivity functional connectivity
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Can we do better?



Axons in the CNS are naturally organized in bundles

COMMIT2 allows grouping streamlines together and injecting priors on them.
[Daducci et al., 2018; Schiavi et al., 2019]

all independent

PRIOR #1
CURRENT APPROACH

argmin 518 3113 + 3 3 [l
x20 ?____gg‘.?__\ ___________

matrix A
PRIOR #2 PRIOR #3

Group LASSO
promotes sparsity
at the group leve

The groups are arbitrary and can be defined using anatomy information, atlases, other imaging modalities, ...
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Synthetic data results

Schiavi et al., biorxiv 2019

no microstructure information with microstructure information with microstructure information
no anatomical priors no anatomical priors with anatomical priors
2
7))
o _—
—_—
o _—_—
| 5
VB = 27 (sensitivity=100.0%) VB = 27 (sensitivity=100.0%) VB = 27 (sensitivity=100.0%)
IB = 393 (specificity= 14.9%) IB = 374 (specificity= 19.0%) IB = 20 (specificity= 95.7%)
-
7))
o —_—
o
E 0 /A 0 ./
Q \O : g
VB = 27 (sensitivity=100.0%) VB = 27 (sensitivity=100.0%) VB = 27 (sensitivity=100.0%)
IB = 204 (specificity= 55.8%) IB = 190 (specificity= 58.9%) IB = 17 (specificity= 96.3%)
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Bundles are composed by fascicles

Streamline

True-positive

fascicles

'©
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o
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False-positive
fascicle

Ocampo-Pineda ISMRM 2019
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Modified COMMIT2 allows injecting hierarchical priors

Streamlines are organized in bundles, and can be organized in a hierarchical structure
e.g. using cortical regions to define the groups and clustering the streamlines in sub-groups

PRIOR #1
| T 2 @[,
all independent - argmin - ||Ax —y||5 + A Z [1x'9||2.
' x>0 2 950 4 é
CURRENT APPROACH PRIOR #2 PRIOR #3
>
osT Groups
matrix A Grouping the streamlines

in a hierarchical structure

. YN
YT

> Groups
Sub-groups ' CST ' 7\

Sub-groups

Scientific Computing in MRI 36 Simona Schiavi




Synthetic results

Input ! gNNLS hNNLS
|
|
<, B | B
|
|
|
|
i 52
1
1 A C
I —
AS3 : S4 ASB
I
I
1
|
I
I
S5 | S5
D i D D
|
i Group structure Hierarchical structure
1
! BD BC AC AD BD BC AC AD
! S1 S2S4  S3 S5 S1 S2S4  S3 S5

S2 5S4
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INn-vivo results

After COMMIT?2 After COMMIT?2
Group structure Hierarchical structure
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Questions?



