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a b s t r a c t 

Biclustering refers to the problem of simultaneously clustering the rows and columns of a given data 

matrix, with the goal of obtaining submatrices where the selected rows present a coherent behaviour in 

the selected columns, and vice-versa. To face this intrinsically difficult problem, we propose a novel gen- 

erative model, where biclustering is approached from a sparse low-rank matrix factorization perspective. 

The main idea is to design a probabilistic model describing the factorization of a given data matrix in two 

other matrices, from which information about rows and columns belonging to the sought for biclusters 

can be obtained. One crucial ingredient in the proposed model is the use of a spike and slab sparsity- 

inducing prior, thus we term the approach spike and slab biclustering (SSBi). To estimate the parameters 

of the SSBi model, we propose an expectation-maximization (EM) algorithm, termed SSBiEM, which solves 

a low-rank factorization problem at each iteration, using a recently proposed augmented Lagrangian al- 

gorithm. Experiments with both synthetic and real data show that the SSBi approach compares favorably 

with the state-of-the-art. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The goal of biclustering , or co-clustering, is to simultaneously

cluster both rows and columns of a given data matrix, such that

the resulting sub-matrices exhibit some form of coherence. The

term biclustering was coined in the microarray gene expression

analysis context [1–5] , with the goal of identifying groups of genes

that show similar activity patterns in a subset of the experimental

conditions, thus potentially revealing novel biological information.

Unlike classical one-way clustering, biclustering can reveal crucial

information in the microarray scenario for the following reasons:

(i) only a small set of the genes may be involved in some cellular

process of interest; (ii) the cellular process of interest may be ac-

tive only in a subset of the conditions; (iii) a single gene may par-

ticipate in multiple processes that may, or not, be co-active under

all conditions. Although biclustering has been mostly used with

biological data, recent years saw it being successfully applied in

other areas, such as market segmentation and data mining [6–11] . 

Several different approaches have been proposed for biclus-

tering, each characterized by different f eatures, such as accuracy,

computational complexity, descriptiveness of the retrieved biclus-

ters, as reviewed comprehensively in [2] and [3] . Most biclustering

methods can be divided into four main classes [3] : 
∗ Corresponding author. 
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1. correlation maximization methods , as suggested by their

name, seek biclusters that maximize the correlation between

the rows and the columns belonging to them [1,12] ; 

2. variance minimization methods search for biclusters mini-

mizing the row variance along the columns belonging to the

biclusters, or vice-versa [13–15] ; 

3. two-way clustering methods retrieve biclusters by alternat-

ing between row and column clustering (examples of this

class are found in [16–19] ); 

4. probabilistic/generative methods exploit probabilistic mod-

els and inference tools to retrieve rows coherently expressed

in a columns subsets (examples include the methods pro-

posed in [20–24] ). 

In this paper, we focus on and contribute to the latter group.

lthough probabilistic approaches tend to be computational heavy,

hey offer several advantages. The underlying generative model

 i.e. , the probabilistic mechanism assumed to be behind the

ata) can be used to generate synthetic data, which when com-

ared with real data, allows assessing the validity of the model.

oreover, probabilistic inference provides estimates of the confi-

ence/uncertainty level of the obtained estimates. Different prob-

bilistic approaches to biclustering have been proposed. In [21] ,

or example, each bicluster begins as a seed that is iteratively op-

imized by adding/removing rows and columns to/from the clus-

er by sampling from a conditional probability distribution us-

ng a Monte Carlo procedure. That iterative procedure is akin to

http://dx.doi.org/10.1016/j.patcog.2017.07.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.07.021&domain=pdf
mailto:matteo.denitto@univr.it
http://dx.doi.org/10.1016/j.patcog.2017.07.021
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Fig. 1. Example of spike and slab prior distribution. The low variance Gaussian 

G 2 = N (0 , 0 . 1) describes nearly zero samples, while the large variance Gaussian 

G 1 = N (0 , 1) models large magnitude values. 
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 Markov chain Monte Carlo (MCMC) process. Another interesting

robabilistic approach to biclustering was presented in [22] , where

he authors tackle biclustering using a strategy based on a sim-

le frequency model for the expression pattern of a bicluster and

n Gibbs sampling for parameter estimation. Alternatively, in [25] ,

he authors proposed a graph-theoretic approach aiming at find-

ng maximum bounded bi-cliques through a statistical representa-

ion of the data. Another notable example is the one developed in

24] , where the authors face biclustering from a geometric point

f view, to retrieve sub-biclusters, which are then combined into

arger ones, using a probabilistic relaxation labeling framework. 

A recently proposed generative multiplicative model, based on

parse matrix factorization and known as FABIA ( factor analysis for

iclustering acquisition [20] ) overcomes some limitations of previ-

us probabilistic techniques. Whereas previous methods used ad-

itive models under a Gaussianity assumption (which is known

ot to be true, since the pre-processing of micro-array data may

ield heavy-tailed distributions [20,26] ), FABIA is based on factor

nalysis with a sparsity prior on the elements of the factors. The

asic idea is to decompose the data matrix in levels, each cor-

esponding to a different bicluster. Although the performance of

ABIA is very promising, the corresponding likelihood is not analyt-

cally tractable, so its authors resorted to a variational expectation-

aximization (VEM) algorithm to estimate the model parameters

20] . Another drawback of FABIA is that the model does not pro-

ide information about bicluster memberships, hence requiring

ost-processing of its output to obtain that information [20] . 

In this paper, we add a new member to the family of probabilis-

ic biclustering methods, by proposing a novel generative model,

hich we call spike and slab biclustering (SSBi). 1 The proposed SSBi

ormulation approaches biclustering from a probabilistic sparse low-

ank matrix factorization perspective. Similarly to FABIA, SSBi works

y factoring the data matrix into the product of two matrices that

rovide information about the underlying biclusters. The proposed

ethod involves two main ingredients. 

1. The data matrix is approximated by a low rank matrix; in

particular, each bicluster has rank 1 and corresponds to the

outer multiplication of two vectors, with the data matrix be-

ing modeled as the sum of a collection of such rank-1 prod-

ucts ( i.e. , biclusters). 

2. The vectors that correspond to each bicluster are expected

to be sparse ; in fact, most data matrices addressed in biclus-

tering work have a large number of rows/columns ( i.e. , thou-

sands by hundreds, in gene expression data) and the biclus-

ters typically involve only small portions thereof. 

Since, in practice, no matrix of real data is exactly low rank,

e model deviations from the low rank assumption as a Gaussian

erturbation added to the underlying low-rank matrix. In order to

nforce sparsity on the factors, we propose to use a spike and slab

rior. The original spike and slab was proposed by Mitchell and

eauchamp [28] for variable selection in linear regression and later

eneralized and adopted by many authors as a general-purpose

parsity-inducing prior [29] . In its basic form, the spike and slab

s a univariate prior composed by the mixture of two zero-mean

aussian distributions: one with very small variance, modeling a

igh probability of nearly zero values, and another one with large

ariance, which models the presence a large values (see Fig. 1 ). 
1 Very recently, an approach sharing similar ideas to those presented in this pa- 

er was proposed in the specific context of NCI-DREAM drug sensitivity prediction 

27] . That paper proposes using a spike and slab prior in the generalized factor 

nalysis previously introduced. However, that work uses a different member of the 

pike and slab family and, moreover, the learning algorithm adopted is significantly 

ifferent: we use expectation-maximization, while they use Gibbs sampling. 
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In contrast with FABIA, the proposed SSBi formulation leads

o a computationally tractable likelihood, allowing us to estimate

he proposed generative model parameters through an instance of

he expectation-maximization (EM) algorithm, which we refer to as

SBiEM. The SSBiEM algorithm exploits a recently proposed aug-

ented Lagrangian method for low-rank factorization. Moreover,

SBiEM directly produces bicluster membership information, thus

ispensing with the need for any post-processing step. 

The proposed SSBiEM method was experimental evaluated on

oth synthetic data (the FABIA synthetic benchmark [20] ) and real

ata (the Breast Tumor dataset [7] ). The results reported below

how that SSBiEM improves over the results of FABIA, and com-

ares favorably with other state-of-the-art approaches. 

The remainder of the paper is organized as follows.

ection 2 provides a brief review of biclustering and sparse low-

ank matrix factorization. Section 3 presents the proposed SSBi

odel, while Section 4 describes SSBiEM. Section 5 presents and

iscusses the experimental evaluation. Finally, some concluding

emarks are presented in Section 6 . 

Notation: we refer to matrices using capital letters ( e.g., D, V, Z ),

o vectors with lower-case letters ( e.g., d, v, z ), and to matrix/vector

lements using subscripts ( e.g. , the entry ( i, j ) of matrix A is a ij and

he component p of vector d is d p ). The so-called “vec” operator

vectorization) takes a matrix argument and returns a vector with

he matrix elements stacked column by column. The reverse oper-

tion is denoted vec −1 ( i.e. , such that vec −1 
(
vec (A ) 

)
= A ). A pair of

seful equalities concerning the vec operator are 

ec (AB ) = (I � A ) vec (B ) = (B 

T 
� I) vec (A ) , (1)

here I is an identity matrix of adequate dimensions and � is

he Kronecker matrix product [30] . Finally, given some matrix A ,

 A ‖ F denotes its Frobenius norm, which is the Euclidean norm of

ts vectorization: ‖ A ‖ F = ‖ vec (A ) ‖ 2 . 
. Background 

This section provides background knowledge underlying the

roposed method, namely the biclustering problem and the cur-

ent state-of-the-art regarding biclustering via sparse low-rank ma-

rix factorization. 

.1. Biclustering and sparse low-rank factorization 

As mentioned in Section 1 , biclustering aims at the simultane-

us clustering of rows and columns of a given data matrix. We de-

ote as D ∈ R 

n ×m the given data matrix, and let R = { 1 , . . . , n } and

 = { 1 , . . . , m } be the set of row and column indices. We adopt D TK ,

here T ⊆R and K ⊆C , to represent the submatrix with the subset of

ows in T and the subset of columns in K . Given this notation, we

an define a bicluster as a submatrix D TK , such that the subset of

ows of D with indices in T exhibits a “coherent behavior” (in some

ense) across the set of columns with indices in K , and vice versa .

he choice of coherence criterion defines the type of biclusters to

e retrieved (for a comprehensive survey of biclustering criteria,

ee [2,3] ). 
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A possible coherence criterion for a bicluster (sub-matrix) is for

the corresponding entries to share the same pattern, significantly

different from the other entries of the matrix. In what follows, we

present two examples presenting different types of biclusters on

two data matrices D 1 and D 2 . In the first example, the bicluster

corresponds to the subset of rows T 1 = { 1 , 2 , 4 , 5 } and the subset

of columns K 1 = { 1 , 3 } ; in the second example, the bicluster cor-

responds to the subset of rows T 2 = { 1 , 2 , 3 , 4 } and the subset of

columns K 2 = { 1 , 4 } . The matrices are as follows: 

D 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

10 0 20 0 

10 0 20 0 

0 0 0 0 

10 0 20 0 

10 0 20 0 

0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, D 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

10 0 0 20 

20 0 0 40 

30 0 0 60 

40 0 0 80 

0 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

From an algebraic point of view, these matrices can be repre-

sented by outer products of sparse vectors, D 1 = v 1 z T 1 and D 2 =
v 2 z T 2 , where 

v 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

5 

5 

0 

5 

5 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, z 1 = 

⎡ 

⎢ ⎣ 

2 

0 

4 

0 

⎤ 

⎥ ⎦ 

, v 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

5 

10 

15 

20 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, z 2 = 

⎡ 

⎢ ⎣ 

2 

0 

0 

4 

⎤ 

⎥ ⎦ 

. 

As in [20] , we call these vectors prototypes (for v ) and factors

(for z ). Generalizing to k biclusters, we can formulate the biclus-

tering problem as the decomposition of the given data matrix D as

the sum of k outer products, 

D = 

k ∑ 

i =1 

v i z T i = V Z, (2)

where V = [ v 1 , . . . , v k ] ∈ R 

n ×k and Z = [ z 1 , . . . , z k ] 
T ∈ R 

k ×m . 

The connection between biclustering and sparse low-rank ma-

trix factorization can be evidenced by observing that the factoriza-

tion of the original data matrix shows that it has rank no larger

than to the number of biclusters (usually much lower than the

number of rows or columns). Moreover, if the size of matrix D

is much bigger than the bicluster size (as it is typically the case

in many applications), the resulting prototype and factor vectors

should be composed mostly by zeros ( i.e. , the prototypes and fac-

tors should be sparse). Note that if two entries in the approxi-

mated matrix belong to the same bicluster ( D ij ≈ D il for constant

valued biclusters as in the examples), it is not strictly required

that prototypes and factors approximating them should have simi-

lar sparse constraints. In fact, what should be similar is the sum of

the products in Eq. (2) . 

In the literature, there are several proposals of biclustering

methods based on matrix factorization [12,20,31] . A recent trend in

this context is to use non-negative matrix tri-factorisation to tackle

the objective of biclustering [32–34] . Specifically, those techniques

require the obtained matrices to be orthogonal. Consequently, and

crucially different from what we present, the retrieved biclusters

cannot overlap. This could represent a huge limitation in contexts

where biclustering is commonly applied, such as for gene expres-

sion analysis where the same gene can participate in several bio-

logical processes. Another significant class of approaches relies on

what are known as latent block models [35–38] ; differently from

our proposal, the goal of such approaches is to simultaneously re-

arrange rows and columns into groups of similar response patterns.

The common assumption made by these models is that each row

or column belongs exclusively to one row or column group, respec-

tively. Hence they do not allow for overlapping biclusters. Finally,

similarly to what we propose, FABIA (discussed next) Hochreiter
t al. [20] is a probabilistic matrix factorization techniques allow-

ng for overlapping biclusters. 

.2. FABIA 

FABIA is a generative model for biclustering based on factor

nalysis [20] . The model proposed to decompose the data matrix

s obtained by adding noise to the strict low rank decomposition

n (2) , 

 = 

k ∑ 

i =1 

v i z T i + Y = V Z + Y, (3)

here matrix Y ∈ R 

n ×m accounts for random noise or perturba-

ions, assumed to be zero-mean Gaussian with a diagonal covari-

nce matrix. As explained above ( Sections 1 and 2.1 ) the protoypes

n V and the factors in Z should be sparse. To induce sparsity, FABIA

ses two type of priors: (i) an independent Laplacian prior, and (ii)

 prior distribution that is non-zero only in region where proto-

ypes are sparse (for further details, see [20] ). This model formu-

ation leads to an analytically intractable likelihood, preventing the

erivation of exact forms for the steps of the EM algorithm. Be-

ause of that, the model parameters are estimated using a varia-

ional EM (VEM) algorithm [20,39] . 

Another important drawback of FABIA is the fact that no in-

ormation about biclusters membership is explicitly encoded in

he model. Thus, the authors of FABIA proposed a post-processing

cheme to retrieve bicluster memberships, which is based on

hresholds that need to be chosen and which critically affect the

etrieved biclusters. 

The approach proposed in this paper, described in the next sec-

ion, overcomes all these drawbacks. 

. Spike and slab biclustering 

This section contains a detailed description of the proposed

odel, which we call spike and slab biclustering (SSBi). We first re-

iew the spike and slab formulation and how it is instantiated to

ield SSBi. 

.1. Spike and slab 

The so-called spike and slab is a probabilistic model that has

een successfully used as a prior for variable selection in linear re-

ression and other problems [28,29] . Formally, the basic spike and

lab prior is a mixture of two zero-mean Gaussians, one with a

ery small variance and the other with large variance. Under this

ensity, both very large and very small (nearly zero) samples have

igh likelihood, something that is not possible under a single Gaus-

ian. An illustration of a spike and slab prior is shown in Fig. 1 . To

enerate a sample from this model, we begin by randomly select-

ng (with a certain probability) one of the two Gaussians, and then

btain a sample from the chosen distribution. 

Formally, the spike and slab prior has the form 

(x | α, τ1 , τ2 ) = αN (x | 0 , τ 2 
1 ) + (1 − α) N (x | 0 , τ 2 

2 ) , (4)

ith τ 2 �τ 1 , parameter 0 ≤α ≤ 1 controls the sparsity degree, and

 (x | μ, σ 2 ) denotes a Gaussian density with mean μ and variance
2 , computed at x . 

Note that (4) is equivalent to the following two-stage model 

(x | h, τ1 , τ2 ) = N (x | 0 , τ 2 
1 ) 

h N (x | 0 , τ 2 
2 ) 

(1 −h ) , (5)

(h | α) = αh (1 − α) 1 −h , (6)

here h ∈ {0, 1} is a (not observed, or latent) binary variable fol-

owing a Bernoulli distribution of parameter α. The mixture in

4) results from marginalizing this model with respect to h . 
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.2. The SSBi model 

There are two main ingredients in the proposed SSBi approach. 

1. The data matrix D is modeled as in FABIA, i.e., with a Gaus-

sian distribution having the product VZ as mean and σ as

standard deviation (representing the approximation noise).

This part provides the “low-rank” assumption, since the ap-

proximation matrix has rank k , at maximum. 

2. The prototype and factor matrices ( i.e., V and Z ) are sparse ,

and we adopt a spike and slab prior to induce that feature. 

The probabilistic graphical model describing the proposed ap-

roach (which is sketched in Fig. 2 ) is formally defined as follows. 

• Given the product VZ , the entries of the data matrix D are i.i.d.

Gaussian with variance σ 2 : 

P(D | V, Z, σ 2 ) = N (D | V Z, σ 2 I) (7) 

= 

n ∏ 

i =1 

m ∏ 

j=1 

N (d i j | (V Z) i j , σ
2 ) . 

• The entries of V follow a spike and slab prior with variances τ 2 
1 

and τ 2 
2 

(such that τ 2 
1 

� τ 2 
2 

), 

P(V | H, τ1 , τ2 ) = 

n ∏ 

i =1 

k ∏ 

j=1 

N (v i j | 0 , τ 2 
1 ) 

h i j N (v i j | 0 , τ 2 
2 ) 

1 −h i j , (8) 

where the binary latent variables in matrix H follow a Bernoulli

distribution of parameter α1 , 

P(H| α1 ) = 

n ∏ 

i =1 

k ∏ 

j=1 

α
h i j 

1 
(1 − α1 ) 

1 −h i j . (9)

• The entries of Z also follow a spike and slab prior, with vari-

ances ρ2 
1 and ρ2 

2 (such that ρ2 
1 � ρ2 

2 ), 

P(Z| G, ρ1 , ρ2 ) = 

k ∏ 

i =1 

m ∏ 

j=1 

N (z i j | 0 , ρ2 
1 ) 

g i j N (z i j | 0 , ρ2 
2 ) 

1 −g i j , (10) 

where the binary latent variables in matrix G follow a Bernoulli

distribution of parameter α2 , 

P(G | α2 ) = 

k ∏ 

i =1 

m ∏ 

j=1 

α
g i j 

2 
(1 − α1 ) 

1 −g i j . (11)

Intuitively α1 and α2 regulate the sparsity degree in each pro-

otype and factor vector or, equivalently, the biclusters dimensions

n rows and columns respectively. The standard deviations τ 1 , τ 2 ,

1 and ρ2 control the value ranges. 

The joint distribution of all the variables and parameters in-

olved in this model can now be written as 

 (D, V, Z, H, G, σ, τ1 , τ2 , ρ1 , ρ2 , α1 , α2 ) 

= P(D | V, Z, σ 2 ) P(V | H, τ1 , τ2 ) P(Z| G, ρ1 , ρ2 ) 

P (H| α1 ) P (G | α2 ) P (σ, τ1 , τ2 , ρ1 , ρ2 , α1 , α2 ) , (12) 

here P(τ1 , τ2 , ρ1 , ρ2 , α1 , α2 ) is a prior on the model parameters.

n this paper, we consider this prior to be flat, that is, we seek

aximum likelihood (ML) estimates thereof. 

Finally, notice that this model may be easily extended to the

ase where each bicluster has its own parameter set (the spike and

lab variances and mixing probability), rather than being assumed

he same for all the biclusters. To keep the notation simpler, we

ill proceed with the simpler version just introduced. 
. Parameter estimation 

In this section, we propose an EM algorithm (herein called SS-

iEM) to estimate all the parameters of the SSBi model proposed

n the previous section. Recall that EM is a classical iterative algo-

ithmic framework to obtain a marginal maximum likelihood es-

imate ˆ θ = arg max θ P(x | θ ) , where the marginal likelihood results

rom marginalizing out a set of missing/hidden/latent variables y,

.e. , P(x | θ ) = 

∫ 
P(x, y | θ ) dy (with summation rather than integra-

ion, if y is discrete) [40] . The algorithm alternates between two

teps: 

E-step: computes the conditional expectation of the complete

log-likelihood, given the current parameter estimate ˆ θ (t) and

the observed data x , the so-called Q-function: 

Q(θ, ˆ θ (t) ) = E y 

[ 
log P(x, y | θ ) | x, ˆ θ (t) 

] 
. 

M-step: updates the parameter estimate by maximizing the Q-

function: 

ˆ θ (t+1) = arg max 
θ

Q(θ, ˆ θ (t) ) . 

Computing the expectation yielding the Q-function may not be

rivial in general, as it may involve intractable integration. This is

he case, e.g. , in the FABIA model [20] . 

In the model herein proposed, the goal is to estimate the model

arameters, τ 1 , τ 2 , ρ1 , ρ2 , α1 , α2 , and σ , given a data matrix D ,

nd assuming a known number of biclusters k . Concerning the un-

bserved V, Z, H , and G , we have the choice of marginalizing them

ut, which can be done via the EM algorithm by treating them as

atent variables, or maximizing with respect to them, which corre-

ponds to seeing them as parameters rather than latent variables. 

Inspired by [41] , and in order to obtain a simpler E-Step, we

reat H and G as hidden variables, but V and Z as unknown param-

ters to be estimated along with τ 1 , τ 2 , ρ1 , ρ2 , α1 , α2 , and σ . We

ould also treat H and G as parameters; however, since these are

atrices of binary variables, maximize with respect to them would

orrespond to taking hard decisions, which may have a strong in-

uence in the whole optimization procedure. On the other hand, V

nd Z are matrices of real-valued entries, thus estimating them has

 smoother/weaker influence in the estimates of the other quanti-

ies. For these reasons, we define V and Z as parameters, and H and

 as hidden variables. 

In what follows, we present the form that the E-step and the

-step take in the proposed SSBi model. 

.1. The E-Step 

To keep the notation more compact, we denote the complete

et of parameters as θ = { V, Z, σ 2 , α , α , τ , τ , ρ , ρ } . Recall that
1 2 1 2 1 2 
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o  

Q

τ  
the joint distribution of all the variables and parameters is given

in (12) . With D observed and H and G as latent, the Q function is

obtained by computing 

Q (θ, ˆ θ (t) ) = E H,G 

[ 
log P(D, H, G, θ ) 

∣∣ ˆ θ (t) , D 

] 
. 

After straightforward, but long and tedious analytic manipula-

tions, and dropping any terms that do not depend on θ , we obtain

the following closed-form expression: 

Q (θ, ˆ θ (t) ) = −nm 

2 

log (σ 2 ) − || D − V Z|| 2 
2 σ 2 

−|| H 

(t) || F 
2 

log (τ 2 
1 ) −

|| 1 − H 

(t) || F 
2 

log (τ 2 
2 ) 

−|| G 

(t) || F 
2 

log (ρ2 
1 ) −

|| 1 − G 

(t) || F 
2 

log (ρ2 
2 ) 

−1 

2 

v T H 

(t) 
v − 1 

2 

z T G 

(t) 
z 

+ 

( nk ∑ 

p=1 

h 

(t) 

p 

)
log 

(
α1 

1 − α1 

)
+ nk log (1 − α1 ) 

+ 

( km ∑ 

j=1 

g 
(t) 
j 

)
log 

(
α2 

1 − α2 

)
+ km log (1 − α2 ) (13)

where v = vec (V ) , z = vec (Z) , 

H 

(t) = diag 

(
h 

(t) 

1 

τ 2 
1 

+ 

1 − h 

(t) 

1 

τ 2 
2 

, . . . , 
h 

(t) 

nk 

τ 2 
1 

+ 

1 − h 

(t) 

nk 

τ 2 
2 

)
, (14)

G 

(t) = diag 

(
g 
(t) 
1 

ρ2 
1 

+ 

1 − g 
(t) 
1 

ρ2 
2 

, . . . , 
g 
(t) 
km 

ρ2 
1 

+ 

1 − h 

(t) 

km 

ρ2 
2 

)
, (15)

and, for p = 1 , . . . , nk, and j = 1 , . . . , km, 

h 

(t) 

p = 

α1 N (v p | 0 , τ 2 
1 ) 

α1 N (v p | 0 , τ 2 
1 
) + (1 − α1 ) N (v p | 0 , τ 2 

2 
) 

(16)

g 
(t) 
j = 

α2 N (z j | 0 , ρ2 
1 ) 

α2 N (z j | 0 , ρ2 
1 
) + (1 − α2 ) N (z j | 0 , ρ2 

2 
) 
. (17)

4.2. The M-Step 

In the M-step, the parameter estimates are updated by maxi-

mizing Q (θ, ˆ θ (t) ) with respect to θ . Examining the several terms

in (13) reveals that there are two types of problems: with respect

to V and Z , we face a low-rank matrix factorization problem, in the

form proposed in [42] ; for the other parameters, closed-form up-

dates can be obtained by equating the corresponding derivatives to

zero. 

4.2.1. Prototypes and factors 

Considering only the terms in Q (θ, ˆ θ (t) ) that depend on V and

Z , we have the following low-rank factorization problem, 

arg min 

V,Z 

[ || D − V Z|| 2 F 

2 σ 2 
+ 

1 

2 

v T H 

(t) 
v + 

1 

2 

z T G 

(t) 
z 

] 
, (18)

which is a generalization of the recently proposed unified model

proposed in [42] . Instead of the plain Frobenius norms used in

[42] , (18) uses weighted Frobenius norms. In fact, notice that

v T Sv (where v = vec (V ) and S is some diagonal matrix) is simply

the square of a weighted version of the Frobenius norm: v T Sv =∑ 

i S ii v 2 i 
. 

Inspired by the optimization method in [42] , we tackle problem

(18) via the augmented Lagrangian method (ALM) [43] , also known
s the method of multipliers (MM) [44,45] . The first step is to re-

rite (18) as an equivalent constrained problem, via a procedure

nown as variable splitting ( i.e. , introducing a new variable C to

ake the place of the low rank product VZ ): 

arg min 

V,Z,C 

[ || D − C|| 2 F 

2 σ 2 
+ 

1 

2 

v T H 

(t) 
v + 

1 

2 

z T G 

(t) 
z 

] 
(19)

.t. C = V Z. 

or computational purposes, it is more convenient to write a fully

ectorized version of this problem; to that end (and as for v =
ec (V ) and z = vec (Z) ), we define c = vec (C) and d = vec (D ) , lead-

ng to 

arg min 

v ,z,c 

[ || d − c|| 2 2 

2 σ 2 
+ 

1 

2 

v T H 

(t) 
v + 

1 

2 

z T G 

(t) 
z 

] 
(20)

.t. c = (I � V ) z, 

here the constraint c = (I � V ) z is equivalent to C = V Z (as is

lear from (1) ). Notice that the constraint can also be written as

 = (Z T � I) v (as is also clear from (1) ). For later use, we define

he two following matrices: 

 (z) = (Z T � I) and B (v ) = (I � V ) . (21)

The augmented Lagrangian for problem (19) is obtained by

dding a quadratic penalty to the Lagrange function of problem

20) , 

 � (v , z, c, y ) = 

|| d − c|| 2 
2 σ 2 

+ 

1 

2 

v T H v + 

1 

2 

z T G z 

+ 

� 

2 

|| B (v ) z − c|| 2 + y T (c − B (v ) z) , (22)

here y is the vector of Lagrange multipliers, ϱ≥ 0 is a parameter,

nd we have written H = H 

(t) 
and G = G 

(t) 
to keep the notation

ighter. Notice that the vector B ( v ) z can also be equivalently writ-

en as A ( z ) v . The ALM proceeds by alternating between minimizing

 � (v , z, c, y ) with respect to the variables v, z, c and updating the

agrange multipliers. 

Unfortunately, L � (v , z, c, y ) cannot be minimized in closed-form

imultaneously with respect to v, z, c , thus we follow the approach

n [42] and solve it by a non-linear block Gauss–Seidel (NLBGS)

ethod, i.e. , we cycle through minimizations with respect to v, z ,

nd c , until some convergence criterion is satisfied, taking advan-

age of the fact that each of these minimizations can be written

n closed form, simply by equating the corresponding gradients

o zero. Letting the iteration counter of NLBGS be s and denoting

 

(s ) = A (z (s ) ) and B (s ) = B (v (s ) ) , the resulting update expressions

re (for s = 1 , 2 , . . . ) 

 

(s +1) = 

(
H + � 

(
A 

(s ) 
)T 

A 

(s ) 
)−1 ((

A 

(s ) 
)T 

y + � 

(
A 

(s ) 
)T 

c (s ) 
)

(23)

 

(s +1) = 

(
G +� 

(
B 

(s +1) 
)T 

B 

(s +1) 
)−1 ((

B 

(s +1) 
)T 

y + � 

(
B 

(s +1) 
)T 

c (s ) 
)

(24)

 

(s +1) = 

d − σ 2 y + �B 

(s +1) z (s +1) 

1 + σ 2 � 

. (25)

In summary, the updated V (t+1) and Z (t+1) , which are the so-

utions of problem (18) , are obtained by cycling through (23), (24) ,

nd (25) , until some convergence criterion is satisfied. 

.2.2. Other parameters 

The update of other parameters ( τ 2 
1 
, τ 2 

2 
, ρ2 

1 
, ρ2 

2 
, σ, α1 , α2 ) are

btained by setting the corresponding partial derivatives of

 (θ, ˆ θ (t) ) to zero, yielding the following expressions: 

2 
1 = 

(
v T H v 

)
/ ‖ H ‖ F (26)
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a

2 Notice that, although the convergence stndard EM is guaranteed with a regu- 

lar exponential family, in this case we would need to have the guarantee that the 

ALM/NLBGS algorithm increases the Q-function. Unfortunately, we have no formal 

guarantee that the ALM/NLBGS satisfies that condition, although in the experiments 

this was also te case. 
3 SSBiEM is available as Matlab function (.m) at https://github.com/emme-di/ 

SSBiEM/ . 
2 
2 = v T (1 − H ) v / ‖ 1 − H ‖ F (27) 

2 
1 = z T G z/ ‖ G ‖ F (28) 

2 
2 = z T (1 − G ) z/ ‖ 1 − G ‖ F (29) 

1 = 

( nk ∑ 

p=1 

h p 

)
/ (nk ) (30) 

2 = 

( nk ∑ 

p=1 

g p 

)
/ (mk ) (31) 

2 = ‖ D − V Z‖ 

2 
F / (nm ) , (32) 

here we have omitted the iteration counter superscript ( · ) ( t ) , to

eep the notation lighter. 

.3. The complete algorithm 

The final complete algorithm obtained by putting together the

-step and M-step derived in the previous subsections is presented

n Algorithm 1 . Some comments and explanations about the algo-

ithm are in order, and are presented in the next few paragraphs. 

lgorithm 1 SSBiEM. 

equire: Data matrix D , number of biclusters k . 

1: Initialize V, Z using TSVD (k ) 

2: Initialize τ 2 
1 
, τ 2 

2 
, ρ2 

1 
, ρ2 

2 
, α1 , α2 , σ

2 (see text) 

3: Initialize v ← vec (V ) and z ← vec (Z) 

4: while EM not converged do 

E-Step : 

5: compute H and G using (14), (15), (16), (17) 

6: B ← I � V , where V ← vec −1 (v ) 
7: A ← Z T � I, where Z ← vec −1 (z) 

8: c ← Bz 

M-Step : 

9: while ALM not converged do 

10: while NLBGS not converged do 

11: Update v according to (23) 

12: B ← I � V , where V ← vec −1 (v ) 
13: Update z according to (24) 

14: A ← Z T � I, where Z ← vec −1 (z) 

15: Update c according to (25) 

16: end while 

17: y ← y + �(c − Bz) 

18: � ← min (�μ, 10 20 ) 

19: end while 

0: update parameters according to (26)–(32) 

21: end while 

2: return V, Z, H , G 

Initialization is carried out in lines 1 and 2, where TSVD( k )

tands for the k-truncated singular value decomposition , which cor-

esponds to computing the SVD of D and keeping only the left and

ight singular vector corresponding to the k largest singular values

this is known to correspond to the best rank k approximation of
 in the Frobenious norm sense). The other parameters are initial-

zed as follows: σ 2 is initialized according to (32) , using the initial

 and Z; α1 and α2 are initialized to 1/2; finally, the spike and slab

ariances τ 2 
1 

and ρ2 
1 

are initialized as the standard deviation of V

nd Z respectively, and τ 2 
2 and ρ2 

2 are set to one tenth of τ 2 
1 and

2 
1 

. Line 5 corresponds to the E-step of the EM algorithm, as ex-

lained in Section 4.1 . Lines 6, 7, and 8 are the initialization of the

LM method described in Section 4.2.1 . The inner loop of the NL-

GS algorithm that implements the update step (with respect to v,

 , and c ) of ALM is implemented in lines 10–16; the update of the

agrange multipliers y is implemented in line 17. As in [42] , the

LM parameter ϱ is increased at each interation, by multiplying it

y μ = 1 . 05 in line 18. Finally the remaining model parameter es-

imates are updated according to (26) –(32) , in line 20, completing

he M-step. 

It is important to stress that the SSBi model and the SSBiEM

lgorithm herein presented can be trivially generalized to the case

here each bicluster has its own spike and slab parameters; in-

tead of a common set τ 2 
1 
, τ 2 

2 
, ρ2 

1 
, ρ2 

2 
, α1 , α2 , each bicluster ( i.e. ,

ach of the k rows of V and columns of Z ) will have its own set of

arameters, resulting in a more complicated (but essentially equiv-

lent) set of update equations. To keep the notation simpler, we

bstained from presenting that more general version of the model

nd algorithm, but it was used in the experiments reported below.

Since the complete algorithm includes 3 nested loops (EM, ALM,

LBGS), it involves three stopping criteria (lines 4, 9, and 10). The

M stopping criterion is based on the relative change of the log-

ikelihood function falling below some threshold. The ALM iter-

tions stop when the relative change in the Lagrange multiplier

ector y is less than a threshold. Finally, the inner NLBGS loop is

topped when the maximum of relative changes in the involved

ariables is below a threshold. 

Of course, the EM algorithm proposed in this paper involves

n approximate M-Step (hence being a generalized EM algorithm

40,46] ), where an iterative procedure minimizes a non-convex

unction, thus there are no formal guarantees of convergence and

he results may depend on the initialization. 2 However, in all the

xperiments discussed in the following section, SSBiEM always

onverged to an effective solution. 

Concerning space complexity, the leading term is O(nk ) (or

(km ) , depending on the maximum between the number of

ows/columns in the original data matrix) which is the space

eeded to store the A ( z ) (or B ( v )) matrix. Notice that, even if the

ize of those matrices grows with the number of rows/columns

f the original data matrix, these matrices are mostly zeros (since

hey involve a Kronecker product with an identity matrix). Thus, an

dequate sparse representation can overcome this possible draw-

ack. Regarding time complexity (for each iteration), the leading

erm is O(n 3 k 3 ) (or O(m 

3 k 3 ) ) which is the worst case scenario

or matrix multiplication/inversion of a O(nk ) (or O(mk ) ) matrix.

n all the experiments presented in the next section, the proposed

M algorithm, on average, converged in ∼ 14.6 iterations, whereas

LGBS and ALM required, respectively, ∼ 3.6 and ∼ 61 iterations. 

. Experimental evaluation 

In this section, the SSBiEM algorithm 

3 is experimentally evalu-

ted on both synthetic and real datasets. 

https://github.com/emme-di/SSBiEM/
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Table 1 

Synthetic Dataset Results. The table compares state-of- 

the-art approaches on the synthetic benchmark dataset 

proposed in [20] . Other approaches results have been 

taken from Hochreiter et al. [20] . 

Method Score References 

SSBi 0.606 

FABIAS 0.564 [20] 

FABIA 0.478 [20] 

MFSC 0.057 [48] 

plaid_ss 0.045 [49] 

plaid_ms 0.072 [49] 

plaid_ms_5 0.083 [49] 

ISA_1 0.333 [50] 

ISA_2 0.299 [50] 

ISA_3 0.188 [50] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Breast Tumor Dataset Results. The table shows the re- 

sults on the real Breast Tumor gene expression dataset 

taken from [7] . The GO results for the other approaches 

have been taken from Mukhopadhyay et al. [7] . 

Method Score (%) References 

FABIA 55 [20] 

ISA 63 [50] 

Hierarc. 70 [56] 

SAMBA 73 [23] 

FLOC 85 [12] 

OOB 87.5 [55] 

SSBi 87.5 
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4 https://cs.adelaide.edu.au/ ∼hwong/doku.php?id=data . 
5.1. Synthetic benchmark 

To obtain a fair comparison and a clear perspective on the

performance of SSBi with respect to the FABIA approach, we

carry out experiments on the synthetic benchmark datasets pro-

posed by Hochreiter et al [20] , and adopt their evaluation cri-

teria. The dataset is composed by 100 matrices of dimension

10 0 0 × 100, simulating real world gene expression datasets. Each

matrix contains 10 implanted biclusters, generated with a multi-

plicative structure, where the positions and dimensions were ran-

domly chosen, thus we run SSBiEM with k = 10 . For a given set of

true biclusters T and a set of retrieved biclusters B , the accuracy of

B with the following three steps [20] : 

1. compute the Jaccard similarity coefficient J ( t, b ) of all the

pairs ( t, b ) ∈ T × B ; notice that J ( t, b ) ∈ [0, 1], with J(t, b) = 0 ,

if t ∩ b = ∅ , and J(t, b) = 1 , if t = b; 

2. via the Kuhn–Munkres algorithm (a.k.a. the Hungarian algo-

rithm [47] ), assign each bicluster in T to one in B , by max-

imizing the sum of the Jaccard similarities of the assigned

pairs; 

3. divide the resulting assignment value by max {| T |, | B |}; the

final result is a quantity in [0, 1], which is equal to 1 if and

only if B = T . 

The results are shown in Table 1 , where we compared SSBiEM

with two versions of FABIA and with other state-of-the-art meth-

ods (the results of FABIA and of the other methods are those re-

ported in [20] ). SSBiEM outperforms all the other methods on this

dataset, proving its effectiveness. 

5.2. Real datasets 

The SSBiEM algorithm was also compared with other state-of-

the-art methods on two real dataset. The first one is a classical

dataset used in biclustering experiments: the Breast Tumor mi-

croarray gene expression dataset [7] . Since FABIA is the closest for-

mulation to SSBi, we decided to test SSBi on a dataset where FABIA

does not perform well, to assess if the novelties introduced in SSBi

with respect to FABIA provide a significant improvement. On the

other hand, FABIA has been recently applied with success in the

multiple structure recovery (MSR) task [51] ; thus, we also decided

to assess how SSBiEM perfors on this task, and if it competitive

with FABIA. 

5.2.1. Gene expression dataset 

Following a standard approach in the biclustering literature, the

performance on gene expression matrices is assessed through a bi-

ological validation, by analyzing Gene Onthology (GO) terms [2,7] .

Such validation indicates how significantly the set of genes be-

longing to a retrieved bicluster is enriched by a GO category, as
rovided by GO Consortium [7,52] . The analysis of these terms

s performed automatically using the FuncAssociate web-server

 http://llama.mshri.on.ca/funcassociate/ ), which provides a score, at

 given significance level, that corresponds to the percentage of

ene sets that are enriched with respect to at least one GO an-

otation. In our case we use this procedure setting the significance

evel to 5%. 

As also commonly proposed in the literature [53–55] , we ap-

lied a variance-based gene selection procedure to reduce the

ataset dimensionality, keeping 2500 genes. For a fair comparison,

n [7] the authors selected the same number of biclusters for each

ethod (40). For our algorithm, since the background of the data

atrix is not zero, we run the SSBiEM algorithm with the number

f biclusters set to 41. This provides a bicluster that accounts for

he background noise of the data matrix, containing all the rows

nd columns thereof. In the end, that background bicluster is dis-

arded to obtain the pool of 40 biclusters needed to assess the

ethod. 

The results are shown in Table 2 (the scores of the other meth-

ds are those reported in [7] ); it is clear that the proposed SSBi

pproach compares favorably with the other state-of-the-art meth-

ds. 

.2.2. Multiple structure recovery dataset 

Multiple structure recovery (MSR) concerns the extraction of

ultiple models from noisy or outlier-contaminated data. MSR is

n important and challenging problem, which emerges in many

omputer vision applications [57–59] . In general, an instance of an

SR problem is represented by a preference matrix containing, in

ne dimension, the points under analysis, and in the other, the hy-

otheses/structures to which points should belong. The entry ( i, j )

n this matrix indicates how well a certain point i is represented

y the given hypothesis/structure j . 

The Adelaide dataset, where FABIA has been recently applied,

nvolves two type of MSR problems: motion and plane estimation.

iven two different images of the same scene, where several ob-

ects move independently, motion segmentation aims at recover-

ng subsets of point matches that undergo the same motion. Given

wo uncalibrated views of a scene, plane segmentation consists in

etrieving the multi-planar structures by fitting homographies to

oint correspondences. The AdelaideRMF dataset 4 is composed of

8 image pairs (19 for motion segmentation and 19 for plane seg-

entation), with matching points contaminated by strong outliers.

he ground-truth segmentations are also available. As in [51,60] ,

e adopt the misclassification errors to assess the results. For fair

omparison, we adopt the same preference matrices fed to FABIA,

hich were generated as presented in [61] . 

Table 3 presents the results. We report three different results for

ABIA; we run the algorithm varying the parameters in the sug-

http://llama.mshri.on.ca/funcassociate/
https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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Table 3 

Misclassification error (ME %) for motion segmentation (above) and planar segmentation (below). k is 

the number of models and % out is the percentage of outliers. 

k %out FABIA best FABIA best set FABIA automatic SSBiEM 

biscuitbookbox 3 37.21 3.86 4.17 62.55 8.65 

breadcartoychips 4 35.20 4.2 7.76 65.40 17.89 

breadcubechips 3 35.22 0.87 0.87 64.78 7.74 

breadtoycar 3 34.15 0.60 0.72 66.27 5.90 

carchipscube 3 36.59 1.52 1.70 63.64 8.36 

cubebreadtoychips 4 28.03 1.07 9.79 73.09 11.07 

dinobooks 3 44.54 9.72 10.44 56.94 20.83 

toycubecar 3 36.36 9.50 25.70 64.00 10.80 

biscuit 1 57.68 0 19.27 44.24 2.00 

biscuitbook 2 47.51 1.32 1.58 52.49 3.93 

boardgame 1 42.48 8.96 9.10 59.50 19.64 

book 1 44.32 0 29.20 56.15 1.50 

breadcube 2 32.19 19.42 20.66 68.18 5.12 

breadtoy 2 37.41 19.62 19.65 63.19 0.97 

cube 1 69.49 1.66 7.22 32.12 5.30 

cubetoy 2 41.42 2.21 7.87 60.24 3.13 

game 1 73.48 0 0.34 27.04 5.75 

gamebiscuit 2 51.54 2.44 2.56 49.09 5.98 

cubechips 2 51.62 0.53 0.85 49.65 4.30 

mean 4.61 9.45 49.23 7.84 

median 1.66 7.76 60.24 5.90 

k %out FABIA best FABIA best set FABIA automatic SSBiEM 

unionhouse 5 18.78 21.54 38.01 23.49 23.49 

bonython 1 75.13 6.82 8.69 26.26 17.47 

physics 1 46.60 0.00 32.26 54.72 10.38 

elderhalla 2 60.75 3.04 4.77 39.25 30.37 

ladysymon 2 33.48 11.81 41.43 67.51 22.36 

library 2 56.13 20.47 27.81 44.65 44.65 

nese 2 30.29 4.92 14.80 66.54 2.91 

sene 2 44.49 2.20 4.96 52.80 5.20 

napiera 2 64.73 21.85 35.36 37.09 44.04 

hartley 2 62.22 23.59 40.81 38.44 42.06 

oldclassicswing 2 32.23 7.92 24.22 67.55 13.25 

barrsmith 2 69.79 29.88 54.69 31.12 64.81 

neem 3 37.83 11.20 23.49 63.49 38.42 

elderhallb 3 49.80 18.63 34.27 52.16 38.67 

napierb 3 37.13 36.68 39.54 60.62 40.62 

johnsona 4 21.25 17.96 19.89 79.09 25.42 

johnsonb 7 12.02 24.50 43.57 87.98 48.94 

unihouse 5 18.78 15.76 26.07 83.45 29.02 

bonhall 6 6.43 24.02 53.03 93.82 53.09 

mean 15.94 29.88 50.93 31.33 

median 17.96 32.26 54.72 30.37 

g  

s  

o  
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t  

v  

s  

l  
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p
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n  

s  

t  

m  

t  

i  

c  

i  

p  

t  

f  

m  

t  

b  

F  

a  

o  

o

ested range as in [20,51] , and on the basis of the considered re-

ults the performances can vary significantly. The fourth columns

f Table 3 ( FABIA best ) shows the results provided in [51] with

ABIA: in this case we consider for each different matrix the best

erformance with respect to the misclassification error. The results

n the fifth column ( FABIA best set ), which are slightly worse than

he previous, are obtained by selecting the best set of parameters

alues minimizing the misclassification error (one for the motion

egmentation and one for the plane estimation). The second-to-

ast column ( FABIA automatic ) shows the misclassification perfor-

ances where biclusters have been selected by adopting the qual-

ty measures provided by the FABIA algorithm. In fact, FABIA pro-

ides a score for each bicluster retrieved indicating its amount of

nformation. To obtain the FABIA automatic column we kept, for

ach matrix, the set of biclusters with the highest average of such

cores. Finally the last columns of the table represent the results

btained with the SSBiEM approach. The table show that FABIA

erformances significantly vary with respect to the chosen set of

arameters. 

In contrast, SSBiEM automatically learns all these parameters

irectly from the data matrix. Table 3 shows that our approach out-

erforms FABIA automatic and favourably compares with FABIA best

et columns, which we think represent a fair comparison. Although

ABIA best retrieves better results, in this case we would set FABIA
arameters manually for every different matrix, whereas SSBiEM

omputes them automatically. 

. Conclusion and discussion 

In this paper, we proposed spike and slab biclustering (SSBi), a

ovel probabilistic generative model for biclustering based on a

parse low-rank matrix factorization perspective. In more detail,

he method involves the factorization of the data matrix into two

atrices containing information about the underlying biclusters;

hese matrices are encouraged to be sparse, modeling the fact that,

n most applications, the data matrix is much bigger than the bi-

lusters. The sparsity-inducing nature of the model is embodied

n a spike and slab formulation. To estimate the parameters of

roposed model, we proposed an instance of the EM algorithm,

ermed SSBiEM. At each iteration of SSBiEM, a low-rank matrix

actorization problem is solved, exploiting a recently proposed for-

ulation and augmented Lagrangian algorithm. An important fea-

ure of the SSBi approach is that it provides information about the

icluster membership, without the need for any post-processing.

inally, the proposed method was compared with state-of-the-art

pproaches, on both synthetic and real datasets, and the results

btained by SSBi compare favorably with those of the other meth-

ds. 
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