
Behavioural biometrics using electricity load profiles

M. Bicego, F. Recchia, A. Farinelli
University of Verona

Italy

S. D. Ramchurn
University of Southampton

UK

E. Grosso
University of Sassari

Italy

Abstract—Modelling behavioural biometric patterns is a key
issue for modern user centric applications, aimed at better mon-
itoring users’ activities, understanding their habits and detecting
their identity. Following this trend, this paper investigates whether
the electrical energy consumption of a user can be a distinctive
behavioural biometric trait. In particular we analyse daily and
weekly load profiles showing that they are closely related to
the identity of the users. Hence, we believe that this level of
analysis can open interesting application scenarios in the field of
energy management and it provides a good working framework
for the continuous development of smart environments with
demonstrable benefits on real-world implementations.

I. INTRODUCTION

Biometric technology [1] is a powerful tool to identify individ-
uals upon some distinctive physiological characteristics, such
as face, fingerprints or iris patterns [2], [3], [4] or even EEG
signals, footprints, ears, and many others [5], [6].

Recently, a number of biometric approaches have gone
beyond the typical physiological characteristics of the users
and consider also behavioral aspects, such as gait [7], signature
[8], or even HCI-related behaviors [9], such as keystrokes,
mouse dynamics [10], [11] or Internet browsing histories [12].
All these approaches fall under the context of behavioral
biometrics [9] and provide key tools to build accurate models
of the users. Such models are particularly important when
considering the growing popularity of ubiquitous, context-
aware computing and user-centric application developments,
which aim at improving and personalizing existing services to
specific users’ needs [13].

Against this background, in this paper, we analyse and
assess the suitability of a novel trait: the electrical energy
consumption profile of a user (or load profile), i.e., the users’
consumption of electrical energy over a given period. In
fact, the recent large scale deployment of smart metering
infrastructure coupled with the energy market liberalization
in many countries around the world, result in a increasing
availability of fine-grained electrical consumption data and in
an increasing interest in analysing users’ load profiles. Con-
sequently, analysts have begun to use these data with the aim
of discovering and categorizing groups of users, to optimize
energy allocation and purchasing, or to help retailers designing
new pricing models for implementing more accurate demand
and supply profiles[14], [15], [16], [17]. For example, in [14]
authors propose a framework to characterize users based on
their energy consumption so as to provide decision support
tools for defining adequate market strategies. In this context,
users’ load profile are typically represented by a set of features
called load shape indexes (e.g., Load Factor, Lunch Impact and
Night Impact) [14], [16]. In contrast, other approaches [15],

[17] characterize the load profile by considering each profile
as time series of load measurements, and employ different
unsupervised learning techniques to cluster data (such as Self
Organizing Maps, K-means and Hidden Markov Models).

Here, we take a different perspective with respect to such
previous work, and investigate whether load profiles can be
considered a distinctive biometric trait, hence allowing the
identification of a specific user. To the best of our knowledge,
this has never been investigated in the literature, and this paper
is a first step in this direction.

In more detail, our goal is to identify a specific user (i.e., an
electricity meter) among several users, considering the users’
load profiles (i.e., a series of consumption data, acquired at
fixed interval during a day), over a given period of time (i.e.,
one month of data in our case). To do so, we investigate
different representations for the load profiles, including raw
measurements, frequency characterizations and typical load
shape indexes [14], [16]. Based on these representations we
experiment two classification approaches. The former, based
on the classical Nearest Neighbor rule, assigns an unknown
object to the class of the nearest neighbor point; the second is
a classical Bayesian scheme, based on Hidden Markov Models
(HMM – [18]), a probabilistic tool widely used to characterize
sequential data, which has been recently applied also for load
profiles grouping (in particular to characterise relationships
between electricity consumption and consumers’ preferences
or behaviors – e.g., lifestyle – [17]).

We empirically evaluate our approach on a database of real
energy consumption data acquired in the UK over a single
continuous month, considering up to 400 meters. Our results
suggest that the energy load profile is indeed a promising
behavioural trait: in a problem with 100 users, our best
classification scheme can correctly identify a given user within
the first 20 answers of the system in 89.36% of the cases.
Such rate significantly increases if we aggregate more days
to characterize a given user, reaching 94.5% when using 7
days. This is even more interesting considering that a random
classifier would have a recognition rate of 20% in such setting.
Finally, we also assess the scalability of the method by showing
that the performances of our classification schemes do not
degrade when increasing the number of users (up to 400 in
our experiments).

Notice that the data acquired by a single meter can incor-
porate the presence of more people (i.e., all the inhabitants of
the households that the meter is monitoring). Hence, we are
not strictly identifying the behaviour of one specific person (as
in most biometric approaches), but rather the behaviour of a
group of people. Nevertheless, this is a natural consequence
of the peculiar type of data that we are considering (i.e.,
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load profiles) which naturally leads to a mapping between
a meter and a user. In fact, this mapping has been used in
previous work on energy profile segmentation [17] and is the
typical mapping performed by utility companies, which are not
interested in the composition of the group that is served by a
specific meter. Moreover, we believe that this level of analysis
(i.e., considering a group of people living together as a single
user) leads to interesting application scenarios as it allows to
track and monitor the coherence of the behaviours of a user:
if we can accurately characterize the behaviour of a group of
inhabitants based on their energy consumption, we can detect
drastic changes in such behaviours (e.g., due to a change in
the group of people living in the households).

The rest of the paper is organized as follows: Section II
describes our methodology for user recognition, detailing the
different types of representation and the classification schemes
we adopt. Section III discusses our empirical evaluation of
the method and Section IV concludes the paper providing
suggestions and directions for future investigations.

II. PROPOSED METHODOLOGY

In this section we detail our methodology for user identifi-
cation. The starting point is the “electrical load profile”, which
represents the energy consumption of each user throughout a
day (every half hour in our experimental setting). Hence each
profile is a vector of T elements (where T = 48 in our case),
see Figure 1 for a visual representation of a series of load
profiles.

Such profile can be characterized in different ways. In par-
ticular here we employed three representations based on time,
frequency and load shape indexes. Given these representations,
we then derive two different classification schemes, one based
on the nearest neighbor rule and the other based on the HMM
plus the Bayesian rule. In this last case, since HMM are models
usable for sequential data, we restricted their employment to
the sole time representation.

A. Load profile representations

Time representation. We use the raw signal, namely the T -
dimensional vector as given by the acquisition process. This
is a rather common choice in energy profile clustering –
e.g. [15], [17]. We also applied a small level of Gaussian
smoothing, in order to remove some fluctuations due to the
sampling intervals. We decided not to normalize the signals
(e.g., with z-score normalization), in order to maintain all
possible information on the energy of the signal (e.g., the
absolute scale of the consumption profile) which might be
useful to differentiate between different users1.

Frequency representation. We apply a Fast Fourier Trans-
form to the original signal (smoothed or not), in order to
investigate whether the frequential content of the signal may be
useful to discriminate between users. After a careful evaluation
of the frequency content of the profiles, only the first 10
coefficients have been retained.

1Actually, we empirically evaluated different types of normalization, in-
cluding the z-score normalization; however in all our experiments (not shown
here), the normalization schemes we tried decreased the performance of the
classification approach.

Normalized load shape indexes. These features represent a
classical set of values directly extracted from the load profile:
they have been shown to be adequate to characterize groups of
users [14], [19]; since they are widely used in many studies,
we decided to include them in our work, even if in our case
the task is different – i.e. classification rather than clustering.
In particular, in our work we employed the selection made in
[14], where the following three indexes were used:

1) Load Factor:

LF =
Pav,day

Pmax,day

(1)

where Pav,day is the average of the profile during the
whole day, whereas Pmax,day represents the highest
peak.

2) Night Impact:

NI =
1

3

Pav,night

Pav,day

(2)

where Pav,night is the average of the profile during
the night, assumed to last for 8 hours from 11pm to
7am.

3) Lunch Impact:

LI =
1

8

Pav,lunch

Pav,day

(3)

where Pav,lunch is the average of the profile during
the lunch time, assumed to last for 3 hours from
11.30am to 2.30pm.

Such features are computed for every profile, each one thus
represented as a 3 dimensional feature vector.

B. Classification

The main goal of our study is to assess the potentials of
the electrical load profile as a biometric trait for a given user.
Specifically, in this first study, we aim at assessing identifica-
tion performances (i.e. recognition), rather than authentication
(i.e. verification). Therefore, we need to design a classification
scheme, which, given an unknown profile, is able to assign it
to one over a set of predetermined users. While the relevant
literature offers a wide selection of classification schemes,
since our primary focus is to investigate the use of load
profiles as a biometric trait, we decided to use two basic, well
known approaches for classification: the former is based on
the classical Nearest Neighbor rule, which assigns an unknown
object to the class of the nearest neighbor point. The latter is a
classical Bayesian scheme, based on Hidden Markov Models
(HMM – [18]): in the training phase, a single HMM is trained
for every user, using all its training profiles; in the classification
case, an unknown profile is assigned to the user whose HMM
shows the highest likelihood on such profile.

In what follows we further describe such classification
schemes and their application for load profile classification.

Nearest Neighbor Scheme. As described before, the classifier
assigns an object to the class of its nearest neighbor; the
definition of a proper proximity measure (either similarity
or dissimilarity) is therefore crucial. In the following we
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will introduce the ones used in our study, together with the
motivations.

The first two distances that we employ are the L1 and
the L2 norms (i.e. the Manhattan and the Euclidean distances,
respectively). These are very common distances, widely ap-
plied in the Pattern Recognition community, and also specif-
ically in the energy domains (as basis for clustering, as in
[15]). Given two profile representations x = [x1, ..., xn] and
y = [y1, ..., yn], they are defined as follows:

L1 norm (Manhattan distance):

L1(x,y) =
∑
i

|xi − yi| (4)

L2 norm (Euclidean distance):

L2(x,y) =

√∑
i

(xi − yi)2 (5)

While these two distances make sense for all the represen-
tations, we also investigate some other measures specifically
designed for the time signal representation, based on the
concept of signal correlation [20], a standard and well applied
method to compare time series. The first is the standard
Zero Lag Cross Correlation, which, given two profiles p =
p1, ..., pT and q = q1, ..., qT , is defined as:

Zero Lag Cross Correlation:

CC0(p,q) =

∑
i(pi · qi)

‖p‖‖q‖
(6)

The second class of correlation measures is based on the
assumption that activities for a user in different days may
not be completely overlapped, but there can be a small lag
(consider for example when people have dinner). In order
to capture this behaviour, we compute the cross correlation
measure by allowing 1 and 2 time steps of lag, retaining at
the end the maximum of the correlations. This reasoning leads
to the following two measures:

Max (1-lag) Cross Correlation:

CC1(p,q) = max
m∈{−1,0,1}

∑
i(pi · (qi +m))

‖p‖‖q‖
(7)

Max (2-lag) Cross Correlation:

CC2(p,q) = max
m∈{−2,−1,0,1,2}

∑
i(pi · (qi +m))

‖p‖‖q‖
(8)

Finally, we also tried to model the fact the lags displace-
ment in the daily activities can be differently displaced over
the day: in order to capture this behaviour we repeated the
computation of the Max 2-lag cross correlation (as defined
before) in small overlapping windows of 4 hours (with an
overlap of two hours) – this allows to best align different parts
of the day – taking at the end the mean or the max value. In
formula:

Mean Windows Max (2-lag) Cross Correlation:

CCMeanW2(p,q) =
1

z

z∑
i=1

CC2(wi(p),wi(q)) (9)

Max Windows Max (2-lag) Cross Correlation:

CCMaxW2(p,q) = max
i∈{1,...,z}

CC2(wi(p),wi(q)) (10)

where w1(·), ...,wz(·) are all possible overlapped sub-
windows lasting 4 hours extracted for a given profile.

Hidden Markov Model-based Bayesian classification. This
scheme is a classical Bayesian scheme, based on Hidden
Markov Models, a probabilistic approach whose usefulness has
been successfully applied in many different pattern recognition
scenarios. More in detail, a discrete-time first order HMM [18]
is a probabilistic model that describes a stochastic sequence2

O = (O1, O2, . . . , OT ) as being an indirect observation
of a hidden Markovian random sequence of states Q =
(Q1, Q2, . . . , QT ), where for t = 1, ..., T , Qt ∈ {1, 2, . . . , N}
(the set of states). Each state has an associated probability
function that specifies the probability of observing each possi-
ble symbol, given the state. A HMM is thus fully specified by
a set of parameters λ = {A,B,π} where A = (aij) is the
transition matrix, i.e., aij = P (Qt=j |Qt−1= i); π = (πi) is
the initial state probability distribution, i.e., πi = P (Q1 = i),
and B = (bi) is the set of emission probability functions. In
our case, since the observations are continuous, we assume that
each bi is a Gaussian probability density function (leading to
the so called Continuous Gaussian HMM).

The training of the model, given a set of sequences {o(i)},
is usually performed using the standard Baum-Welch re-
estimation technique [18], which determines the parameters
(A,B,π) that maximize the probability P ({o(i)}|λ). The
evaluation step, i.e. the computation of the log probability
logP (o|λ), given a model λ and a sequence o to be evaluated,
is performed using the forward-backward procedure [18].

Given a C-class problem, the standard classification
scheme (i.e. the Bayes rule) is realized in the following way:
for every class c, a HMM λc is trained, using only the training
sequences belonging to such class – obtaining at the end the set
of C models λ1, ...,λC . Then, in the testing phase, an unknown
sequence o = (o1, ..., oT ) is assigned to the class whose model
shows the highest likelihood (assigning to each class the same
prior probability), namely the label �(o) is determined as

�(o) = argmax
c

logP (o|λc) (11)

III. EXPERIMENTAL EVALUATION

In this section we describe our experimental evaluation.
First, we introduce the experimental details. Then, a large set
of experiments are presented, analysing the different represen-
tations and the different classification schemes. Subsequently,
an analysis of the scaling capabilities of the methods will
be described. A final experiment, aimed at investigating the
possible aggregation of more days, is finally proposed.

2We adopt the common convention of writing stochastic variables with
upper case and realizations thereof in lower case.
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A. Empirical details

The dataset is derived from data typically employed in the
collective energy purchasing domain, where energy consumers
form groups to purchase energy at better prices [21]. In more
detail, a profile records the energy consumption of a household
at fixed intervals (every half hour in our case) collected, over
a month in 2009, from different households in UK. Please
note that all profiles are recorded during the same month,
in order to avoid the possible presence of discriminative
information derived from seasonality and not from person-
specific characteristics. Examples of profiles (from different
users and relative to different days) are displayed in Fig. 1.

Fig. 1. Some profiles: every column contains profiles from a different user;
every row contains a different day.

In all experiments, in order to maintain separated training
and testing sets, we used the first 14 days for training the
system, testing it with the remaining 15 days. Instead of simply
computing classification errors, we computed the more expres-
sive Cumulative Match Curve (CMC), a common performance
measure in the field of biometrics [22]: given a test profile,
we compute its proximity to all the users. The curve then
tells the rate at which the correct user is found within the
first k matches (namely within the fist k nearest users), with
all possible k spanned on the x-axis. An useful measure that
can be extracted from the CMC is the normalized Area Under
the Curve (nAUC), which, as in the ROC curve, represents an
aggregate measure able to express how good is the recognition
rate (the higher the better).

In all the experiments HMM training has been performed
using the standard Baum-Welch procedure, stopping after
likelihood convergence. Initialization has been carried out, as
in many applications involving Continuous Gaussian HMM,
with a clustering based on Gaussian mixture models. The
number of states, which represents the free parameter of the
model, has been set in an automatic way starting only from
the training data, following the procedure described in [23].

B. Experiment 1: different variants of the scheme

As a first set of experiments we analysed a dataset con-
taining 100 different users, investigating the different repre-
sentations and the different variants of the two classification
schemes. Here our main goal is to investigate the best con-
figuration for both schemes, to be used in the subsequent

TABLE I. RESULTS ON THE DATASET WITH 100 SUBJECTS

Nearest Neighbor Classifiers

Representation Classifier norm AUC

Time Rep. L1 + Nearest Neighbor 0.855

Time Rep. L2 + Nearest Neighbor 0.798

Time Rep. CC0 + Nearest Neighbor 0.725

Time Rep. CC1 + Nearest Neighbor 0.752

Time Rep. CC2 + Nearest Neighbor 0.755

Time Rep. CCMeanW2 + Nearest Neighbor 0.780

Time Rep. CCMaxW2 + Nearest Neighbor 0.699

Smoothed Time Rep. L1 + Nearest Neighbor 0.868

Smoothed Time Rep. L2 + Nearest Neighbor 0.839

Smoothed Time Rep. CC0+ Nearest Neighbor 0.759

Smoothed Time Rep. CC1+ Nearest Neighbor 0.766

Smoothed Time Rep. CC2+ Nearest Neighbor 0.763

Smoothed Time Rep. CCMeanW2+ Nearest Neighbor 0.781

Smoothed Time Rep. CCMaxW2+ Nearest Neighbor 0.749

Frequency Rep. L1 + Nearest Neighbor 0.848

Frequency Rep. L2 + Nearest Neighbor 0.845

Load Shape Indexes L1 + Nearest Neighbor 0.722

Load Shape Indexes L2 + Nearest Neighbor 0.722

HMM based Bayesian classifiers

Representation Classifier norm AUC

Time Rep. HMM + Bayes Rule 0.927

Smoothed Time Rep. HMM + Bayes Rule 0.905

experiments. As for the smoothing of the raw load profile
(when used), we employ a simple Gaussian filtering, with
sigma varying in the range [0.6 - 2.2]. We compute the
CMC curves for all the parametrizations and all classification
schemes, reporting the normalized Area Under the Curve
(nAUC) in table I. As a general comment, we can observe
that the system works reasonably well, reaching in the best
case an nAUC of 0.927 – quite high nAUC if we consider that
we are dealing with a behavioral biometrical trait. Concerning
the two classification approaches, it seems evident that the
Bayesian scheme outperforms the nearest neighbor rule: in this
case, the learning phase present in the HMM scheme seems to
be essential to capture and model the unique characteristics of
every user. Nonetheless, also the NN rule works quite well,
especially with L1 and L2 measures for the Time and the
Frequency representations. On the contrary, the correlation
based measures do not work as well as the others: probably the
flexibility introduced by the different versions captures more
the variations between classes rather than the intraclass one.

Concerning representations, we have to notice that Load
Shape Indexes represent a poor choice: it seems evident that
this representation, which was adequate for clustering and
general data-mining [14], [19], is not very informative when
trying to identify the differences between users. As a final
remark, it is important to observe that smoothing the signal
is almost always beneficial in all the versions of the Nearest
Neighbor rule, whereas it is not for the HMM scheme.

C. Experiment 2: scalability

In this section we tried to investigate whether the proposed
strategies scale well with the number of users, i.e. if the
performances do not significantly degrade when increasing
the dataset size. In particular we selected from the results
of the previous experiment the best configurations for both
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TABLE II. RESULTS ON THE DATASET WITH INCREASING NUMBER OF

SUBJECTS.

Classes Nearest Neighbor Scheme HMM Bayesian Scheme

100 0.868 0.927

200 0.866 0.931

300 0.860 0.932

400 0.860 0.929

TABLE III. RESULTS ON THE DATASET WITH INCREASING NUMBER OF

DAYS CONSIDERED FOR EVERY SUBJECT

Days Scheme 100 classes 200 classes

Aver. Concat. Aver. Concat.

1 L1 + NN 0.868 0.868 0.866 0.866

1 HMM 0.927 0.927 0.931 0.931

2 L1 + NN 0.893 0.876 0.888 0.872

2 HMM-Bayes 0.906 0.945 0.905 0.948

3 L1 + NN 0.904 0.872 0.901 0.869

3 HMM-Bayes 0.901 0.953 0.905 0.960

4 L1 + NN 0.921 0.886 0.915 0.878

4 HMM-Bayes 0.893 0.957 0.897 0.965

5 L1 + NN 0.927 0.875 0.920 0.866

5 HMM-Bayes 0.905 0.960 0.902 0.967

6 L1 + NN 0.939 0.872 0.937 0.875

6 HMM-Bayes 0.900 0.971 0.904 0.972

7 L1 + NN 0.941 0.892 0.933 0.877

7 HMM-Bayes 0.910 0.963 0.901 0.970

the classification schemes: L1 norm on the Smoothed Time
Representation (for the nearest neighbor scheme) and the
HMM scheme on the original Time Representation. Then we
tested the two configurations with 200, 300 and 400 subjects.
Results are reported in Table II. For sake of clarity we also
reported the results obtained with 100 subjects. As can be
noted from the table, the performance of the classification
schemes do not vary significantly when increasing the database
size.

D. Experiment 3: enlarging the biometric trait

The main goal for this experiment is to investigate the
possibility of aggregating more days to characterize every
user: in particular we perform experiments by considering as
a biometrical trait X consecutive days (with X ranging from 2
to 7). The rationale behind this is that energy consumption can
significantly vary across different days of the week (e.g., week-
days or week-ends). Given X days, we consider two simple
ways to aggregate them: averaging them, thus obtaining again
a T-dimensional profile, and concatenating them, obtaining a
X times T long load profile. In the first case we are removing
some noise / attenuating intraclass variation, while in the sec-
ond case we can consider a richer set of (possibly noisy) data.
To run the experiments we used the dataset with 100 subjects
and the one with 200 subjects selecting, as in the previous
section, the best configuration as suggested by the previous
experiments: the nearest neighbor scheme with the L1 norm on
the Smoothed Time Representation and the HMM scheme on
the original Time Representation. Results are reported in Table
III (for sake of clarity we also reported results with 1 day). As
we can see, there is a beneficial impact in the performances
obtained when aggregating more days. In particular, with 100
users, the nAUC of Nearest Neighbor scheme increases from

0.868 to 0.941, whereas it increases from 0.927 to 0.971
for the HMM-based scheme. In the former case, the best
improvement is obtained while averaging different signals,
whereas in the second case the best improvement is obtained
while concatenating. This is somehow expected: the NN rule
strongly depends on the goodness of single instances (since
the comparison is pairwise), which is possibly enriched and
improved via the averaging operation – some instance specific
noise may be removed; the HMM-scheme, on the contrary,
is able to build a model by simultaneously considering all
the training sequences, thus being less sensitive to the noise
of the single profile. On the contrary, such scheme can suffer
from the lower cardinality of the training set which is obtained
when averaging: this is confirmed by the experiments, where
the concatenation approach largely outperforms the averaging
scheme.

To provide a clearer idea of the performances of the
proposed approach, we reported in Fig. 2 the CMC curves
for the different configurations, using the averaging scheme
and the L1 distance for the Nearest Neighbor rule and the
concatenation scheme for the HMM-based approach. From the
figure it is possible to note the full potentials of the proposed
trait: using just one day, in the 89.4% of the cases we can
correctly identify a given subject in the first 20 answers of the
HMM-based rule. Such rate increases if we aggregate more
days, in particular reaching 94.5% when using 7 days. This
is even more interesting considering that a random classifier
would have a recognition rate of 0.2. The same interesting
behaviour can be observed for the experiment with 200 classes
(here the random classifier would have a recognition rate of
0.1).

IV. CONCLUSIONS AND FUTURE WORK

This paper investigated the possibility of identifying users
by monitoring their load profiles. The analysis was carried
out over a significant data set of 400 users, by applying
different types of representation and two different classification
schemes: one based on the Nearest Neighbour rule with
different proximity measures and one based on Hidden Markov
Models. The results clearly show that load profiles can be
considered as a distinctive biometric behavioural trait3. In our
view, this is a very encouraging result that opens up several
possibilities for further investigations of such novel distinctive
trait, not only in biometrics but more in general for user centric
applications.
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