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Abstract. In this paper an empirical evaluation of different generative
scores for expression microarray data classification is proposed. Score
spaces represent a quite recent trend in the machine learning commu-
nity, taking the best of both generative and discriminative classification
paradigms. The scores are extracted from topic models, a class of highly
interpretable probabilistic tools whose utility in the microarray classifi-
cation context has been recently assessed. The experimental evaluation,
performed on 3 literature datasets and with 7 score spaces, demonstrates
the viability of the proposed scheme and, for the first time, it compares
pros and cons of each space.

1 Introduction

Microarrays represent a widely employed tool in molecular biology and genet-
ics, allowing DNA and/or RNA analysis to be carried out in microminiatur-
ized highly parallel formats. DNA microarray applications are usually directed
at gene expression analysis that usually implies to process huge amounts of
data. Therefore, fast and robust methodologies are required to face diverse
microarray analysis problems such as noise suppression [7], segmentation of
spots/background, quantification of the spots, grid matching, clustering or clas-
sification [9, 17, 29, 31].

In this paper we focus on this last class of problems, where many approaches
have been presented in the literature in the past, each one focusing on different
aspects, like computational complexity, effectiveness, interpretability, optimiza-
tion criterion and others – for a review see e.g. [17,29]. Among others, in recent
years some promising techniques were based on a particular class of probabilistic
approaches, called topic models, showing optimal and highly interpretable re-
sults [2, 22, 24]. Such probabilistic topic models, the two most famous examples
being the Probabilistic Latent Semantic Analysis (PLSA [15]) and the Latent
Dirichlet Allocation (LDA [5]), have been imported from the text analysis realm
as workhorses in several scientific fields [6, 8, 33]. Their wide usage is motivated
by their simplicity and expressiveness in dealing with very large datasets both
in samples and features number. Therefore, they appeared to be a convenient
tool for the microarray data analysis problem, and especially in the context of
expression microarray classification [2,22]. Nevertheless, not all the potentialities
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of these schemes have been exploited in such context. To overcome this problem,
here we make a step forward, by applying a hybrid generative-discriminative
paradigm based on the definition of generative score spaces [28]. Generative
and discriminative classification schemes represent the two main directions for
classifying data: each philosophy brings pros and cons with itself and the last
research frontier aims at fusing them, following heterogeneous recipes [4,20,19].
In this paper, we adopt the “staged” strategy: the idea is that a generative
framework (in this case the PLSA1) is instantiated and learned. Then, surro-
gates of the learning (in the simplest case, likelihood probabilities) are injected
as features in a discriminative classifier which is eventually learned. In some
cases, this is theoretically proved to rise the purely generative classification per-
formances [16, 18, 20, 30].

In this paper, we show how different strategies to build score spaces lead to di-
verse classification accuracies, considering different publicly available microarray
datasets. Obtained results confirm the goodness of the classification strategies
based on topic models in the expression microarray classification context.

2 Methodology

In this section the background concepts regarding topic models and generative
embedding are reported. In particular, after introducing the general ideas un-
derlying the PLSA model, we will present it by using the terminology and the
notation of the document analysis context. Then we will briefly review how the
framework of hybrid generative-discriminative approach can be employed along-
side the PLSA, and how it is applied in the microarray classification scenario.

2.1 Probabilistic Latent Semantic Analysis

In Probabilistic Latent Semantic Analysis (PLSA – [15]) the input is a set of
D documents, each one containing a set of words taken from a vocabulary of
cardinality N . The documents are summarized by an occurrence matrix of size
N×D, where n(wj , di) indicates the number of occurrences of the word wj in
the document di. The presence of a word wj in the document di is mediated by
a latent topic variable, z ∈ Z = {z1,..., zZ}, also called aspect class, i.e.,

p(wj , di) =
Z∑

k=1

p(zk) · p(wj |zk) · p(di|zk) (1)

In practice, each k-th topic zk
2 is a probabilistic co-occurrence of words encoded

by the distribution β(w) = p(w|zk), w = {w1,..., wN}, and each document di is
compactly (usually, Z <N) modeled as a probability distribution over the topics,

1 PLSA is commonly employed as a generative model, even if it is not under a strict
formal treatment. See the text for further details.

2 Throughout the paper vk stands for the variable v assuming the value k.
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i.e., p(z|di), z = {z1,..., zZ} (note that this formulation, derived from p(di|z),
provides an immediate interpretation).

The hidden quantities of the model, p(w|z), p(d|z) and p(z), are learnt using
Expectation-Maximization (EM) [10],maximizing themodel data-loglikelihoodL:

L =
N∏

j=1

D∏

i=1

n(wj , di) · log p(wj , di) (2)

The E-step computes the posterior over the topics, p(z|w, d), and the M-step
updates the hidden distributions.

Once the model has been learnt one can estimates the topic proportion of an
unseen document. Here, the learning algorithm is applied by fixing the previously
learnt parameters p(w|z) and estimating p(d|z) for the document in hand. For a
deeper review of PLSA, see [15].

It is important to note that d is a dummy index into the list of documents in
the training set. Thus, d is a multinomial random variable with as many possible
values as there are training documents and the model learns the topic mixtures
p(d|z) only for those documents on which it is trained. For this reason, PLSA
is not a well-defined generative model of documents; there is no natural way
to assign probability to a previously unseen document and the procedure just
described to estimate p(d|z) is an heuristic [15].

PLSA may be very useful in the expression microarray context, since it may
provide powerful and interpretable descriptions of experiments [3,22,24]. In par-
ticular there is an analogy between the pairs word-document and gene-sample:
actually it is reasonable to intend the samples as documents and the genes as
words. In fact the expression level of a gene in a sample may be easily inter-
preted as the count of words in a document (the higher the number the more
present/expressed the word/gene is). In our case, therefore, we can consider the
expression matrix as the count matrix <wj , di> of topic models, after a proper
normalization in order to have positive and integer values.

3 Generative Score-Spaces

Pursuing principled hybrid architectures of discriminative and generative clas-
sifiers is currently one of the most interesting, useful, and difficult challenges
for Machine Learning. The underlying motivation is the proved complementar-
ity of discriminative and generative estimations: asymptotically (in the number
of labeled training examples), classification error of discriminative methods is
lower than for generative ones [19]. On the other side, generative counterparts
are effective with less, possibly unlabeled, data; further, they provide intuitive
mappings among structure of the model and data features. Among these hybrid
generative-discriminative methods, “generative score space” approaches grow in
the recent years their importance in the literature [6, 16, 18, 20, 27, 28, 30].

Generative score space framework consists of two steps: first, one or a set of
generative models are learned from the data; then a score (namely a vector of
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features) is extracted from it, to be used in a discriminative scenario. The idea is
to extract fixed dimensions feature vectors from observations by subsuming the
process of data generation, projecting them in highly informative spaces called
score spaces. In this way, standard discriminative classifiers such as support
vector machines, or logistic regressors are proved to achieve higher performances
than a solely generative or discriminative approach.

Using the notation of [27,20], such spaces can be built from data by mapping
each observation x to the fixed-length score vector ϕf

F̂
(x),

ϕf

F̂
(x) = ϕF̂ f({Pi (x|θi))}), (3)

where Pi (x|θi) represents the family of generative models learnt from the data,
f is the function of the set of probability densities under the different models,
and F̂ is some operator applied to it. In general, the generative score-space
approaches help to distill the relationship between a model parameters θ and
the particular data sample.

Generative score-space approaches are strictly linked to generative kernels
family, namely kernels which compute similarity between points through a gen-
erative model – the most famous example being the Fisher Kernel [16]): Typi-
cally, a generative kernel is obtained by defining a similarity measure in the score
space, e.g. the inner product.

Score spaces are also called model dependent feature extractors, since they
extract features from a generative model. We can divide score spaces in two fam-
ilies: parameters-based and hidden variable-based. Let us review the 7 different
score spaces tested in this paper.

3.1 Parameters Based Score Space

These methods derive the features on the basis of differential operations linked
to the parameters of the probabilistic model.

The Fisher Score. Fisher kernel [16] was the first example of generative score
space. At first, a parameter estimate θ̂ is obtained from training examples. Then,
the tangent vector of the data log likelihood log p(x|θ) is used as a feature vector.
Referring to the notation of [27,20], the score function is the data log likelihood,
while the score argument is the gradient.

The fisher score for the PLSA model has been introduced in [14], starting
from the asymmetric formulation of PLSA. In this case, the log-probability of a
document di is defined by

l(di) =
log p(di, w)∑
m n(di, wm)

=
N∑

j=1

p̂(wj |di) log
Z∑

k=1

p(wj |zk) · p(di|zk) · p(zk), (4)

where p̂(wj |di) ≡ n(di, wj)/
∑

m n(di, wm) and where l(di) represents the prob-
ability of all the word occurrences in di normalized by document length.
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Differentiating Eq. 4 with respect to p(z) and p(w|z), the PLSA model pa-
rameters, we can compute the score. In formulae:

∂l(di)
∂p(wr|zt)

= n(di, wt) · p(di|zt) · p(zt)∑
k p(wr |zk) · p(di|zk) · p(zk)

(5)

∂l(di)
∂p(zt)

=
W∑

j=1

n(di, wj) · p(di|zt) · p(wj |zt)∑
k p(zk) · p(wj |zk) · p(di|zk)

(6)

As visible from Eq. 5-6, the samples are mapped in a space of dimension W ×
Z + Z. The fisher kernel is defined as the inner product in this space. We will
refer to it as FSH.

TOP Kernel Scores. Top Kernel and the tangent vector of posterior log odds
score space were introduced in [30]. One of the aim of the paper was to introduce
a performance measure for score spaces. They considered the estimation error of
the posterior probability by a logistic regressor and they derived the TOP kernel
in order to maximize the performance.
Whereas the Fisher score is calculated from the marginal log-likelihood, TOP
kernel is derived from Tangent vectors Of Posterior log-odds. Therefore the two
score spaces have the same score function (i.e., the gradient) but different score
argument, which, for TOP kernel f(p(x|θ)) = log p(c = +1|x, θ) − logp(c =
−1|x, θ) where, c is the class label. We will refer to it as TOP.

Log Likelihood Ratio Score Space. The loglikelihood ratio score space is
introduced in [28]. Its dimensions are similar to the Fisher score, except that
the procedure is repeated for each class: a model per class is learnt θc and the
gradient is applied to each class-loglikelihood log p(x|θc). The dimensionality of
the resulting space is C-times the dimensionality of the original Fisher score. We
will refer to it as LLR.

3.2 Random Variable Based Methods

These methods, starting from considerations in [20], seek to derive feature maps
on the basis of the log likelihood function of a model, focusing on the ran-
dom variables rather than on the parameters in their derivation (as done in the
parameter-based score spaces).

Free Energy Score Space. In the Free Energy Score Space [20], the score
function is the free energy while the score argument is its unique decomposition
in addends that composes it3. Free energy is a popular score function representing

3 This is true once a family for the posterior distribution is given. See the original
paper for details.
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a lower bound of the negative log-likelihood of the visible variables used in the
variational learning. For PLSA it is defined by the following equation:

F(di) =
∑

w

n(di, w) ·
∑

z

p(z|d, w) · log p(z|d, w)

−
∑

w

n(di, w) ·
∑

z

p(z|d, w) · log p(d, w|z) · p(z) (7)

where the first term represents the entropy of the posterior distribution and the
second term is the cross-entropy. For further details on the free energy and on
variational learning see [12], on the PLSA’s free energy see [15].

As visible in Eq. 7 both terms are composed of Z ×N addends {fj}Z×N
j=1 , and

their sum is equal to the free energy. In generative classification, a test data is
assigned to the class which gives the lower free energy (i.e., higher loglikelihood).
The idea of FESS is to decompose the free energy of each class in its addends,
i.e., F(di)c =

∑
j{fj,c} and to add a discriminative layer by estimating a set of

weights {wj,c} through a discriminative method.
For PLSA this results in a space of dimension equal to C × 2 × Z × W ; we

will refer to this score space FESS L3.
In [20] the authors point out that, if the dimensionality is too high, some

of the sums can be carried out to reduce the dimensionality of the score vector
before learning the weights. The choice of the addend to optimize is intuitive but
guided by the particular application. In our case, as previously done in [18, 21],
we perform the sums over the word indices, optimizing the topics contribute.
The resulting score space has dimension equal to C × 2×Z; we will refer to this
score space FESS L2.

Posterior Divergence. Posterior Divergence score space is described in [18].
Like FESS it takes into account how well a sample fits the model (crossentropy
terms in FESS) and how uncertain the fitting is (entropy terms in FESS, Eq.
7) but it also assesses the change in model parameters brought on by the input
sample, i.e. how much a sample affects the model. These three measures are
not simply stacked together, but they are derived from the incremental EM
algorithm which, in the E-step only looks at one or few selected samples to
update the model in each iteration. Details on posterior divergence score vector
for PLSA and on its relationships with FESS case can be found in [18]. We will
refer to this score space as PD.

Classifying with the Mixture of Topics of a Document. Very recently,
PLSA has been used as dimensionality reduction method in several fields, like
computer vision, bioinformatics and medicine [6, 2, 8]. The idea is to learn a
PLSA model to capture the co-occurrence between visual words [6, 8], or gene
expressions [2], which represent the (usually) high-dimensional data description;
co-occurrences are captured by the topics. Subsequently, the classification is
performed using the topic distribution of a document as its descriptor.

Since we are extracting features from a generative model, we are defining
a score space which is the (Z-1)-dimensional simplex. In this case, the score
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argument f , a function of the generative model, is the topic distribution p(z|d)
(using Bayes’ formula, one can easily derive p(z|d) starting from p(d|z)), while
the score function is the identity. We will refer to this score space as TPM, or
citing [2], the first work in the context of microarray classification that used this
technique.

Summary. Summarizing, here we propose to face the expression microarray
classification task by first learning a PLSA model, then extracting a score space,
and finally classifying the samples in this new space, using a discriminative
classifier (e.g. a Support Vector Machine).

4 Experimental Evaluation

The suitability of the proposed classification schemas has been tested using three
different well-known datasets, briefly summarized in Tab. 1. The whole descrip-
tion of each dataset may be found in the reported reference.

Table 1. Summary of the employed dataset

Dataset Name n. of genes n. of samples n. of classes citation BIC

1. Colon cancer 2000 62 2 [1] 6
2. Ovarian cancer 1513 53 2 [11] 4
3. DLBCL 6285 77 2 [26] 4

As in many expression microarray analysis, a beneficial effect may be obtained
by selecting a sub group of genes, using a prior belief that genes varying little
across samples are less likely to be interesting. Hence, we decided to perform
the experiments by retaining the top 500 genes ranked by decreasing variance,
as done also in [24].

A crucial issue arising when learning a topic model is to decide beforehand
the number of topics. Here we employed the well-known Bayesian Information
Criterion [25], which penalizes the likelihood with a penalty term which depends
on the number of free parameters of the model – in such way, larger models
which do not lead to a substantial increase in the likelihood are discouraged. In
the PLSA model, the free parameters are (D−1) ·Z+(N −1) ·Z+(Z−1), where
Z and N refers to the number of topics and the number of words respectively.
The penalization term is then given by

Pen. =
1
2
· ((D − 1) · Z + (N − 1) · Z + (Z − 1)) · log

N∑

j=1

D∑

i=1

n(di, wj) (8)

The best number of topic is found by searching for the maximum of the penalized
likelihood, varying the number of topics from 2 to 50. The optimal number of
topic for each dataset is shown in Tab. 1, column BIC.
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Fig. 1. Microarray classification results. TPM stands for the method present in [2],
FSH is the fisher score space, LLR is the loglikelihood ration score space, TOP is the
tangent of posterior log-odds score space, FESS L2 and FESS L3 are two complexities
of the free energy score space while PD is the posterior divergence score space. See the
text for details. Please print in color.
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The errors have been found using a cross validation scheme: in particular the
subdivision in training and testing set is carried out using 10-fold crossvalidation.
Differently from [2] we learned the generative models only with the training data;
this is necessary since LLR, TOP, FESS and PD require to learn a model per
class, and we cannot use labels at training time. In order to have a significant
results, we repeated each test 10 times and the results of this 10 repetitions have
been validated through the standard anova variance test [23]. Finally, as final
classifier we used a support vector machine with linear kernel; as in [16,30], the
similarity between two datapoints is defined as the inner product of their scores.
Before computing the kernels, the scores are normalized to have zero mean and
unit variance; the constants to perform the normalization are computed with
the training set and applied to each test sample.

Results are shown in Fig. 1, where each row of the figure describes a dataset.
The graph on the left is a boxplot useful to assess the statistical significance of
the results. The red bar is the median accuracy of the 10 repetitions, the edges of
the blue box are the 25th and 75th percentiles, while the whiskers (black dotted
bars) extend to the most extreme data points not considered outliers. Outliers
are plotted individually with a red cross. Two medians are significantly different
at the 5% significance level if their intervals (boxes) do not overlap.

The bar graphs on the right represent the accuracy obtained in correspondence
of maximum loglikelihood value of the generative model. The best result among
all the score spaces considered is textually reported on the left of the figure.

By looking at the figures and examining the results, the following observations
may be extracted:

Colon Cancer dataset : Fisher, Loglikelihood Ratio and FESS L3 are statistically
better than the method presented in [2], while all the other methods are clearly
better but without statistical significance.

Ovarian Cancer dataset : all the methods seem to be equivalent even if, once
again, the best result is obtained with FESS.

DLBCL dataset : it is clear that [2] and FESS L2 perform significantly worse
than all the other score space, which in turn do not differ much.

To better understand the differences between the considered score spaces, we
varied the number of topics between 2 and 20, to see how they are robust to this
value. Mean accuracies (over 10 repetitions) for Fisher, FESS L3, PD and TPM
are shown in Fig. 2. Score spaces based on the parameters are clearly less sensitive
to this value4, while for TPM and FESS the results obtained for different Z’s are
statistically different (t-test, significance level 5%). Despite being a score space
based on random variables like TPM and FESS, PD looks very robust (see also
the very small variance among the repetitions) to Z. This is not surprising since
PD is composed by entropy and crossentropy terms (as FESS), but also it has
a set of extra terms that assess the change in model parameters brought on by the

4 We have found that for this test the results of TOP are nearly identical to FSH.
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Fig. 2. Robustness of the score space to the number of topics (Z) for the Colon Cancer
dataset. On the x-axis we show the number of topic, on the y-axis the accuracy. The four
lines are the mean accuracy, while the vertical bars represent the variance computed
across the 10 repetitions.

input sample d, which is characteristic of parameter based methods. This extra
set permits to inherit the peculiar robustness to changes in Z of the parameters
based method.

As a last test we tried transductive learning, namely learning a single model
for all the available data, not using labels [32, 13] – on Fisher, FESS L2, FESS
L3 and [2], to assess if this has some influence on the accuracy. For each fold and
for each repetition, we learned a single model using all the data. Subsequently
we used the training labels to train the discriminative classifier. Transductive
learning has the problem that it requires to learn a model each time a test
sample is available.

We performed anova test considering the three datasets together as different
factors, with the following null hypothesis: “Transductive and non-Transductive
learning do not differ”. The hypothesis is confirmed with p-values respectively
of 0.8473, 0.094 and 0.8683. This means that FESS is the less robust even we
cannot claim that the difference of the results is statistically significant.

5 Conclusions

In this paper different generative score spaces have been evaluated, with the
aim of classifying expression microarray data. Such score spaces are built on the
PLSA generative model, a probabilistic tool whose usefulness in this context has
been already assessed. Experimental results confirm the viability of the proposed
hybrid schemes, also in comparison with the state of the art. In particular, all
the score spaces introduced here outperform the previously published frameworks
on microarray classification [2, 22]. FESS reached the best classification results
even if the variance across repetitions or changes in Z was sensibly higher than
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the other score spaces. Fisher, TOP and LLR performed similarly and they
are sufficiently robust. PD presented performances slightly inferior to the other
methods but it has shown the best robustness to changes in number of topics and
multiple restarts. Finally, the accuracies reported here can be further improved
using more complex kernels, like done in [22].

Acknowledgements. The authors want to thank Xiong Li for providing the
code for the score space based on the posterior divergence.
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