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Abstract. Schizophrenia research based on magnetic resonance imag-
ing (MRI) traditionally relies on the volumetric analysis of brain matter,
either characterizing the whole intracranial volume or studying the at-
tributes of small regions of interest (ROI), corresponding to well-known
functional parts in the brain. In this work, we addressed the second
scenario, proposing a novel approach able to automatically distinguish
schizophrenic patients from normal controls using multiple ROIs. We
explore a hybrid generative/discriminative approach, exploiting state of
the art generative models via Fisher kernel and support vector machines
(SVM). Experimental results, on a dataset of 124 subjects and 7 ROIs,
are really encouraging, also in comparison with pure discriminative meth-
ods. Moreover, our results �nd some agreements with previous medical
studies in schizophrenia research.
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1 Introduction

Computational neuroanatomy using magnetic resonance imaging (MRI) is a
growing research �eld that employs image analysis methods to quantify mor-
phological characteristics of di�erent brains [1]. The ultimate goal is to identify
structural brain abnormalities by comparing normal subjects with patients af-
fected by a certain disease.

Roughly speaking there are two main categories of methods: (i) methods
based on the analysis of regions of interest (ROI), and (ii) methods based on
Voxel-based-Morphometry (VBM)[2]. ROI based methods focus on a limited set
of brain subparts which are manually traced by experts. Methods based on VBM
use the whole brain after a normalization procedure which maps the current
brain onto a standard reference, namely the stereotaxic space. In this fashion, a
voxel-by-voxel correspondence is available among the analyzed subjects.

In this work, we apply pattern recognition techniques to the problem of
discriminating subjects a�ected by schizophrenia. We build our framework on top



of several previous investigations that con�rmed the presence of abnormalities
in these subjects [3,4,5,6,7,8,9] and extend it to classify healthy (i.e., controls)
and unhealthy (i.e., patients) subjects.

Several works have been proposed recently for human brain classi�cation
in the context of schizophrenia research [10,11,12]. Beside standard volumetric
methods [2,4], the most promising approaches focus on: (i) shape characteriza-
tion [11], (ii) surface computation [12], and (iii) high dimension pattern classi�-
cation [10]. In [11] a ROI-based morphometric analysis is introduced by de�ning
a spherical harmonics and a 3D skeleton as shape descriptors. Improvement of
such shape-descriptor-based approach with respect to classical volumetric tech-
niques is experimentally shown. In [12] a support vector machine (SVM) has been
proposed to classify cortical thickness which has been measured by calculating
the Euclidean distance between linked vertices on the inner and outer cortical
surfaces. In [10] a new morphological signature has been de�ned by combining
deformation-based morphometry with SVM. In this fashion, multivariate rela-
tionships among various anatomical regions have been captured to characterize
more e�ectively the group di�erences.

In this work, we go beyond volumetric measurements by classifying intensity
histograms of the given ROIs. In order to be able to compare intensity values
e�ectively, we perform a preliminary scale normalization based on landmark
matching between intensity histograms [13]. The main goal of this study is to
verify whether a signi�cant improvement in brains classi�cation can be obtained
by exploiting more sophisticated pattern recognition techniques, instead of in-
vestigating more complex morphological features from MRI data. Inspired by
recent trends in machine learning and pattern recognition research, we explore
a hybrid generative/discriminative approach using the Fisher Score Space [14]
to represent our data and employing support vector machines (SVM) [15,16]
as classi�ers. In particular, we based our framework on the so called constella-

tion generative model which has been recently successfully applied for object
recognition [17].

Generative and discriminative approaches are the two broad categories within
which learning and classi�cation methods fall: a generative approach will esti-
mate the joint probability density function (pdf) of the data and class labels and
will classify using the posterior probabilities obtained by Bayes' rule, while a dis-
criminative approach will estimate a classi�cation function directly. Generally,
methods falling in the latter category obtain lower asymptotic errors. However,
generative models remain popular for their ability to capture explicit data at-
tributes and to incorporate missing features. Fisher kernels are designed to get
the best of both worlds. In [14], it was shown that it is possible to extract Fisher
scores from a generative model and convert them into a Fisher kernel, which
may be used for classi�cation by a kernel method, such as the SVM.

The rest of the paper is organized as follows. Section 2 describes our proposed
hybrid approach, detailing both the generative and the discriminative parts.
Section 3 describes the brains dataset, highlighting the standard medical protocol
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which has been involved. Section 4 shows our experimental results, and �nally
conclusions are drawn in Section 5.

2 The proposed approach

In this paper, we propose to classify between healthy and diseased subjects
by using an hybrid generative-discriminative framework. The most known and
applied class of hybrid methods relies on the so called generative kernels [14],
to be employed with a Support Vector Machine: the basic idea is to employ a
generative model to de�ne feature vectors and project objects to the resulting
feature space. Therefore, a meaningful similarity/distance measure is de�ned,
leading to a kernel. In the following all the parts of the proposed approach are
detailed.

2.1 The generative part

For this part of the approach, the general idea is to choose a generative model
capable of considering all the ROI at the same time, together with the relations
between them. To this end, we based our framework on the same concepts behind
the constellation probabilistic model [17], which foresees the encoding of one
object in terms of a �xed number N of object subparts Mj , and relative spatial
relationships. In general, object subparts are represented by their appearance
Ai, while the spatial relations are encoded by the shape Xi (i.e., the relative
subparts positions) of the overall con�guration.

Here, we apply this intuition to MRI brain scans, by looking at the ROIs
as subparts with a de�nite spatial con�guration within the cerebral volume.
Ideally, we expect the content and con�guration of the ROIs in each subject to
be informative enough to recognize patients from controls. It is worth to note
that here Xi is not encoding morphological shape properties of subparts which
instead are implicitly captured by the appearance Ai. In the following, we will
call Xi as relations in order to avoid such ambiguity. Note that, while in [17]
the correspondences between subparts in di�erent objects is considered missing
data, this is not our case, since ROIs identities (e.g., amygdala or thalamus) and
matching between subjects are pre-determined. Consequently, instead of having
to evaluate multiple combinatorial hypotheses, our model has to evaluate a single
combination, incorporating this prior information by design.

Ultimately, we de�ne the following expression for the log-likelihood of a par-
ticular class of L subjects {Oi}L

i=1 (assumed to be independent and identically
distributed):

log p({Oi}) = log
L∏

i=1

p(Oi) =
L∑

i=1

log p(Oi) =
L∑

i=1

log [p(Ai | θa)p(Xi | θs)] , (1)

where θ = {θa, θs} is the set of appearance and relations model parameters,
respectively. Training is performed by estimating the Maximum Likelihood so-
lution θMLE .
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Based on preliminary experiments, we observed that the relations information
was not signi�cant since they encode relative positions of ROIs which are the
same for all the brains. Therefore we further simpli�ed the model by using only
the appearance model part. Note that, similar to [17], the appearances Ai are
represented by PCA components obtained from the ROIs intensity histograms,
in order to reduce data dimensionality and highlight consistent variations in the
distribution of MRI values. As in [17], the appearance model p(Ai | θa) is then
a Gaussian over the PCA components.

2.2 The discriminative part: the Fisher kernel

Fisher kernels [14] allow an e�ective general way of mixing generative and dis-
criminative models for classi�cation. In particular, the Fisher kernel approach
measures the similarity between the objects by comparing them in the tangent
space induced by the trained generative model, which is considered as a point
in the Riemannian manifold de�ned by the chosen family of generative models.
In practice, each object is represented by a feature vector, whose components
are called Fisher scores, de�ned by the evaluation of the gradient of the model
log-likelihood on the MLE solution. The dimensionality of this space equals the
number of parameters. More in detail, given a probabilistic model, the Fisher
scores φ(Oi) are de�ned through the following derivatives:

φ(Oi) =
∂

∂θ
log p(Oi | θ). (2)

In particular, starting from Equation 1 and discarding the relations contri-
bution, the Fisher score we obtain is

φ(Oi) =
∂

∂θa
log p(Ai | θa), (3)

where θa represent the mean and variance parameters of the Gaussian appear-
ance model. Following [14], we employ and train one generative model for both
classes.

A kernel can be de�ned in various ways in the resulting space: the inner
product was used in [14], while RBF and polynomial kernel have been proposed
in [17].

3 Data and feature extraction

Quantitative data collection and processing in MRI based research implies facing
several methodological issues to minimize biases and distortions. The standard
approach to dealing with these issues is following well established guidelines,
dictated by international organizations, such as the World Health Organization
(WHO), or codi�ed by respected institutions, such as leading universities. See
[18] for further details.
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Group mean (and SD)* Statistics

Characteristic
Control
(n = 60)

Schizophrenia
(n = 64) Test df p

Age, yr 39.95 (11.25)
[range 23-60]

38.84 (11.96)
[range 18-62]

t = 0.53 122 0.60

Male/female 32/28 43/21 χ2 = 2.49 1 0.11
Age at onset, yr 26.28 (9.17)
Duration of illness, yr 13.37 (10.30)

SD = standard deviation; df = degrees of freedom; p = value of signi�cance.

* Unless otherwise indicated.

Table 1. Some demographic and clinical characteristics of the study groups. The Stu-
dent's t-test of the age means rejects (at a two-tailed signi�cance level of p < 0.05)
the hypothesis that the study groups are signi�cantly di�erent in age, and Pearson χ2

con�rms the same for the gender di�erences.

The dataset used in this work is composed by MRI brain scans of 64 patients
a�ected by schizophrenia and 60 healthy control subjects. Table 1 shows some
demographic and clinical characteristics of the study groups. This database has
been investigated several times, for example to produce large sample studies
aimed at con�rming previous reports of physiological abnormalities associated
with the given mental illnesses [3,4,8]. Each of these studies focuses on a partic-
ular subpart of the brain, a so-called region of interest (ROI), whose abnormal
activity is noted to a�ect cognitive processes. Images were acquired and trans-
ferred to PC workstations in order to be processed for ROI tracing. This latter
procedure is the manual annotation of the images, performed by drawing con-
tours enclosing the intended region. It is carried out by a trained expert following
a speci�c protocol for each ROI. The raters generally achieved high interrater
reliability, as de�ned by intra-class correlation coe�cient of between 0.94 and
0.97 (see [18] for further details).

The ROIs traced in this dataset are 7 pairs (for the left and the right hemi-
sphere respectively) of disconnected image portions describes as the following:

� Amygdala (l_amyg and r_amyg in short);
� Dorso-lateral PreFrontal Cortex (l_dlpfc and r_dlpfc);
� Entorhinal Cortex (l_ec and r_ec);
� Heschl's Gyrus (l_hg and r_hg);
� Hippocampus (l_hippo and r_hippo);
� Superior Temporal Gyrus (l_stg and r_stg);
� Thalamus (l_thal and r_thal).

In Fig. 1, we show a sample from the dataset, speci�cally the ROI volume of
r_stg for subject 11. This volume is made up of 35 slices of size 41× 40 and can
be arranged as a montage of images (ordered from left to right, top to bottom).
Within this bounding box, the ROI itself is irregularly shaped, as can be clearly
seen from the corresponding binary masks on the right, arti�cially colored to
highlight the ROI shape.
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Fig. 1. Montage of the slices in the ROI volume (41× 40× 35) of r_stg for subject 11.
On the left, the MRI values; on the right, the corresponding binary masks.

Additionally, another important ROI that is traced is the intracranial volume

(ICV), that is the volume occupied by the brain in the cranial cavity leaving
out the brainstem and the cerebellum. This information is extremely useful for
normalizing volume values against di�ering overall brain sizes.

3.1 MRI Intensity Scale Normalization

A major disadvantage of MRI compared to other imaging techniques is the
fact that its intensities are not standardized. Even MR images taken for the
same patient on the same scanner with the same protocol at di�erent times
may di�er in content due to a variety of machine-dependent reasons, therefore,
image intensities do not have a �xed meaning [13]. This implies a signi�cant
e�ect on the accuracy and precision of the following image processing, analysis,
segmentation and registration methods relying on intensity similarity.

6



Fig. 2. ICV intensity histograms (treated like probability density functions), before
and after the normalization process.

A successful technique used to calibrate MR signal characteristics at the time
of acquisition employs phantoms [19], by placing physical objects with known
attributes within the scanning frame. Unfortunately, this technique is not always
exploited, which is our present case. Alternatively, it is possible to obtain good
results by retrieving deformation mappings for the image intensities, that is, by
developing histogram mappings [20,13].

In this work, we have decided to retrieve the rescaling parameters from the
ICV histograms (see Fig. 2). In this way, we focus on the interesting content of
the images, which usually contain �noise� in the form of bone and muscle tissue
surrounding the brain matter proper. It is also easier to identify landmarks on
the histograms that match the canonical subdivision of intracranial tissue into
white matter, gray matter and cerebrospinal �uid. We have opted to select a
simple rescaling mapping that conserves most of the signal in the gray matter -
white matter area, corresponding to the two highest bumps in the range 60-90,
since ROIs primarily contain those kinds of tissue.

4 Experimental results

In this part, we will show the e�ectiveness of the proposed approach using the
above described dataset. The goal of the experimental evaluation is twofold: on
one hand, we want to provide evidence that using all ROIs at the same time
is advantageous with respect to using individual ROIs. On the other hand, we
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want to show that an hybrid generative/discriminative model may outperform
a simply discriminative approach. To this end, the proposed approach has been
compared with two di�erent techniques:

� Single ROI - SVM (RBFkernel): in this case the classi�cation has been
carried out using a single ROI. We used the same descriptor employed in
the proposed approach, namely histograms whose dimensionality has been
reduced with the PCA analysis.

� Multiple ROI - SVM (RBF kernel): in this case, the information coming from
all the ROIs is merged. There are many methods for fusing information from
di�erent sources (see the huge Multi Classi�er System Theory). In this case,
we performed a feature level fusion, obtained by simply concatenating the
vectors coming from di�erent ROIs. This solution, even if simple, provided
optimal results in several contexts (e.g. in Biometrics [21]). Subsequently,
the concatenated PCA-reduced vectors have been classi�ed using again a
SVM (RBF kernel).

In all cases, the libSVM library [16] has been employed, with optimal para-
meters chosen via a cross validation analysis. Experiments were carried out in
MATLAB and C, whereas accuracies �gures for each test run where obtained
through leave-one-out (LOO) cross-validation.

Results are proposed in Table 2. From the table, it is evident that most ROIs
do not possess signi�cant discriminative powers, but that using all of them at
the same time achieves higher accuracy than the individual best ROI. Moreover
it is evident that the hybrid generative discriminative approach outperforms the
purely discriminative approach, con�rming the �ndings obtained in other �elds.
Overall, results are suggestive, encouraging in a way, in fact they seem to support
the main scienti�c claim that it is possible to identify schizophrenic patients from
healthy people.

From the medical point of view, we can observe that the abnormalities in
the amygdala, dorsolateral prefrontal cortex and hippocampus (the three indi-
vidually most discriminative ROIs in our study) in particular in the left side,
are among the most consistent �ndings in MRI studies on schizophrenia [22,23],
suggesting that these structures play a major role for the pathophysiology of
the disease [24]. In particular, the dorsolateral prefrontal cortex, along with the
thalamus and the hippocampus, is a critic component of the brain circuitry un-
derlying higher cognitive functions, such as attention, executive function and
context processing [25]. The amygdala plays a critical role in the neural system
that is involved in emotional and in fear-related responses [26]; and the hip-
pocampus is involved in long term memory and in regulating stress response
[27,28].

5 Conclusions

In this paper, we proposed a novel approach aimed at discriminating between
schizophrenic patients and healthy people based on analyses of brain MR images.
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Method ROI Accuracy

l_amyg 70.97%
r_amyg 58.87%
l_dlpfc 68.55%
r_dlpfc 47.58%
l_ec 59.68%
r_ec 58.06%

SVM Single ROIs l_hg 58.06%
r_hg 60.48%
l_hippo 62.10%
r_hippo 50.00%
l_stg 59.68%
r_stg 56.45%
l_thal 61.29%
r_thal 59.68%

SVM Multiple ROIs all 77.42%

Hybrid Approach Multiple ROIs all 80.65%

Table 2. Leave-one-out cross-validation accuracies. Our hybrid approach performs
best. Taking all the ROIs performs better than considering them individually.

The proposed approach combines the contribution of di�erent ROIs by exploit-
ing a hybrid generative discriminative method, able to merge the descriptive
power of a generative model with the classi�cation accuracies of a discriminative
approach. Experimental evaluations on a rather large dataset con�rm the appro-
priateness of the proposed approach, also in comparison with other techniques.
Moreover, we have shown that signi�cative improvements can be obtained by fo-
cusing on e�ective classi�cation strategies rather than on the search of complex
MRI features. As future work, we envisage a more complex probabilistic model-
ing, eventually introducing clinical data (e.g., age, gender, illness duration, etc.),
to explain variabilities in the data that in�uence the individual ROIs and hence
their overall con�guration.
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