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ABSTRACT

Most of the state-of-the-art tracking algorithms are prone
to error when dealing with occlusions, especially when the
involved moving objects are hardly discernible in appear-
ance. In this paper, we propose a multi-object particle fil-
tering tracking framework particularly suited to manage the
occlusion problem. The presented solution consists in the
introduction of a online subjective feature selection mecha-
nism, which highlights and employs the most discriminant
features characterizing a single object with respect to the
neighbouring objects. The policy adopted fits formally in the
observation step of the particle filtering process, it is effective
and not computationally costly. Trials carried out on illus-
trative synthetic data and on recent challenging benchmark
sequences report compelling performances and encourage
further development of the technique.

Index Terms— Tracking, feature extraction.

1. INTRODUCTION

Tracking multiple persons in video sequences is a classical
computer vision open problem, far from being conclusively
solved. Among the realm of the tracking strategies, an im-
portant role is played by the particle filtering approaches [1],
which essentially perform a three-step on-line procedure at
each instant. First, several events which describe the state
of the system, i.e., the displacement of the objects, are hy-
pothesized by sampling a candidate probability distribution
(pdf) over a state space (sampling step); the candidate pdf is
thus approximated by a set of weighted samples, where each
sample is an event whose weight mirrors the associated prob-
ability. Second, dynamics is applied to the objects (dynam-
ical step), and, third, the hypotheses that agree at best with
an observation process are awarded (observational step), so
avoiding a brute-force search in the prohibitively large state
space of the possible events. After that, the candidate pdf
is refined for the next step. Particle filtering was born orig-
inally for single-object tracking [2], and later extended in a
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multi-object tracking scenarios [3]. Multi-object particle fil-
ters follow different strategies to achieve strong tracking per-
formances avoiding huge computational burden, due primar-
ily to the required large number of particles to consider, which
is (in general) exponential in the number of objects to track
[3]. Recently, an interesting yet general solution is proposed
in the Hybrid Joint-Separable (HJS) filter [4], that maintains
a linear relationship between number of objects and particles.

In this paper, we will employ the HJS filter framework as
multi-object particle filtering platform for tracking and we ex-
tend it by improving the robustness to occlusions. Despite the
proved versatility of particle filter-based approaches for track-
ing, occlusion management still remains a hard issue to solve,
especially when the moving objects are hardly discernible in
appearance. For example, in [5] an appearance-based model
updating method evolves the model in a selective way, based
on the type of occlusion (classified at sub-region level).

We propose an extension of the HJS filter which satisfac-
torily faces the occlusion problem, increasing substantially
the tracking accuracy. We introduce a mechanism of online
subjective feature selection, that selects and employs the most
discriminant features characterizing a single target with re-
spect to the neighbouring objects. Our approach takes inspi-
ration from [6], consisting in a feature selection policy for dis-
criminating effectively foreground (the moving objects) and
background (the static scene) in a video surveillance context.
The improvement here consists in devising a feature selection
technique which operates among different foreground objects,
whose number and appearance may change dramatically over
time. Further, attention is devoted to maintain the computa-
tional effort limited while still achieving performances higher
than those of the original framework. Therefore, the fea-
ture selection process is activated only in case of proximity
among objects. When an occlusion occurs, the mechanism is
frozen and only the previously selected features are used into
the observational step. A thoroughly experimental evaluation
on synthetic data and on actual challenging datasets has been
carried out, which shows very promising results.

The rest of the paper is organized as follows. Section 2 de-
scribes HJS filter for tracking. The proposed feature selection
method is analyzed in Section 3. Section 4 provides quan-
titative results on synthetic videos and qualitative results on
real-world datasets. Finally, the conclusions are summarized



in Section 5.

2. HJS FILTER

Particle filters offer a probabilistic framework for recursive
dynamic state estimation [1]. The goal is to determine the
posterior distribution p(xt|z1:t), where xt is the current state,
zt is the current measurement, and x1:t and z1:t are the states
and the measurements up to time t, respectively. We refer as
xt the state of a single object, and xt = {x1

t , x
2
t , . . . , x

K
t }

the joint state (ensemble of objects). Finally, the posterior
distribution p(xt|z1:t) is approximated by a set ofN weighted
particles, i.e. {(xnt , wnt )}Nn=1.

The HJS approach represents a theoretical grounded com-
promise between dealing with a strict joint process (as [3]
does) and instantiating a single, independent tracking filter
for each distinct object. Roughly speaking, HJS alternates a
separate modeling during the sampling step and a joint formu-
lation using a hybrid particle set in the dynamical and obser-
vational steps. The rule that permits the crossing over joint-
separable treatments is based on the following approximation
(see [4] for rigorous math details):

p(xt|z1:τ ) ≈
∏
k

p(xkt |z1:τ ) (1)

that is, the joint posterior could be approximated via prod-
uct of its marginal components (k indexes the objects). This
assumption enables us to sample the particles in the single
state space (requiring thus a linear proportionality between
the number of objects and the number of samples), and to
update the weights in the joint state space. The updating ex-
ploits a joint dynamical model which builds the distribution
p(xt|xt−1) (explaining how the system does evolve) and a
joint observational model that provides estimates for the dis-
tribution p(zt|xt) (explaining how the observations are re-
lated to the state of the system). Both models take into ac-
count the interactions among objects; in particular p(xt|xt−1)
accounts for physical interactions between the targets, thus
avoiding track coalescence of spatially close targets. The joint
observational model p(zt|xt) quantifies the likelihood of the
single measure zt given the state xt, considering inter-objects
occlusions.

The joint observational model builds upon the represen-
tation of the targets, that here are constrained to be human
beings. The employed person representation is based on [3],
which divides the human body in three parts: head, torso and
legs. For the sake of clarity, we assume the body as a whole
volumetric entity, described by its position in the 3D plane,
with a given volume and appearance captured by HSV inten-
sity values. The joint observational model works by evaluat-
ing a separate appearance score for each object, encoded by
a distance between the histograms of the model and the hy-
pothesis (a particle), involving also a joint reasoning captured
by an occlusion map. The occlusion map is a 2D projection

of the 3D scene which focuses on the particular object un-
der analysis, giving insight on what are the expected visible
portions of that object. This is obtained by exploiting the hy-
brid particles set {xp}NKp=1 in an incremental visit procedure
on the image plane: the hypothesis nearest to the camera is
evaluated first, its presence determines an occluding cone in
the scene, where the confidence of the occlusion depends on
the observational likelihood achieved. Particles farther in the
scene which fall in the cone of occlusion of other particles are
less considered in their observational likelihood computation.
The process of map building is iterated as far as the farthest
particle in the scene. In formulae, the observation model is
defined as

p(zt|xp) ∝ exp
(
− fcp + bcp

2 σ2

)
(2)

where fcp is the foreground term, i.e., the likelihood that an
object matches the model considering the visible parts, and
bcp, the background term, accounts for the occluded parts of
an object. However, it is worth noting that the most similar
are the appearances of the objects, the most difficult results
the building of an informative observation model.

3. THE PROPOSED APPROACH

In this paper, we extend substantially the joint observational
model of the HJS framework, stressing the fact that the con-
tribute is easily generalizable to whatever multi-object parti-
cle filtering environment, in which the observations are eval-
uated in a joint space (i.e., taking into account dependencies
among all the tracked objects). The extension translates in a
new term in the observational model, the foreground feature
discrimination term ffp:

p(zt|xp) ∝ exp

(
− ffp

2 σ2
f

− fcp + bcp
2 σ2

)
. (3)

The foreground feature discrimination term is introduced in
occlusion cases in order to help appearance disambiguation
among similar targets which stand spatially close, finding the
most discriminative parts of an object with respect to the other
surrounding objects. In the following, we explain how this
term is evaluated in a two-objects scenario, generalizing then
to a higher number of objects.

3.1. Two-objects case

The first step is to choose a set of candidate features. Here,
we use a small set of M features based on RGB color his-
togram, which it has been shown in [6] to be experimentally
appropriate for tracking applications. The feature set con-
tains the linear combination of R, G, B pixel values: F =
{w1R + w2G + w3B | w∗ ∈ [−2,−1, 0, 1, 2]}, pruning



out redundant combinations. Such class of features is compu-
tational fast to manage, and shows adequate expressiveness.
Then, M histograms of features (b bins) have been built con-
sidering each of the two objects’ appearances.

Second, the histograms of features are combined together
to distill a combined feature, tuned to discriminate between
the two objects in the current frame. In particular, the log-
likelihood ratio has been computed as L = log p

q , where p
and q are the histograms of a single feature for the first and
second object, respectively. Log-likelihood expresses natu-
rally discriminativeness; actually, thresholding L at zero is
equivalent to use a maximum likelihood rule to classify the
two objects. This feature permits thus to rewrite the possi-
ble multimodal distributions p and q into a unimodal distri-
bution. Finally, we introduce an evaluation criterion which
measures the separability that feature L induces between the
two classes. Likewise [6], we employ the two-class variance
ratio, which, given two class distributions q and p (their his-
tograms), is defined as:

VR(L; p, q) =
var(L; (p+ q)/2)

var(L; p) + var(L; q)
. (4)

The denominator enforces that the within-class variances
should be small for both objects’ classes, while the nu-
merator rewards cases where values associated with two
different objects are widely separated. At the end of the
process we have, for each moving object, a new feature set
Fs = {f1, . . . , fs} ⊆ F , built by selecting the the top Nf
most discriminative individual features (ordered by decreas-
ing VR). For each frame of the video we compute the set Fs
only if the two objects are very close.

In [6] the feature selection method is embedded in a mean-
shift tracking system. Vice versa, our method uses the se-
lected features in order to build a map for each object k in-
volved in an occlusion, called discrimination map Fk, that
favors the pixels corresponding to the discriminative parts of
an object. Such map is obtained fusing the rank of the dis-
criminative features as a weighted sum, i.e.,

Fk =
Nf∑
s=1

VRs g(Ls, I) (5)

where s indexes the log-likelihood ratio features {L}, and g
is the function that maps the 2D rendering I of a person to the
discrimination map, assigning the values of Ls to the image
I . An example of discrimination maps are shown in Figure 1.

During an iteration of the filtering step, feature selection
is stopped when an occlusion occurs. A discrimination map
is built for each sample hypothesis, using the feature set Fs
selected at previous time, and employed to assign a reason-
able weight in the observational step. Given a particle xp, the
foreground feature discrimination term ffp is computed by the
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Fig. 1. Discrimination maps for two objects during an oc-
clusion; brighter pixels are those whose values ensure higher
discrimination.

discrimination map Fk:

ffp = 1− p(zt|Fs, xp) = 1−
∑
u

Fk(u) δ(Bt(u)) (6)

where Bt is a binary map given from FG/BG subtraction [7],
δ is the Kronecker delta and u indexes the pixels. This term
will be higher for the particles far from the discriminant parts
of the object and vice versa.

3.2. Multi-objects case

Our goal is to select the features that discriminate between a
particular object h and the surrounding, multiple, objects. We
decompose such task as that of finding a set of ranked features
for a single pairwise discrimination, repeating the process for
all the couple of objects that include h. In particular, assum-
ing that the discriminative features for an object with respect
to the surrounding single objects are given, we can group the
set {Fh,1s , . . . ,Fh,Ks }, where the Fh,ks is the set of discrimi-
native features related to object h with respect to the object k.
The features for the multiple discrimination are retrieved by
exploiting an intersection operation:

Fh∩ =
K⋂
k=1

Fh,ks . (7)

The new feature set Fh∩ contains the common features of ev-
ery single set Fh,ks , that is the set of the best discriminative
features for the object h as compared to all the other surround-
ing entities.

4. EXPERIMENTAL RESULTS

The testing session has been focused on the PETS dataset
(edition 20061, and 20072), in order to certify the suitability
of the proposed technique with public and challenging data.
As comparative tracking framework, we consider the original
version of the HJS filter proposed in [4]. In a wider sense,
such comparison is highly valuable, being HJS a tracker with

1http://www.cvg.rdg.ac.uk/PETS2006/index.html
2http://www.pets2007.net
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Fig. 2. Synthetic video example tracked by our method. Oc-
clusions occur among different objects are correctly handled.

strong performances [4]. Since PETS videos do not contain
ground truth information (GT) on the real position of the ob-
jects, as preliminary test and quantitative analysis we create
a set of synthetic videos. In particular, 8 synthetic sequences
(of 100 frames each) have been built by superimposing dif-
ferent static pedestrian images on a static background, mim-
icking the 3D scenario by applying scaling on the silhouette.
The synthetic pedestrians move in the scene, with a dynamics
similar to the that of the PETS videos. The comparison of our
approach with HJS on this synthetic dataset (see Fig. 2) has
been performed using a different number of moving objects
in the range [2, 7]. Two error measures are considered: 1) the
estimation of the Mean Error (ME), defined as the distance
between the GT position of an object and the location esti-
mated by the tracker on the floor (in meters); 2) the estimation
on the image plane in terms of False Positives (FP), Multiple
Objects (MO), False Negatives (FN), Multiple Trackers (MT),
and Tracking Success Rate (TSR) (see [8] for further details).
The results, averaged over all the experiments and for all the
moving objects, are summarized in Table 1 (the lower the bet-
ter, except TSR): it can be noted that the proposed approach
outperforms HJS, especially in terms of ME and TSR.

ME FP MO FN MT TSR
HJS 0.64 0.12 0 0.12 0 0.87
Our Method 0.53 0.09 0 0.09 0 0.91

Table 1. Results comparison on synthetic videos.

Concerning the real dataset, qualitative evaluations have
been carried out exploiting different videos of varying length.
The achieved results mirror those gathered on the synthetic
trials. Actually, our feature selection strategy provides track-
ing performances that qualitatively and in average are compa-
rable to those obtained by HJS, outperforming the latter in the
case of occlusions. Two examples are shown in Fig. 3 and 4.

5. CONCLUSIONS

In this paper, we proposed an online feature selection strategy
embedded in a multi-object tracking framework. The strategy
is repeatedly applied in order to distill a pool of features dis-
criminating one object with respect to the surrounding ones,
that permits to deal with occlusions among multiple persons.
The effectiveness of the method is proved by testing it on a
set of trials consisting in synthetic and real standard datasets,

1

2

3
4

1

2
3 4

1

2

3
4

1

2 3
4

1

2
3

4

1

2 3
4

1

2 3
4

1

2 3
4

Frame 1130 Frame 1180 Frame 1230 Frame 1275

Fig. 3. A comparison of HJS (first row) and our method (sec-
ond row): frames 1130 to 1300, seq. S5-T1-G, PETS ’06.
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Fig. 4. A comparison of HJS (first row) and our method (sec-
ond row): frames 1370 to 1470, seq. S07, PETS ’07.

promoting its use as a standard step in the observational phase
of any particle filtering tracker.
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