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The crucial role played by the analysis of microbial diversity in biotechnology-based inno-
vations has increased the interest in the microbial taxonomy research area. Phylogenetic
sequence analyses have contributed significantly to the advances in this field, also in the
view of the large amount of sequence data collected in recent years. Phylogenetic analyses
could be realized on the basis of protein-encoding nucleotide sequences or encoded amino
acid molecules: these two mechanisms present different peculiarities, still starting from
two alternative representations of the same information. This complementarity could be
exploited to achieve a multimodal phylogenetic scheme that is able to integrate gene and
protein information in order to realize a single final tree. This aspect has been poorly
addressed in the literature. In this paper, we propose to integrate the two phylogenetic
analyses using basic schemes derived from the multimodality fusion theory (or multiclas-
sifier systems theory), a well-founded and rigorous branch for which its powerfulness has
already been demonstrated in other pattern recognition contexts. The proposed approach
could be applied to distance matrix–based phylogenetic techniques (like neighbor join-
ing), resulting in a smart and fast method. The proposed methodology has been tested in
a real case involving sequences of some species of lactic acid bacteria. With this dataset,
both nucleotide sequence– and amino acid sequence–based phylogenetic analyses present
some drawbacks, which are overcome with the multimodal analysis.
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1. Introduction

Microbial diversity is one of the major sources for the discovery and exploitation of
novel biotechnological innovations.1 For this reason, the cataloging of that diversity
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is equally fundamental. The analysis of diversity, i.e. the delineation of taxa and
their arrangement in an ordered scheme, is referred to as taxonomy or systematics.
In the last 20 years, a major advance in microbial taxonomy arose from the analyses
of the molecular elements of the cell, and from phylogenetic analyses in particular.
Since the first proposal of using molecular sequences as phylogenetic markers, dif-
ferent molecules have been targeted: rRNA genes, polypeptides, protein-encoding
genes, noncoding sequences, etc.2–5

The enormous amount of gene and genome sequence data available to date, due
to the lowered costs of the DNA sequencing techniques, together with the easier and
more objective comparison of taxa based on sequence data6 have made it possible
to reanalyze the phylogenetic and taxonomic relationship of taxa at all taxonomic
levels, also outside the microbial context.7 In a taxonomic perspective, the impor-
tant points of phylogenetic sequence analysis are (1) the reliability of the obtained
groupings, and (2) the clear resolution of the terminal nodes of the tree. Both
aspects are related either to the kind of molecule analyzed (16S rRNA, protein-
encoding genes, noncoding sequences) or to the way the phylogenetic analysis is
performed. Actually, this analysis could be based on the calculation of a matrix
from the data, representing the distance between each pair of aligned sequences,
and subsequently transforming the matrix into a tree. Various distance measures
have been proposed to this aim, which are based on different models of nucleotide
substitution or amino acid replacement (e.g. Refs. 8–15). Alternatively, the phylo-
genetic tree could be derived by directly finding the tree topology best fitting the
data; this category of methods groups parsimony and maximum likelihood.16

The kind of molecule chosen for the analysis is crucial for the extent of infor-
mation that could be extracted from it: amino acid sequences are useful to depict
phylogenetic relationships at higher taxonomic ranks or levels, but they often over-
estimate the relatedness of closely related sequences since synonymous mutations
(i.e. DNA substitutions not leading to a mutation in the amino acid sequence) are
not recorded; this often does not allow resolution of terminal branches. On the
nucleotide side, protein-encoding genes tolerate synonymous substitutions, linked
to the different codon usage in different organisms: this allows the differentiation of
closely related taxa (e.g. Ref. 17). This result is often not pursued with the analysis
of 16S rRNA gene sequences, which encode for functional ribosomal RNA and are
very slowly diverging sequences, with an informative content similar to that of pro-
tein sequences. However, even if protein-encoding DNA sequence analysis allows
fine resolution of closely related taxa, they could produce inconsistent groupings
if sequence characteristics such as guanine-cytosine (GC) content are not properly
addressed.

Summarizing and considering protein-encoding genes, the DNA, and the amino
acid sequences are two sides of the same coin, connected by the translation mask,
representing two different representations of the same information. In practical
cases, the choice of using the amino acid or the nucleotide phylogeny is typically
related to the context: the most used solution is to realize both, manually trying to
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derive an a posteriori final agreement. Sometimes, the use of models for nucleotide
sequence analysis (e.g. Ref. 13, which accounts for compositional bias of sequences)
permits the exploitation of information on the encoded amino acid sequences, albeit
only implicitly.

For all of these reasons, the realization of an automatic and explicit way of
integrating protein and gene phylogenies could be of great impact in this research
field, and is the aim of the present paper. This aspect has been poorly addressed in
the literature, and typical approaches implemented in current softwares are mostly
based on heuristic rules, lacking a rigorous and well-founded theory. An exception
is represented by the MrBayes3 software,18 based on the rigorous Bayesian theory,
which allows the combination of different kind of data. Nevertheless, this approach
presents some disadvantages, especially from a practical and operative point of
view: the first concern is relative to the several additional parameters to be set (like
the prior probabilities), most of which are crucial. Moreover, the derived tree is the
result of a complex optimization process (based on Markov chain Monte Carlo),
which in some cases does not converge to an acceptable solution. Finally, it is very
slow and thus inapplicable for large datasets. For all of these reasons, taxonomists
typically resort to distance matrix–based methods.

In this paper, a novel method for integrating gene and protein information in
phylogenetic analyses is proposed, which has different appealing characteristics:
(1) it is based on a rigorous and well-founded theory, namely, the fusion theorya;
(2) one of the proposed methods clearly derives from a biological observation; (3) it
is a distance matrix–based approach, so it is fast and easy to apply; and (4) the
result is a single final phylogenetic tree, obtained from both nucleotide and amino
acid analyses by the application of fusion strategies well known in the field of
computer science, but poorly applied in biologically relevant contexts. Fusion theory
aims at integrating the possibly complementary information provided by different
methodologies in a particular problem, exploiting the different peculiarities of the
fused techniques. This theory, first introduced in the classification context19–21 and
recently also in the clustering context (Refs. 22 and 23 as well as references therein),
seems to be particularly suited for the context we are investigating. In particular,
the information fusion could be performed at three different levels24: data or feature
level, where feature representations are combined; score level, where scores derived
from different modalities (e.g. similarities) are composed to get a new score; and
decision level, where the final outputs of multiple strategies are consolidated.

The novel multimodal fusion approach proposed in this paper belongs to the
second category, and is aimed at integrating gene- and protein-derived similar-
ity matrices, resulting in a score level fusion. In general, fusion at score level is
preferred,25,26 since it is relatively easy to access and combines scores produced by
the different modalities; moreover, in some studies, its superiority against feature-
level fusion and decision-level fusion has been reported (e.g. Ref. 27). A score-level

aAlso referred, in other contexts, as multimodality approach or multiple classifier system.
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fusion technique has been very recently proposed in the context of phylogenomics,28

which is nevertheless an extension of phylogeny. This scenario presents several dif-
ferent problems such as the lack of data in datasets and the problematic combi-
nation of genes with different histories (resulting in different mutation rates). In
our approach, we do not combine different molecules, but different representations
of the same molecule. The aim is therefore to extract as much phylogenetic signal
as possible from a single trait, circumventing the drawbacks due to the type of
molecule analyzed and to the different methods of analysis. The intervention we
propose in the present study is therefore a step upstream to the combination of
results of different genes, i.e. phylogenomics.

In this study, different score-level fusion strategies were tested in a real case
involving a set of sequences of lactic acid bacteria species, with the peculiarity of
an unequal base composition. In this case, it is known that the majority of distance
formulas have some limits. It has been shown that the fused tree overcomes these
limits and allows, at the same time, the recognition of peculiarities of individual
taxa. In other words, it is able to maintain the appealing characteristics of both
nucleotide and amino acid trees, recovering from the single-modality drawbacks.

2. Multimodal Fusion

Fusion theory starts from the following rationale: different methodologies could
be designed and tested to solve a practical problem (classification or clustering).
Although one of these methodologies would yield the best performance, the sets of
patterns wrongly treated by different methodologies would not necessarily overlap.
This suggests that different methodologies potentially offer complementary infor-
mation, and an approach which fuses decisions taken by different sources could lead
to better performance. Multimodality approaches have been successfully employed
in different pattern recognition fields: two significant examples are the audio-visual
joint scene analysis (see, for example, Refs. 29–32), and the multimodal biometrics
(see, for example, Refs. 33–35).

As stated in Sec. 1, fusion could be performed at feature level, score level, or
decision level. Here, we concentrate on fusion at the score level, i.e. on the combina-
tion of similarity (or dissimilarity) measures originating from different modalities.
In this context, two scenarios are possible20: (1) all of the methodologies (classi-
fiers) use the same representation for the input data; or (2) each methodology has
its own one, i.e. the measurements extracted from each object are unique to each
methodology. The fusion schemes adopted in this paper are related to this second
scenario, since the nucleotide and amino acid phylogenies are based on different
characterizations of the same taxon.

In the context of fusion, different basic rules have been proposed and tested.
In this paper, we investigated five different strategies. Four of them are standard
rules, directly derived from the fusion theory.20 They are typically well performing
in different applications, but they lack a clear biological meaning. For this reason,
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we introduced a fifth one, clearly understandable from a biological standpoint. All
of these techniques take as input the two similarity matrices derived from both the
nucleotide sequence– and the amino acid sequence–based phylogenies, which we
called DNT and DAA, respectively; and produce as output a new single similarity
matrix, denoted as DFusion.

2.1. Standard rules

We applied the following four standard rules:

(1) Mean rule: For each pair of sequence, the new distance is the mean of the
nucleotide and amino acid ones (1 ≤ i, j ≤ N):

DFusion(i, j) =
1
2
(DNT(i, j) + DAA(i, j)), (1)

where N is the number of sequences. Actually, the mean rule is equivalent to
the sum one,20 since the tree does not change in a qualitative way (the distance
only scaled to a factor of 2); nevertheless, the mean rule maintains the distance
measures in the same range of the input ones.

(2) Prod rule: For each pair of sequence, the new distance is the product of the
input ones:

DFusion(i, j) = DNT(i, j) × DAA(i, j). (2)

(3) Max rule: For each pair of sequence, the new distance is the maximum between
the nucleotide distance and the amino acid one:

DFusion(i, j) = max(DNT(i, j), DAA(i, j)). (3)

(4) Min rule: For each pair of sequence, the new distance is the minimum between
the two input distances:

DFusion(i, j) = min(DNT(i, j), DAA(i, j)). (4)

A common theoretical framework justifying these rules (and others) can be
found in Ref. 20. A recent analysis of the mean rule (and in general of the linear
combiners for multiple classifier systems) can be found in Ref. 36. Even if more
complex rules more explicitly related to clustering applications have been recently
proposed (see, for example, Refs. 22 and 23), these simple rules typically permit us
to obtain very satisfactory results.34

2.2. An adaptive fusion rule

The mean rule could also be considered as the basic version of the so-called linear
combiners, which assign a different weight to each methodology.36 This rule, in our
context, becomes

DFusion(i, j) = (1 − α)DNT(i, j) + αDAA(i, j), (5)

with 0 ≤ α ≤ 1.
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The main problem in this case is to choose the right value of α. One solution
is to set α with a fixed value (as done in Ref. 28, related to the reliability of the
protein-based analysis, where 1 − α is the counterpart for the nucleotide-based
analysis. Here, we adopt a different strategy, based on a well-known fact: the amino
acid analysis is more reliable for very distant taxa, whereas the nucleotide one is
more discriminative for related taxa. Following this rationale, we define a different
weight for each pair of analyzed taxa, giving more emphasis to the amino acid part
if the taxa are unrelated or to the nucleotide one if the taxa are strictly related.
The rule therefore becomes

DFusion(i, j) = (1 − αij)DNT(i, j) + αijDAA(i, j), (6)

with 0 ≤ αij ≤ 1.
There are several possible options for defining αij that reflects this fact. The

first intuitive solution is

αij =
R(i, j)

maxh,k R(h, k)
, (7)

where R(i, j) is the relatedness of the taxa i and j. In our case, we define the
relatedness as the amino acid distance, i.e.

R(i, j) = DAA(i, j).

The solution for Eq. (7) has two drawbacks. First, if in the dataset there is an
outgroup, there will be few large distances and many small distances, and all αij

will be small. This could be avoided by linking the value of αij = 0.5 to the median
of the distances (the median is a robust estimation of the mean). Second, since the
protein is more reliable than the gene, we should guarantee to always fuse a minimal
amount of information from the amino acid analysis. This could be guaranteed by
imposing

Imin ≤ αij ≤ 1,

where 0 ≤ Imin ≤ 1 is the minimum amount of information assured to the amino
acid analysis. The final formulation is therefore

αij = Imin +
(

R(i, j) ∗ 0.5
medianh,kR(h, k)

)
(1 − Imin). (8)

In this way, we used protein-based analysis to depict the general behavior of the
tree, leaving to the gene-based one the resolution of very close taxa.

2.3. Score normalization

A crucial issue to be solved in the context of fusion at the score level is the nor-
malization problem,24 which regards the transformation of the scores of different
modalities in a common range prior to combining them (for example, if one score
has values in the range [0,1] and another in the range [0,100000], the fusion will be
completely driven by the second).
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3. Experimental Results

The proposed approach was tested in a real case involving a set of sequences from
some species of lactic acid bacteria. In particular, the dataset was composed by 71
partial recA gene sequences (summarized in Table 1) of 564 bp and, consequently,
188 amino acid positions.

Sequences were aligned with the ClustalX37 program and gap-containing
columns were removed. Alignment did not introduce gaps; therefore, there were
no consequences on the translation frame of the nucleotide sequences. The phyloge-
netic analyses were performed with Kimura, Logdet, Jukes–Cantor, and F84 models
for nucleotide sequences; JTT, PMB, PAM, and Kimura for amino acid sequences;

Table 1. Dataset used in the experimental session.

Label name GenBank acc. no. Label name GenBank acc. no.

Lacidipisc AJ621616 Lmali AJ621655
Lagilis AJ621617 Lmaltaromi AJ621690
Lamylophil AJ621621 Lmucosae AJ621657
Lamylovoru AJ621622 Lmurinus AJ621658
Lanimalis AJ621623 Lpartolerans AJ621663
Laviarar AJ621624 Lparac AJ621664
Lbrevis AJ621625 Lparabuchn AJ621661
Lbuchneri AJ621626 Lparaplant AJ621662
Lcasei334 AJ621627 Lpentosus AJ621666
Lcatenafor AJ621629 Lperolens AJ621667
Lcellobios AJ579535 Lplantarum AJ621668
Lcolehomin AJ621630 Lpontis AJ621669
Lcollinoid AJ621631 Lpsittaci AJ621670
Lcrispatus AJ621632 Lreuteri AJ621672
Lcurvcurv AJ621633 Lruminis AJ621673
Lcypricase AJ621634 Lsharpeae AJ621675
Ldelbdelb AJ586863 Lsuebicus AJ621676
Ldellactis AJ586865 Lvaccinost AJ621678
Ldelbulg AJ586864 Lvaginalis AJ621679
Ldiolivora AJ621635 Pdamnosus AJ621694
Ldurianis AJ621636 Pinopinatu AJ621697
Lfarcimini AJ621638 Pparvulus AJ621698

Lfermentum AJ579534 Ppentosace AJ621699
Lfornicali AJ621639 Purinaequi AJ621700
Lfrumenti AJ621640 Lncarnosum AJ621682
Lfuchuensi AJ621641 Lncitreum AJ621688
Lgallinaru AJ621642 Lnfallax AJ621684
Lgasseri AJ621643 Lnmesdex AJ621685
Lgraminis AJ621644 Lnmescrem AJ621687
Lhamsteri AJ621646 Lnmesmes AJ621686
Lhelveticu AJ621645 Lnpseudome AJ621683
Lhilgardii AJ621647 Ooeni AJ621689
Lintestina AJ621654 Wkandleri AJ621692
Ljensenii AJ621648 Wminor AJ621693
Lkefiri AJ621650 Cdivergens AJ621691
Lkunkeei AJ621652
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and neighbor joining as the clustering method, as implemented in Phylip Version
3.6.b The fused distance matrices were computed with the Matlab code. All dis-
tance formulas tested produced almost the same tree in terms of topology and group
composition. As an example, the gene sequence–derived dendrogram obtained with
the LogDet model is shown in Fig. 1, whereas the amino acid–derived one (PMB
model) is presented in Fig. 2.

In order to highlight the drawbacks of the single-modality phylogenetic trees,
consider sequences labeled as Lsharpeae, Ldelbdelb, Ldelbulg, Ldellactis, Lpontis,
Lfermentum, and Lcellobios (group 1 in Fig. 1): the group does not agree with
clusters obtained with other genes such as 16S rRNA and with phenotypic traits
of the taxa.38 Moreover, this group is split into four subgroups (1a, 1b, 1c, and
1d) in the amino acid tree (Fig. 2), consistently with the above-mentioned data.
The nucleotide sequences are characterized by a similar GC content and accord-
ingly similar codon usage and nucleotide frequencies, which bias the analysis of the
nucleotide sequences; however, this is overcome by the analysis of the amino acid
sequences.

On the other side, species clustered in group 2 (Lactobacillus pentosus, Lac-
tobacillus plantarum, Lactobacillus paraplantarum) are clearly separated only in
the gene sequence–derived tree: those species are closely related and mutations in
the gene sequences are mainly synonymous substitutions.17 Therefore, distances
are not determinable in the amino acid–derived tree. From these observations, it
derives that the two single-modality phylogenetic trees made some approximations
in two different parts of the tree. The complementarity of these errors is the correct
premise for applying the fusion strategy.

The multimodal trees were obtained using the five rules described in Sec. 2 to
combine the scores of the nucleotide and amino acid analyses, for different models.
The scores were normalized using their averages. Figures 3 and 4 show the multi-
modal tree obtained by fusing the LogDet and the PBM distance matrices with the
mean rule and the adaptive rule, as described in Eq. (1) and Eq. (6), respectively;
they produced the best results. Actually, in the reported trees, the spreading of
group 1 throughout the tree is maintained; therefore, the biases of the DNA anal-
ysis seem to be overcome. Considering group 2, the species are clearly separated,
bypassing the low resolution of the amino acid sequence–based tree. Concerning
branch lengths and group composition, other rules produced unsatisfactory results.
In particular, the Min and the Prod rule results were driven by the amino acid anal-
ysis, showing a correct topology but a poor resolution. This behavior is expected,
since both rules are mostly influenced by the lowest scores (amino acid ones, due
to the degeneration of the genetic code). Vice versa, the Max rule result was led by
the nucleotide analysis, hence maintaining incorrect grouping but clearer resolution
of branches.

bAll information on software and models can be found at http://evolution.gs.washington.
edu/phylip.html.
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Fig. 1. Dendrogram derived from the nucleotide sequence analysis. Two groups are highlighted.
The first includes the sequences of Lactobacillus sharpeae (labelled Lsharpeae), Lactobacillus del-
brueckii subsp. delbrueckii (Ldelbdelb), Lactobacillus delbrueckii subsp. bulgaricus (Ldelbulg),
Lactobacillus delbrueckii subsp. lactis (Ldellactis), Lactobacillus pontis (Lpontis), Lactobacillus
fermentum (Lfermentum), and Lactobacillus cellobiosus (Lcellobios). The second comprises Lac-
tobacillus pentosus (Lpentosus), Lactobacillus plantarum (Lplantarum), and Lactobacillus para-
plantarum (Lparaplant).
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Fig. 2. Dendrogram obtained from the amino acid sequence analysis. Note that group 1 of Fig. 1 is
split into four different parts of the tree (subgroups 1a, 1b, 1c, and 1d). Group 2 remains unaltered,
but distances are lost.
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Fig. 3. Dendrogram obtained from the multimodal analysis (mean rule): the split of the group 1
is maintained, and the distances in group 2 are regained.



October 3, 2007 18:34 WSPC/185-JBCB 00306

1080 M. Bicego, F. Dellaglio & G. E. Felis

0.1

Lmaltaromi
Cdivergens

Purinaequ i
Ooeni

Lcatenafor
Wkandleri

Wminor
Lncitreum

Lnfallax
Lncarnosum

Lnpseudome
Lnmescrem
Lnmesdex
Lnmesmes

Lmali
Lfuchuensi

Lcurvcurv
Lgraminis

Lamylophil
Lsuebicus

Lcolehomin
Lmucosae

Lcellobios
L fermentum

Lpontis
Lfrumenti

Lreuteri
Lvaginalis

Ldurianis
Lvaccinost
Lbuchneri

Lperolens
Ldioli vora

Lhilgardii
Lkefiri
Lparabuchn

Pparvulus
Pdamnosus

Pinopinatu
Lcollinoid

Lpentosus
Lparaplant
Lplantarum

Lkunkeei
Lfarcimini

Ppentosace
Lsharpeae

Lcasei334
Lpartolera
Lparac

Lruminis
Lagilis

Laviarar
Lbrevis

Lintestina
Lhamsteri

Lcrispatus
Lamylovoru

Lfornicali
Lgallinaru

Lhelveticu
Lpsittaci

Lgasseri
Ljensenii

Ldelbulg
Ldelbdelb
Lde llactis

Lanimalis
Lmurinus

Lacidipisc
Lcypricase

2

1a

1b

1c
1d

Fig. 4. Dendrogram obtained from the multimodal analysis (adaptive rule, with Imin = 0.3): the
split of the group 1 is maintained, and the distances in group 2 are regained.
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Looking more in detail at the nucleotide-based trees and multimodal trees, some
indistinguishable leaves are still present: Lnmesmes, Lnmesdex, and Lnmescrem are
sequences belonging to different strains of the same species (Leuconostoc mesen-
teroides), and their high similarity is expected. The same situation characterizes
Ldelbulg, Ldellactis, and Ldelbdeld (Lactobacillus delbrueckii) as well as Lparac,
Lpartolerans, and Lcasei334 (Lactobacillus paracasei). Other unresolved groups con-
tain taxa that have been recently reclassified as belonging to the same species
include the following: Lactobacillus fermentum (Lfermentum) and Lactobacillus
cellobiosus (Lcellobios),39 Lactobacillus cypricasei (Lcypricase) and Lactobacillus
acidipiscis (Lacidipisc),40 and Lactobacillus vaccinostercus (Lvaccinost) and Lacto-
bacillus durianis (Ldurianis).41

4. Discussion

In this preliminary study of the application of fusion techniques to phylogenetic
analysis, we investigated a few models and applied a distance-based clustering tech-
nique in order to analyze as clearly as possible the effects of score-level fusion. The
results of the analysis are encouraging, since single-modality errors are overcome
in the multimodal tree. This is possible thanks to the complementary behavior
of the single modalities, which show approximations in different parts of the tree.
Obviously, this complementarity is crucial in order to make the fusion strategy
advantageously working; if not present, no gain could be obtained with the fusion.

Even if the analysis is somewhat preliminary, some precise considerations could
be drawn at this stage. The first concerns the analysis of the multimodal tree: by
comparing it with the amino acid sequence–based analysis one, we could observe
that there is a perfect agreement in terms of group composition. Although the order
of ramifications is not completely preserved, no conclusions can be drawn without
a deeper analysis on the significance and on the robustness of the ramifications (for
example, with bootstrap). Moreover, as stated before, it is evident that the species
in group 2 are clearly separated in the multimodal tree, bypassing the low resolution
of the amino acid sequence–based tree. On the other hand, the presence of some
unresolved leaves allows the immediate recognition of indistinguishable taxa.

Another consideration regards the nucleotide sequence–based phylogenetic anal-
ysis: we are aware that more sophisticated models could effectively deal with a
dataset with unequal base composition, such as the Galtier–Gouy model proposed
in Ref. 13. Nevertheless, the simplicity of the present analysis permits us to clearly
evidence the actual gain obtained by the fusion strategy. Even if the multimodal
analysis is based on a nonoptimal nucleotide analysis (based on an inappropriate
model), the obtained result outperforms single-modality outcomes.

A further consideration concerns the fusion strategies: in our experiment, differ-
ent fusion techniques did not always provide the same results, as expected. In par-
ticular, we observed that the best result was obtained with the mean rule (sum) and
with the averaged mean rule (the adaptive one). The introduction of the adaptive
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fusion rule did not significantly improve the results of the multimodal analysis with
respect to the sum. Even if very simple, the sum scheme permits us to obtain very
satisfactory results. On the other hand, the worst result has been obtained with
the Prod rule: this represents a very restrictive rule, since low similarities in one
methodology drive the whole fusion result to low values. These outcomes are in line
with results obtained in other contexts (e.g. Refs. 20 and 34).

As a final comment, we are aware that with the proposed methodology we are
employing the data sequence twice, combining the results. Data reuse is surely
an open issue in the multiclassifier systems (see, for example, the discussion in
Ref. 42), even if in the specific context the problems could be avoided with a careful
estimation of the parameters.

5. Conclusions

In this paper, a novel multimodal phylogeny scheme has been proposed, aimed
at fusing amino acid and nucleotide information at the score level. The proposed
approach is based on a well-founded theory and permits the integration of distance
matrix–based phylogenetic schemes, thus resulting in a fast and intuitive method.
Different basic fusion schemes have been analyzed and tested in a real case involving
sequences of some lactic acid bacteria species. In this dataset, both nucleotide and
amino acid phylogenetic analyses have some drawbacks, which are recovered by the
multimodal analysis.

The obtained preliminary result is very promising, and encourages us to go fur-
ther in this direction. There are several issues to be investigated, of both practical
and theoretical types. From a practical point of view, it could be interesting to
statistically validate the groups obtained by the multimodal phylogenetic analysis,
using a bootstrap analysis. From a theoretical point of view, one issue to be inquired
is the possibility of using more sophisticated fusion techniques, such as those
recently introduced in the clustering contexts based on evidence accumulation.23

Moreover, the theoretical effects of the fusion of information derived from nucleotide
and amino acid mutation models have to be investigated, carefully clarifying the
phylogenetic implications of the fusion process.

As a final remark, we would like to stress the fact that the proposed approach
could also be useful in the phylogenomic context, as it would allow us to maximize
the information extracted for each gene before the combination of results of different
genes.
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