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Abstract. In this paper a new complete system for 3D face recognition
is presented. 3D face recognition presents several advantages against 2D
face recognition, as, for example, invariance to illumination conditions.
The proposed system makes use of a stereo methodology, that does not
require any expensive range sensors. The 3D image of the face is modelled
using Multilevel B-Splines coefficients, that are classified using Support
Vector Machines. Preliminary experimental evaluation has produced en-
couraging results, making the proposed system a promising low cost 3D
face recognition system.

1 Introduction

Face recognition is undoubtedly an interesting research area, growing in impor-
tance in recent years, due to its applicability as a biometric system in commercial
and security applications. The face recognition system has the appealing char-
acteristic of not being an invasive control tool, as compared with fingerprint or
iris biometric systems.

The most typical approach to face recognition is to analyze 2D face images,
and a large literature is available on this topic (for a review see [1], and [2]). The
analysis of 2D face has some inherent drawbacks: for example it is not able to
distinguish a real face from a picture of a face, since it does not consider depth
information. This could represent an awkward problem, especially in the authen-
tication context. Moreover, most part of techniques proposed in the literature
suffers from illumination changes problems.

The analysis of 3D images of a face represents a possible solution for both
these problems. Although 3D facial analysis has been already applied in some
research areas, as compression and synthesis for videoconferencing [3], recogni-
tion of faces basing on range images is still weakly addressed in the literature
[4,5,6,7,8,9]. More in detail, the first system that analyzes 3D faces was presented
in [4]: the method identified facial features points, based on local curvature com-
puted from range images. The face was segmented in convex and concave regions,
and features were determined from these regions. No recognition was performed
in this system. Gordon [5,6] was the first that realized a recognition system based
on range data. He computed geometric features of the sensed surface, integrating
some a priori knowledge. Recognition was performed using a template matching
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approach and a classification system in the feature space. Another approach was
proposed in [7,8], where the 3D information was determined using a coded light
approach with two separate sensors. The classification step was performed using
an eigenface approach and HMM-based technique. More recently, the same au-
thors present another system [9], that classifies range images, acquired using a
multi sensor system. The canonical position is determined from the range images
face, and a 3D Haussdorff distance is used for the classification step.

In this paper a new complete system for 3D face recognition is proposed,
based on stereoscopic images analysis. The process of stereo reconstruction aims
at recovering the 3D structure from a pair of images by searching for conjugate
points, i.e., points in the left and right images that are projections of the same
scene point. The difference between the positions of conjugate points is called
disparity. Stereo is a well known issue in Computer Vision, to which many articles
have been devoted (see [10] for a survey). The system proposed in this paper
has a clear advantage with respect to the previously introduced: the acquisition
process is fast and entirely low cost. In fact, the 3D information are acquired
using two cameras by applying the stereoscopic principles, without any need of
particularly expensive range sensors. Furthermore, the stereo setup calibration is
very easy and fast and there are different standard implemented methods freely
available on the web. This aspect is really important, especially in the view of
enlarging the applicability of the biometric technologies to real problems.

The range image obtained by the stereoscopic analysis is approximated us-
ing Multilevel B-Splines [11], an interpolation and approximation technique for
scattered data. The resulting approximation coefficients were used as features
for the classification, carried out by the Support Vector Machines (SVM) [12].
The reasons underlying the choice of using Multilevel B-Splines and Support
Vector Machines are the following: from one hand, Multilevel B-Splines coef-
ficients have been chosen for their approximation capabilities, able to manage
slight changes in facial expression. On the other hand, even if a considerable di-
mensionality reduction is obtained by this technique with respect to considering
the whole image [13], the resulting space is still large. Standard classifiers could
be affected by the so called curse of dimensionality problem; SVMs, instead, are
well suited to work in very high dimensional spaces (see for example [13]). This
classification system has been already employed by the authors in the context
of 2D face recognition [14]. In this version we explore the possibility to estimate
the face surfaces directly from the 3D data obtained by the acquisition system.

The proposed system has been used to collect a set of 90 faces, with 9 subjects
(each with 10 face, varying expressions). Classification accuracies on this data
set are very encouraging, and make the proposed approach a promising really
employable system for face recognition and authentication.

The rest of the paper is organized as follows: in the Sect. 2 the acquisition
system is detailed, while in the recognition system is described in Sect. 3. The
experimental evaluation is proposed in 4; finally, Sect. 5 contains conclusions
and future perspectives.
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2 The Acquisition System

Three-dimensional data are obtained from an active stereo system developed at
the VIPS (Vision, Image Processing, and Sound) laboratory1 of the Department
of Computer Science (University of Verona). The system is composed by two
optical cameras and a overhead projector which illuminates the scene with a
salt-and-pepper random texture (Figure 1). Thus, all the surfaces are textured,

Fig. 1. Active Stereo system of acquisition

and every small surface patch is characterized by a very distinctive pattern
(Figure 2(a) and (b)). This trick facilitate area-based stereo matching, which
would otherwise produces no meaningful results for uniformly colored areas. In
summary, the acquisition pipeline is composed of the following stages:

Calibration. The position and orientation of both cameras, as well as intrinsic
parameters are computed with the calibration algorithm described in [15]
and implemented in a Matlab toolbox2.

Rectification. Instead of relying on accurate mechanical alignment, a parallel-
camera acquisition geometry is “simulated” by transforming the images cap-
tured by the two cameras as if they were taken by two virtual parallel cam-
eras. This process is called epipolar rectification, and is described in [16].

Stereo Matching. Corresponding points on the left and right images are recov-
ered using the R-SMW area-based stereo matching algorithm [17]. However,
given that we project an artificial texture onto the scene, the choice of the
matching algorithm is less critical than in passive stereo.

The output of the system is a disparity map [10] related to the acquired subject
(Figure 2(c)). It is worth noting that the disparity map is very similar to a range
1 See http://vips.sci.univr.it.
2 The Camera Calibration Toolbox for Matlab is downloadable from
http://newbologna.vision.caltech.edu/bouguetj
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map [18] and it covers the 3D information we are using for recognizing the faces.
In particular light disparity pixels correspond to surface points that are closer
to the sensor and vice versa.

(a) (b) (c)

Fig. 2. Stereo images, left(a) and right (b), acquired while the overhead projector
projects a random texture to the subject, and disparity map (c)

3 The Classification System

The classification system is based on two stages: firstly, range images are mod-
elled using Multilevel B-Splines [11] and coefficients of approximation are ex-
tracted. Then, these coefficients are used for classification with Support Vector
Machines [12].

3.1 Multilevel B-Splines

The Multilevel B-Splines [11] represent an approximation and interpolation tech-
nique for scattered data. More formally, let Ω = {(x, y)|0 ≤ x ≤ m, 0 ≤ y ≤ n}
be a rectangular non-integer domain in the xy plane. Consider a set of scattered
data points P = {(xc, yc, zc)} in 3D space, where (xc, yc) is a point in Ω. The
approximation function f is defined as a regular B-Spline function, defined by a
control lattice Φ overlaid to Ω, visualized in Fig. 3. Let Φ be a (m +3)× (n +3)
lattice that spans the integer grid Ω.

The approximation B-Spline function is defined in terms of these control
points by:

f(x, y) =
3∑

k=0

3∑

l=0

Bk(s)Bl(t)φ(i+k)(j+l) (1)

where i = �x� − 1, j = �y� − 1, s = x − �x�, t = y − �y�, φij are control points,
obtained as weighted sums with B-Spline coefficients Bk and Bl of 4 × 4 set of
points, called proximity sets, belonging to Ω:
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Fig. 3. Configuration of control lattice Φ in relation to domain Ω.

φij =
∑

c w2
cφc∑

c ω2
c

(2)

where ωc = ωkl = Bk(s)Bl(t), k = (i + 1) − �xc�, l = (j + 1) − �yc�,
s = xc − �xc�, t = yc − �yc�, (xc, yc, zc) control points and φc = wczc∑3

a=0

∑3

b=0
w2

ab

.

By properly choosing the resolution of the control lattice Φ, it is possible to
obtain a compromise between the precision and smoothness of the function; a
good smoothness entails a cost in terms of low accuracy, and vice-versa.

Multilevel B-Splines approximation can overcome this problem. Consider a
hierarchy of control lattices Φ0, Φ1, . . . , Φh, that spans the domain Ω. Assume
that, having fixed the resolution of Φ0, the spacing between control points in Φi

is halved from one lattice to the next.
The process of approximation starts by applying the basic B-Spline approx-

imation to P with the coarsest control lattice Φ0, obtaining a smooth initial
approximation f0. f0 leaves a deviation ∆1zc = zc − f0(xc, yc) for each point
(xc, yc, zc) in P . Then, f1 is calculated by the control lattice Φ1, approximating
the difference P1 = {(xc, yc, ∆

1
c)}. The sum f1 + f2 yields a smaller deviation

∆2zc = zc − f0(xc, yc) − f1(xc, yc) for each point (xc, yc, zc) in P .
In general, for every level k in the hierarchy, using the control lattice Φk, a

function fk is derived to approximate data points Pk = {(xc, yc, ∆
kzc)}, where

∆kzc = zc−
∑k−1

i=0 fi(xc, yc), and ∆0zc = zc. This process starts with the coarsest
control lattice Φ0 up to the highest lattice Φh. The final function f is calculated
by the sum of functions fk, f =

∑h
k=0 fk.

In general, the higher the resolution of the coarsest control lattice Φ0, the
lower the smoothness of the final function. Given a set of points in a domain
width×height, m and n indicate that the lattice Φ, on which the approximating
function has been built, has dimension

(�width
m � + 3

)×
(
�height

n � + 3
)
. It follows

that high values of m and n indicate low dimensions of Φ.
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In the basic Multilevel B-Splines algorithm, the evaluation of f involves the
computation of the function fk for each level k, summing them over domain
Ω. This introduces a significant overhead in computational time, if f has to be
evaluated at a large number of points in Ω. To address this problem, Multilevel B-
Splines refinement has been proposed in [11]. This technique allows to represent
f by one B-Spline function rather than by the sum of several B-Spline functions.

Let F (Φ) be the B-spline function generated by control lattice Φ and let |Φ|
denote the size of Φ. With B-spline refinement, we can derive the control lattice
Φ′

0 from the coarsest lattice Φ0 such that F (Φ′
0) = f0 and |Φ′

0| = |Φ1|. Then,
the sum of functions f0 and f1 can be represented by control lattice Ψ1 which
results from the addition of each corresponding pair of control points in Φ′

0 and
Φ1. That is, F (Ψ1) = g1 = f0 + f1, where Ψ1 = Φ′

0 + Φ1.
In general, let gk =

∑k
i=0 fi be the partial sum of functions fi up to level k

in the hierarchy. Suppose that function gk−1 is represented by a control lattice
Ψk−1 such that |Ψk−1| = |Φk−1|. In the same manner as we computed Ψ1 above,
we can refine Ψk−1 to obtain Ψ ′

k−1 , and add Ψ ′
k−1 to Φk to derive Ψk such that

F (Ψk) = gk and |Ψk| = |Φk|. That is, Ψk = Ψ ′
k−1 + Φk . Therefore, from g0 = f0

and Ψ0 = Φ0 , we can compute a sequence of control lattices Ψk to progressively
derive control lattice Ψh for the final approximation function f = gh.

3.2 Support Vector Machines

Support Vector Machines [12] are binary classifiers, able to separate two classes
through an optimal hyperplane. The optimal hyperplane is the one maximizing
the “margin”, defined as the distance between the closest examples of different
classes. To obtain a non-linear decision surface, it is possible to use kernel func-
tions, in order to project data in a high dimensional space, where a hyperplane
can more easily separate them. The corresponding decision surface in the original
space is not linear.

The rest of this section details the theoretical and practical aspects of Support
Vector Machines: firstly, linear SVMs are introduced, for both linearly and not
linearly separable data. Subsequently, we introduce non linear SVMs, able to
produce non linear separation surfaces. A very useful and introductory tutorial
on Support Vector Machines for Pattern Recognition can be found in [12].

In the case of linearly separable data, let D = {(xi, yi)}, i = 1 . . . �, yi ∈
{−1, +1},xi ∈ �d be the training set of the SVMs. D is linearly separable if
exists w ∈ �d and b ∈ �, such that:

yi(xi · w + b) ≥ 1 for i = 1, . . . , � (3)

H : w · x + b = 0 is called the “separating hyperplane”. Let d+(d−) be the
minimum distance of the separating hyperplane from the closest positive (nega-
tive) point. Let us define the “margin” of the hyperplane as d+ + d−. Different
separating hyperplanes exist. SVMs find the one that maximizes the margin. Let
us define H1 : w ·x+ b = +1 and H2 : w ·x+ b = −1. The distance of a point of
H1 from H : w · x + b = 0 is |w·x+b|

‖w‖ = 1
‖w‖ , and the distance between H1 and
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H2 is 2
‖w‖ . So, to maximize the margin, we must minimize ‖w‖ = wT w, with

the constraints that no points lie between H1 and H2.
It can be proven [12] that the problem of training a SVM is reduced to the

solution of the following Quadratic Programming (QP) problem:

max{−1
2
αT Bα +

�∑

i=1

αi} (4)

�∑

i=1

yiαi = 0 and αi ≥ 0 (5)

where αi are Lagrange coefficients and B is a � × � matrix defined as:

Bij = yiyjxi · xj (6)

The optimal hyperplane is determined with w =
∑�

i=1 αiyixi, and the classifi-
cation of a new point x is obtained by calculating sgn(w ·x+ b). It is important
to observe that only those xi whose corresponding Lagrange coefficients αi are
not null contribute to the sum that defines the separating hyperplane. For this
reason, these points are called support vectors and, geometrically, lie along the
two hyperplanes H1 and H2 (see the Fig. 4). When data points are not lin-

Origin

W

H2

H1

Margin|| W
b−

Fig. 4. Geometric interpretation of SVMs. A hyperplane separates black points
from white points. The hyperplane is obtained as a linear combination of the
circled points, called support vectors, and is defined by a direction vector W and
a distance-from-origin scalar b.

early separable, slack variables are introduced, in order to allow points to exceed
margin borders:

yi(xi ·w + b) ≥ 1 − ξi (7)

The idea is to permit such situations, by controlling them by the introduction
of a cost parameter C. This parameter determines the sensibility of the SVM to
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classification errors: a high value of C strongly penalizes errors, also at the cost
of a narrow margin, while a low value of C permits some classification errors.
Intermediate values of C result in a compromise between the minimization of the
number of errors and maximization of the margin. Finally, the training process
results in the solution of the following QP problem:

max
∑

i

αi − 1
2

∑

i,j

αiαjyiyjxi · xj (8)

�∑

i=1

yiαi = 0 and 0 ≤ αi ≤ C (9)

The SVM approach could also be generalized to the case where the decision
function is not a linear function of the data: in this case we have the so-called
non-linear SVM. The idea under nonlinear SVMs is to project data points into a
high, even huge, dimensional Hilbert space H , by using a function Ξ such that:

Ξ : �d → H

x → z(x) = z(ξ1(x), ξ2(x), . . . , ξn(x))

and then separate projected data points through a hyperplane.
First of all, notice that the only way in which the data appear in the training

problem is in the form of inner products xi · xj. When projecting points x in
Ξ(x), the training process will still depend on the inner product of projected
points Ξ(xi) · Ξ(xj). Then, to solve the problem of nonlinear decision surfaces,
it is sufficient to modify the training and classification algorithms, substituting
the inner product between data points of the training set with a kernel function
K, such that:

K(xi,xj) = Ξ(xi) · Ξ(xj) (10)

To be a kernel, a function must verify Mercer conditions [12]. Some examples
of kernel are polynomial functions like K(x, y) = ((x ·y)+1)d, exponential radial
basis function and multi-layer perceptron. In this way, data points are projected
in a higher dimensional space, where a hyperplane could be sufficient to separate
the problem properly. It is important to notice that, by the use of this “kernel
trick”, the non linear decision surface is obtained in roughly the same amount
of time needed to build a linear SVM.

3.3 The Classification Strategy

For recognizing 3D faces we have employed the following strategy: firstly, the
face surface is sampled, in order to obtain a set of points to approximate. Subse-
quently, the Multilevel B-Spline Algorithm with refinement (that is a variation
to the basic algorithm described in [11]) is applied to this set of points, consider-
ing the control lattice coefficients of a certain level as features. Once extracted,
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the control lattice is linearized into a feature vector, using the standard raster
scan.

Face recognition is a multi-class classification problem, but Support Vector
Machines are binary classifiers. To extend SVMs to the multi-class case, we
adopted the strategy of binary decision trees proposed by Verri et al. [13], called
strategy of the tennis tournament, also adopted by Guo et al. in their paper [19].

Let us assume to have c classes. The training stage consists in building up
all possible SVMs 1-vs-13, combining all the available classes. The number of
possible (not ordered) pairs of classes is c(c−1)

2 . In this way, c(c−1)
2 SVMs are

trained. In the classification stage, a binary decision tree is built, starting from
the leaves, in which each pair of brother nodes represent a SVM. Given a test
image, recognition was performed following the rules of a tennis tournament.
Each class is regarded as a player, and in each match the system classifies the
test images according to the decision of the SVM of the pair of players involved
in the match. The winner identities, proposed by each SVM, will be propagated
to the upper level of the tree, playing again. The process continues until the root
is reached. Finally, the root will be labelled with the identity of the classified
subject. Because it is a priori impossible to know which SVM will define the
various levels of the tree, the necessity of training all possible SVMs 1-vs-1 is
now clear.

In Fig. 5, an example of this classification rule is proposed. In principle,
different choices of the starting configuration, regarding SVMs inserted as leaves,

1 2 43 5 6 7 8

1 3 6 7

1 6

1

Fig. 5. An example of multi-class classification.The subject to be recognized
belongs to class number 1. First, it is classified by the SVM relative to classes
1-2, 3-4, 5-6, 7-8. The winners of this first set of classifications will define the
upper level of the tree, constituted by SVMs relative to pairs 1-3 and 6-7. Finally,
the final SVM relative to classes 1 and 6 establishes the winner.

could lead to different results. Nevertheless, in practice, preliminary experiments
showed that averaged accuracies do not depend from the starting configuration.

3 We call this kind of SVMs 1-vs-1, in order to distinguish them from SVMs 1-vs-all,
that were trained to classify between faces of one class and faces of all other classes.
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If c does not equal to the power of 2, we can decompose c as: c = 2n1 +
2n2 + . . . + 2nI , where n1 ≥ n2 ≥ . . . ≥ nI . If c is an odd number, nI = 0;
otherwise, nI > 0. Then, we can build I trees, the first with n1 leaves, the
second with n2 and so on. Finally, starting from the I roots, we can build the
final tree (or, if necessary, recursively decompose I again in powers of 2). Even if
this decomposition is not unique, the number of comparisons in the classification
stage is always c − 1.

4 Experimental Results

The system has been preliminary tested on a set of 9 subjects, each with 10
images, varying expression. Five images were used for the training, while the
remaining were used for the testing. The parameters of the approach has been
chosen based of a previous analysis on a 2D face recognition problem [14]: the co-
efficients level of the Multilevel B-splines approximation was set to 16. The SVM
was used with the exponential Radial Basis Function kernel, using σ = 10. The
C parameter, which drives the regularization [20], was set to 5. With 150× 150
pixel images, the dimensionality of the control lattice, corresponding to the level
16, equals to

(� 150
16 � + 3

) × (� 150
16 � + 3

)
= 144. Considering that images contain

150 × 150 = 22.500 pixels, level 16 permits a really noticeable dimensionality
reduction, equal to about two orders of magnitude, precisely 99,36%.

Results are presented in Table 1, for different combination of the training
and the testing set. We can note that results are very promising, in two cases

Training set Recognition Error Rate

1st 0%
2nd 2.22%

3rd 2.22%

4th 2.22%

5th 2.22%
6th 0%

Table 1. Recognition Error Rates on 6 different combinations of training and
testing sets.

the system reaches a perfect classification accuracy, and in the others it makes
only one error. Clearly only nine subjects for the testing phase are not enough
to have statistically significant results: nevertheless, a first impression about
the performances of the proposed approach could be derived, giving a promising
confidence for future developments. Anyway, a more deep testing, involving more
subjects and more environmental changes, will be topic of future investigations.
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5 Conclusions

In this paper a new complete low cost system for 3D face recognition has been
presented. The 3D face is acquired using a stereo methodology, that does not
require any expensive range sensors. The classification step is performed using
Support Vector Machines and Multilevel B-Splines coefficients. Preliminary ex-
perimental evaluation has produced encouraging results, making the proposed
system a promising low cost face recognition system.
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