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Abslracr-The automatic execution of a~complex task requires 
the identification of an underlying mental model to derive a 
possible task control sequence. The model aims at analysing and 
segmenting.the-(ask in simpler sub-lasks. As an example of a 
complex psk, in this paper we consider telwperation where a 
person commands a emote robot. This paper presents a new 
modeling approach using Hidden Markov Models (HMM) and 
Support Vector Machines (SVM) to analyse. the fokdtorqne 
signals of a telwperation task. The task is divided into simpler 
sub-tasks and the model is used, to segment the signals in each 
sub-task. The segmentation gives ~infonnations on the system 
behavior identifying the changes of the model states. Peg in Hole 
forcdtorque data %e used for testing the model. The results are 
consistent with the' literature with respect to off-line analysis, 
whereas a significant increase of performance is achieved for 
on-line analysis. . - . 

I .  INTRODUCTION 

In the last years, different teleoperation systems have been 
piaposed to d a w  human. operators to execute tasks in a 
variety of applications such as space operation, suigery and 
underwater maintenance. During task execution it is advisable 
that a supervisory algorithm analyses the teleoperation data 
as an additional safety measure. This algorithm should have 
the ability to monitor the system by using feedback signals. 
Because of the variability of complex teleoperation tasks (a 
sequence of simpler but different sub-tasks) the knowledge of 
the task state could help improving performance. For example, 
a single control algorithm may not be the most appropriate 
choice for every sub-task. A better choice could be to use a 
different control strategy for every sub-task, in this way each 
controller can be made more precise. To identify the various 
sub-tasks of a teleoperation, it is necessary to segment the 
teleoperation data in order to recognize the changes in the 
task state and to mark them as "jumps" from a sub-task to 

In literature the problem.of data segmentation has been 
addressed in different ways. In [ I ]  a Hidden Markov-Model 
(HMM) is used to carry out the task segmentation with a 

. .  number of states equal to the teleoperation sub-tasks. The 
state transition is computed using the Wterbi algorithm, which 
returns the more probable state sequence of the HMM; ,and 
the parameters of the HMM are computed using the Baum- 
Welch algorithm-or, equivalently, the Expectation Maximiza- 
tion method (EM). However.this approach returns the seg- 
mentation only in off-line analysis. In [Z] a partially Recurrent 

: another. 

1: - 
Rg. 1. 
uaining phase and the on-line regmeownon. 

Hybrid N M M l S V M  scheme proposed in this paper, shown are the 

Neural Network (R") with fixed feedback is mined in order 
to segment the task on-line. This approach produced good 
results but the use of a neural network hides the use of prior 
information about the task. In [31, [4] auto-regressive models 
are presented where the segmentation or the jump between a 
state and the next is obtained using the Sequential Likelihood 
Ratio Test (SLRT) technique [ 5 ] .  This technique is based on 
work on failure detection [6] and speech segmentation [7]. 

The teleoperation task and the signals produced during 
a teleoperation task are very unpredictable. They strongly 
depend on the operator and they are also quite variable when 
the same operator executes the same task. For these reasons 
we propose to use the HMM approach, since HMM describe 
very well signal variability and the sequential aspect of a 
teleoperation task [SI. A difficulty in using HMM is the choice 
of probability distribution, typically a parametric distribution. 
The assumption of parametric distribution can decrease the 
performances of HMM [9]-[ I 1 1  because the real distribution 
is hidden and the choice of a parametric distribution is a 
strong hypothesis on the model. This probability must be 
computed outside the HMM framework. For this reason we 
use a HMM where the emission probability distributions are 
computed using a Support Vector Machine (SVM) Classifier 
[12]. SVM represent an instrument that have been intensively 
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used and that have shown a good classification properties for 
multidimensional data. 

Another key feature of the approach proposed here is that 
the segmentation can be obtained on-line, as shown in Fig. 1. 
This is important since the analysis of a teleoperation task can 
be used to identify the operator performance (computed earlier 
off-line) but also to recognize the sub-task in execution. This 
would give an important information to the control algorithm 
and would be possible only if the segmentation is obtained on- 
line. The model is tested using the forcehorque data of Peg 
in Hole tasks, performed at NASA-JPL and used also in [I], 
[Z]. It produced good results directly comparable with those 
of I l l ,  [2] .  In particular our HMWSVM hybrid model returns 
the average correct segmentation rate of about 100% (off-line) 
and of about 84% (on-line). 

The rest of the paper is organized as follows. Section 2 
briefly introduces the two tools that are used in the paper, i.e. 
HMM and SVM. Section 3 describes our HMWSVM hybrid 
model. Section 4 reports the analysis results, and finally in 
Section 5 the final remarks are summarized. 

11. SEGMENTATION TOOLS 

In this Section we introduce the two tools used in our ap- 
proach: Hidden Markov Models and Support Vector Machine 
Classifiers. 

A. Hidden Markov Models 

In a Markov model each state corresponds to an observable 
event. In many problems this model is too restrictive to be 
applicable: an HMM is a Markov random process that can 
not be observed directly. In other words an HMM can be seen 
as an extension of the Markov model where the states are not 
observable, and the observation is a probabilistic function of 
the state. The resulting model is a doubly embedded stochastic 
process with an underlying stochastic process that is not 
observable, but can only be observed through another set of 
stochastic processes that produce the sequence of observations. 
An HMM is formally defined by the following elements [SI: 

A set S = {SI: SB;  ...i S N }  of (hidden) states; 
A state transition probability distribution, also called 
transition matrix A = {a ; j } .  representing the probability 
to go from state Si to state Sj 

aij = P(Yt+l = sj I qlt = Si) 

with 1 5 < , j :  5 N, aij 2 0 and C,”=, o{j = 1. 
A set V = {ul,  U ? ,  ..., U,,,} of observation symbols. . An observation symbol probability distribution, also 
called emission matrix B = . { b j ( k ) } ,  indicating the 
probability of emission of symbol uk when system state 
is Sj 

: 

b j ( k )  = P(ui,at time t 1 yt = Sj )  

An initial state probability distribution 71 = {T ; }  repre- 
senting probabilities of initial states 

Ti = P ( y 1  = SI) 

with rri 2 0 and E,”=, mi = 1. 
For convenience, we denote an HMM as a triplet X = 

The traditional approach in using a HMM is to select the 
topology type (Fig. 2) and compute the parameters (A, B? 71) 
using the Baum-Welch algorithm [SI. Then, the Markov model 
is completely defined. 

(A, E, 4. 

Fig. 2. 
4mue left-right model (c) A 6-state parallel path lefl-ighl model. 

Three possible types of HMM. (a) A 4-slate ergcdic model. @ - A  

B. Support Vector Machines 
The Support Vector Machines, introduced at the end of 

’70 1131, (141, are classifiers that have been intensively used 
[15]-[20]. They have several strengths: fast training by using 
specific algorithms [ZII ,  [22], accurate classification and. at 
the same time. high performance of generalization, i.e. the 
ability to learn the trend and the regularity of the data. A 
nice introduction of SVM for pattern recognition is reported 
in [12]. 

The basic objective of the SVM training i s  to find the 
optimal separation hyper-plane that minimizes the expected 
classification error, which is equal to maximizing the distance 
of the points from the margin (Fig. 3). 

n 

“.“ wargm 

Fig. 3. Separation plane of W O  example secs (black and white paints). 

The use of the so called “Kernel trick” [I21 permits to define 
linear separation surfaces in a larger dimensional space that 
becomes highly non linear in the original space. In practice, 
it defines a “map” Q that transforms the vectors to a space 
where they can be more easily separable by a linear classifier, 
by using the Kernel @(x) . Q(y) = K(x:y ) .  The use of this 
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Kernel permits to obtain a highly non linear separation surface 
with the same computational cost of a linear separation. The 
classification function is represented by a linear combination 
of Kernels K applied to the training data { x ; }  with class labels 

f ( x )  = C a i ? / , K ( x ; x i )  + b; (1) 

where ai are the Lagrange multipliers. The elements 'xi with 
non null multiplier are called Support Vectors (SV) land are 
the only ones that concur to the definition of the separation 
surface, represented with circles around points in Fig: 3. 

A SVM is a binary classifier. In the case of more,classes. 
two differents strategies are possible: "one vs. one" and "one 
vs. all". In the first case one SVM for each pair of classes is 
constructed; an element xi belongs to the class that produces 
the most positive outpur. In the second case one SVM for 
each class is constructed, in order to separate one class from 
the others. Once'the training is completed the estjmate of 
function ( I )  permits to decide the proper class of each data' 
point. As described more in detail in [1211 [231 the number of 
SV. generally, is low with respect to the number of examples. 
There are however non trivial cases. in  which such set i s  not 
minimal and it can further reduced to benefit the testing speed 
this is important in our case during the segmentation phase by 
Wterbi algorithm. For this purpose we have used the method 
described in [24] that we introduce in the following. 

'Suppose we (rain an SVM classifier wiih pattern vectors xi 
and that r of these-are determined io be SV with separation 
surface described by equation (I) .  We. want to .find all the 

. - SV linearly dependent, with the correspondent dependency 
coefficients ci, to remove them from the SV~set and !o update 
ihe Lagrange multipliers of the remaining SV. In practice 
equation (I)  becomes: 

i 

~ 

. . 

During a teleoperation task, signals are sequentially gene- 
rated. These signals are measured by the sensors on the robot 
and give a great amount of information about the teleoperation 
slate: forceltorque contact data, positionlvelocitylacceleration 
of the robot joint. images record by a camera and so on. 
The SVM are good classifier but do not account for temporal 
information, since they are static classifiers. For this reason, 
we can not use this classifiers to segment teleoperation signal 
sequences. In this paper we propose to develop a hybrid model 
that use both HMM and SVM. 

111. HMMlSVM HYBRID MODEL 

We choose to define the HMM with one state for every 
sub-task in which the teleoperation task can be partitioned. 
The segmentation is obtained from the analysis of the passage 
between a state and the other of the HMM automaton (Wterbi 
algorithm). In practice the current state of HMM defines the 
sub-task in execution. The main points of the our hybrid model 
refer to the use of the SVM and the definition of an algorithm 

'that gives back the segmentation during the task execution, 
and not off-line, at the end of data sequence, like standard 
HMM. 

A. Emission Pmbability with SVM 

Here we have used SVM classifiers to generate the HMM 
emission distribution probability in the training phase and in 
the segmentation phase. Firstly, we train one SVM for every 
sub-task signal (one vs. all). This produces one separation 
surface (equation I )  for each sub-task. 

The function f ( x )  that describes the separation plane, 
measures the distance of the element x from the margin. 
To produce a distribution probability from this function two 
considerations are important: 

I )  The function s ign(f (x) )  defines whether the pattern x 

;; i f k  .=I 

. = C a ; ( l + y i ) y i K ( x , x i ) + b  

2) The' distance from the margin is proportional ~ to the 
probability that the element belongs to'this class. If 
the point is near the margin, then the probability of 
belonging to $e class is low. If the point is far from 
the margin then, it has a higher probability of belonging 
to the class. 

For this reason we have used a sigmoid (Fig. 4) to transform 
the distance measure f ( x )  into the conditional probability 
P(class I x )  and then, using Bayes' theorem, in the HMM 

1; ; 
~~ 

= C a ! y i i ( ( x , x i )  + b .  ' . (2) , .  
:I; 

where 7, = *, &! = a i ( l  + 7;) and I; is the index bf the 
linearly dependent SV. . ~ emission probability P ( x  I class): 

From this equation .we see that the linearly dependent 
vectors are not required for the representation of the separition 
surface and therefore in the resting phase. We see, instead, that 
the Lagrange multipliers must be modified in.order to. obtain 
such a simplified representation'. However, this i s  a very simple 
modification that can. be applied to every linearly dependent 
SV. Thanks to ibis method,,it is possible to reduce the number 
of SV without modifying the perfo&ance~of the classifier. 

P(class 1 element) = P ( j  I x )  
1 

1 + e-", (x) 
- - 

P(element I class) = P ( x  I j )  

- - PCi I x )  . P(X) 
P ( j )  

(3) 
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where P ( j )  is the probability of the class j and fj is the 
function that identifies the class j from the others and that 
returns the distance from the margin. 

Fig. 4. Sigiuoid function used 10 transform SVM measure into the conditional 
probability P( j  1 x). k describes the trend of the signraid function. 

The use of a sigmoid transforms a distance measure into a 
probability distribution and permits to satisfy the consideration 
1,2 described above. For this reason, this function is used in 
several studies, an example can be found in 1251. 

B. Segntentafion 
The Viterbi algorithm segments the data when the whole 

data sequence is available. The interest in real time segmen- 
tation of telerohotics tasks has lead to the definition of an 
algorithm that computes the most probable state (sub-task) 
during the execution of the task. This algorithm samples the 
normal Viterbi algorithm (Viterbi Standard (VS)), computing 
every t samples the partial result of the process without 
backtracking (Viterbi Sampled (VC)). In the VS algorithm the 
variable & ( 7 )  represents the probability that the model is in  
the state j at the time t. The VC algorithm, at the time t. 
chooses the state (sub-task) qt of maximum probability: 

qt = arg m m  [&(j)l. (4) 

VS and VC are not equivalent and generally produce 
different results. This is because VS computes the optimal 
sequence of states at the end of the sequence, by back-tracking 
on the whole data-set. This is not equivalent to consider, for 
every t, the maximum &. In fact, VC finds the optimal solution 
at each time t. For this reason VS is generally more precise, 
while the performances of VC strongly depends on the HMM 
and SVM training phases. 

IV. DATA USED FOR TESTING 

In order to test our HMM/SVM hybrid model we have used 
a typical “Peg in Hole” telerobotic task. Such task consists 

1scSN 

of inserting and subsequently extracting a peg from a hole. 
The force and torque dara used have been collected from 
two previous experiments described in [I], 121 and whose 
data are shown in Fig. 5. The experiments were carried out 
at NASA-JPL using a PUMA manipulator equipped with a 
“Smart” Hand, and a Force Reflecting Hand Controller. Some 
of experiments and the equipment setup is described in [I] ,  
121. 

i,m. (ami Tuna ,M i  

Fig. 5. Farce and Torque data during an exaniple of Peg in Hole task. The 
data are the forces in 2. y, z directions, the torque in I. y, , t directions. the 
jaw opening and the gripping force. 

The task can be subdivided into a sequence of four sub-tasks 
(move, tap, insert, extract). This subdivision can be observed 
by analyzing the force signal in  the x direction in Fig. 6. 
The complete sequence of sub-task is ntove, tap, move, insert, 
move, tap, ntove, errroc?, move, tap, move also used in [ I ] .  
We observe that in  correspondence to different sub-tasks the 
force signals are quire different. 

V. RESULTS 

In order to lest the model, we have implemented the HMM 
algorithms with MatLab 1261, whereas for SVM we have used 
a free SVM MarLub toolbox 1271. 

For analysis and segmentation we have used only the force 
and torque signals in z direction. Table I shows the SVM 
training results (4 SVM, one for every different sub-task). The 
last column in the table represents the final number of linearly 
independent Support Vectors with a reduction of the 12.21% 
respect to the whole set of Support Vectors (“N. Example” 
are the number of training examples, “Time” represent the 
length of training in seconds, “N. Sv“ and ‘‘Min.” represent 
respectively the total number of Support Vectors and the 
numbers of linearly independent Support Vectors). For all the 
training runs we have used a Gaussian “Radial Basis Function” 
Kernel (Rbn with U = 2 

2921 



lo- l l  

Fig. 6. 
CIIIOCI sub-task. 

Force signal in z direction and the identification of lap: i m m  and 

TABLE 11 
SEGMEKTATION RESULTS OK FIVE EXAMPLES. 

follows the teleoperation data. This is equivalent to the value 
of P defined in [SI. This value represents a good index to 
estimate operators training, and a good safety value to pass to 
a control algorithm (the more the data are far away from the 
model and the more this value decreases). In Fig. 8 we see the 
behavior of the Guard in  an example with and without noise: 
we could note that this parameter changes if we introduce a 
noise sequence. 

This type of Kernel is used in several SVM applications, as 
described in [161. [171, (281. 

’ ’ TABLEI 
, -  

SVM TRAINING. 

Once the SVM training is completed, the second step is t o  
execute the HMM training. For HMM  we have used a 1 1 -  
state left-right model [ I ]  corresponding to the Peg in Hole 
subdivision. 

The results of the segmentation with VS (off-line seg- 
mentation) and VC (on-line segmentation) .algorithms for a 
few examples are shown in Table Il. VS obtains an exact 
segmentation in all cases (off-line), whereas VC obtains 84% 
s f  correct segmentation (on-line). The results of segmentations 
computed by.VS and VC.algorithms.using only data in the z 
force direction are shown in Fig. 7. 

These results can be directly compared with the results 
presented in [I], 121. . We achieved equal results in off-line segmentation, but. 

in [ I ]  no on-line segmentation is performed. . In on-line segmentation HMWSVM returns an average 
correct segmentation of about 84% versus the 64% ob- 
tained in [2]. 

Moreover, the VC algorithm returns in real time a control 
value (Guard) that represents how the hidden Markov model 

Fig. 7.  Peg in Hole segmentation example. Solid Line represent the VS 
segmentation while dotted line represent the VC segmentation. each step 
indicates a state vansition (sub-task). 

As shown in Fig. 8, the insertion of wrong data, for example 
in case of operator execution error, decreases drastically the 
value of the Guard because the signal does not follow the 
HMM model. This can be a good warning to detect sig- 
nal changes and operator performance.. The idea to define 
“guards” based on the analysis of the data measured from 
the sensors can be seen also in 1291 (“sensoo-guars’). 

VI. CONCLUSIONS 
In this paper, an approach aimed at modeling and segmen- 

ting teleoperation tasks is presented. A new HMWSVM hy- 
brid model is defined and tested on a Peg in Hole teleoperation 
task. In detail: . We use a HMM model to describe a typical sequential 

teleoperation task. 
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[41 B. EbemLlo, "A Mode-Based Approach to Cartesian Manipulation 
Contact Sensing," The Internoliono1 J o u m l  /or Roborics Reseach. 

I 
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Fig. 8. The Guard progress. Solid line represent the Guard an real signal 
while the dotted line represent the Guard on inodified signal (we have 
exchanged the real signal with noire in a central interval, from [300,299]). 

We have overcome limitations of the HMM emission 
distribution probability using SVM as "probability ge- 
nerators". . We use dimensional reduction [24] to decrease the num- 
ber of support vectors to speed up the classification phase 
and then the segmentation of signals. . We have developed a new algorithm, based on the stan- 
dard Viterbi algorithm, to segment experimental data on- 
line (VC). 

The results can be compared with those presented in the 
literature, since we have used the same data sets. In particular 
VS can be compared with the HMM in [ I ] :  in both cases the 
correct off-line segmentation is 100%. VC can be confronted 
with the Neural Network in [Z] that produced correct on- 
line segmentation of ahout 65% versus 84% of the new 
HMMISVM hybrid model. 

The long-term objective of this research is to improve our 
model using more complex HMM and a new method 1231 to 
increase the SVM classification performance (Virtual Suppon 
Vector method). Finally, we propose to use our model to 
analyse more complex tasks, especially in robotic surgery. 
Among these tasks. a special interest will be placed on 
applying our hybrid model to the suture surgical task, both 
as input for a possible teleoperation control algorithm, and as 
the basis for a future automatic task execution. 
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