Logica Computazionale 2009 Exercise 2

Gianluigi Bellin

October 21, 2009

Due Thursday 29th October 2009
Exercise 1. Show that it is possible to falsify the following statement:
"If everybody loves someone, then someone is loved by everybody"
Hint: Construct a model $\mathcal{M}=(M, L)$, i.e., a set of individuals M and a two places relation L, such that $L(x, y)$ is an interpretation of " x loves y " and also satisfies the first condition ("everybody likes someone"), but for a given individual $m \in M$ it is not true that for all $i \in M, L(i, m)$.

$$
3 \text { marks }
$$

Exercise 2. Apply the semantic tableaux procedure, using the breadth-first search strategy, to show the validity of the following statement:
"If someone is loved by everybody, then everybody loves someone"
3 marks
Hint: We may use the antecedent Γ and the succedent Δ of a sequent $\Gamma \Rightarrow \Delta$ to represent a queue: we invert the rule which applies to the leftmost formula in the antecedent and in the succedent (to the left and to the right of the \Rightarrow sign). ${ }^{1}$ To implement the breadth-first [or the depth-first] strategy it suffices to add the new formulas to the end of [in front of $]$ the queue in the antecedent and in the succedent. Here are the rules for the quantifiers in the breadthfirst strategy and then the rules for the universal quantifier in the depth-first strategy:

[^0]
Breadth-First search-strategy

$$
\begin{array}{cc}
\frac{a_{0}, \ldots, a_{i}, a_{i+1} ; \Gamma \Rightarrow \Delta, A\left(a_{i+1}\right)}{a_{0}, \ldots, a_{i} ; \Gamma \Rightarrow \forall x . A, \Delta} \forall-\mathrm{R} & \frac{a_{0}, \ldots, a_{i} ; \Gamma, A\left(a_{0}\right), \ldots, A\left(a_{i}\right), \forall x . A \Rightarrow \Delta}{a_{0}, \ldots, a_{i} ; \forall x \cdot A, \Gamma \Rightarrow \Delta} \\
\frac{a_{0}, \ldots, a_{i} ; \Gamma \Rightarrow \Delta, A\left(a_{0}\right), \ldots, A\left(a_{i}\right), \exists x . A}{a_{0}, \ldots, a_{i} ; \Gamma \Rightarrow \exists x . A, \Delta} \exists-\mathrm{R} & \frac{a_{0}, \ldots, a_{i}, a_{i+1} ; \Gamma, A\left(a_{i+1}\right) \Rightarrow \Delta}{a_{0}, \ldots, a_{i} ; \exists x \cdot A, \Gamma \Rightarrow \Delta} \exists-\mathrm{L}
\end{array}
$$

Depth-First search-strategy

$$
\frac{a_{0}, \ldots, a_{i}, a_{i+1} ; \Gamma \Rightarrow A\left(a_{i+1}\right), \Delta}{a_{0}, \ldots, a_{i} ; \Gamma \Rightarrow \forall x \cdot A, \Delta} \forall-\mathrm{R} \quad \frac{a_{0}, \ldots, a_{i} ; A\left(a_{0}\right), \ldots, A\left(a_{i}\right), \forall x \cdot A, \Gamma \Rightarrow \Delta}{a_{0}, \ldots, a_{i} ; \forall x \cdot A, \Gamma \Rightarrow \Delta} \forall-\mathrm{L}
$$

Exercise 3. (i) Apply the semantic tableaux procedure to the sequent

$$
\Rightarrow(\exists z \forall v \cdot B(v, z)) \vee(A \rightarrow A)
$$

Use a breadth-first search procedure, starting from the leftmost formula.
2 marks
(ii) What happens if you use a depth-first search procedure, starting from the leftmost formula?

2 marks
TOTAL 10 MARKS

[^0]: ${ }^{1}$ Here we assume that in a sequent $\Gamma \Rightarrow \Delta$, the antecedent Γ and the succedent Δ are lists of formulas. The letters a_{0}, \ldots, a_{i} to the left of each sequent are names of generic individuals declared so far, with the aim of making all formulas in Γ true and all formulas in Δ false.

