
Categorical Proof Theory of Classical Propositional
Calculus

Gianluigi Bellin a Martin Hyland b Edmund Robinson a

Christian Urban c

aQueen Mary, University of London, UK
bUniversity of Cambridge, UK

cUniversity of Munich (LMU), D

Abstract

We investigate semantics for classical proof based on the sequent calculus. We show that
the propositional connectives are not quite well-behaved from a traditional categorical per-
spective, and give a more refined, but necessarily complex, analysis of how connectives
may be characterised abstractly. Finally we explain the consequences of insisting on more
familiar categorical behaviour.

Key words: classical logic, proof theory, category theory

1 Introduction

In this paper we describe the shape of a semantics for classical proof in accord with
Gentzen’s sequent calculus. For constructive proof we have the familiar correspondence
between deductions in minimal logic and terms of a typed lambda calculus. Deductions
in minimal logic (as in most constructive systems) reduce to a unique normal form, and
around 1970 Per Martin-Löf (see [18]) suggested using equality of normal forms as
the identity criterion for proof objects in his constructive Type Theories: normal forms
serve as the semantics of proof. But βη-normal forms for typed lambda calculus give
maps in a free cartesian closed category; so we get a whole range of categorical models
of constructive proof. This is the circle of connections surrounding the Curry-Howard
isomorphism. We seek analogues of these ideas for classical proof. There are a number
of immediate problems.

The established term languages for classical proofs are either incompatible with the
symmetries apparent in the sequent calculus (Parigot [16]) or in reconciling themselves
to that symmetry at least make evaluation deterministic (cf Danos et al [5,21]). Either
way the ideas, which derive from analyses of continuations in programming (Griffin [9],

Preprint submitted to Elsevier Science 13 April 2005

Murthy [15]) can be thought of as reducing classical proof to constructive proof via a
double negation translation. (A categorical semantics is described in Selinger [23].)
There are term calculi associated directly with the sequent calculus (Urban [25]) but
it is not clear how to formulate mathematically appealing criteria for identity of such
terms. What we do here suggests many commutative conversions for Urban’s terms,
but the matter is not straightforward. Also since reductions of classical proofs in se-
quent calculus form are highly non-deterministic, normal forms do not readily provide
a criterion for identity of such proofs.

There are problems at the level of semantics. There are more or less degenerate models
giving invariants of proofs ([7] and [12]) and we know how to construct some more
general models. But all that is parasitic on experience with Linear Logic. We lack
convincing examples of models sensitive to the issues on which we focus here. The
connection with established work on polarised logic, modelling both call-by-name and
call-by-value reduction strategies ([23], [26], [10]), is also problematic. Even if one
considers a system (as in [5]) that mixes the two and considers all the normal forms
reachable from representations in it of a proof, one still does not exhaust all normal
forms to which a proof in the sequent calculus can reduce (see for example [24, Page
127]). Moreover, there is no easy way to extract models for our system from categorical
models in the style of Selinger.

The project on which we report here was motivated by Urban’s strong normalisation
result ([25] and [24]) for a formulation of classical proof. In [11], one of us then outlined
a proposal for a semantics. Unfortunately, the axioms of [11] entail full naturality of
logical operations contrary to the clear intentions of the paper. Here we make that good
and analyse the issue. Since then, another of us suggested in [19] basing analysis of
classical proof on a simple (box-free) notion of proof net. Such systems have implicit
naturalities built in so this is in contrast with [11]. In [6] Führmann and Pym analyse
Robinson’s proposal further. They give categorical combinators, add η-equalities to the
implicit naturalities and succeed in axiomatizing reduction. The interaction between
the equalities and reduction presents computational difficulties, so this is a substantial
achievement. The proof net model is better dynamically than feared, and suggests a
notion of model of classical proof simpler than that analysed here. We give an exact
account of the relation between the two, and show in what sense the Führmann-Pym
equalities identify proofs which differ on a sequent calculus reading.

The question of what are the sensible criteria for identity of proofs is a delicate one.
The referee rightly stressed that this is true also of constructive proofs, the difference
between the classical and constructive case being that in the latter we have a robust
semantic notion which is generally agreed on. We do not expect that in the classical
case. At the very least different systems of proof can be expected to lead to different
semantics. A compelling example is the recent work of Lamarche and Strassburger [14].

2

2 Modelling classical proofs

2.1 Sequent Calculus and Polycategories

It is a familiar idea that what the sequent calculus provides is not a collection of ideal
proofs-in-themselves, but something more like instructions for building proofs. With
this in mind we formulate design criteria for our semantics.

(1) Associativity. Cut should be an associative operation on proofs.
(2) Identities. We require that there be a canonical axiom (identity proof) A ` A for

all A, and that it should act as an identity under cut.
(3) de Morgan Duality. We take a strict duality on propositions and proofs.

Of these the first two seem compelling while the third could be regarded as a matter
of convenience. While we have not written out the details, it is our impression that
the basics of our analysis would not need to change if we did not take full de Morgan
duality.

2.1.1 Polycategories

The general category-like structure which encapsulates the first two criteria is Szabo’s
notion of a polycategory (Szabo [22]). Rather than being definitive, in the way that the
notion of an ordinary category is definitive, there are any number of variants adapted to
particular contexts (recent treatments include [4] and [2]).

Definition 2.1. A symmetric polycategory (henceforth just polycategory) P consists of

• A collection obP of objects of P; and for each pair of finite sequences Γ and ∆ of
objects, a collection P(Γ; ∆) of (poly)maps from Γ to ∆.

• For each re-ordering of the sequence Γ to produce the sequence Γ′, an isomorphism
from P(Γ′; ∆) to P(Γ; ∆), functorial in its action, and dually for ∆.

• An identity idA ∈ P(A; A) for each object A; and a composition

P(Γ; ∆, A) × P(A, Π; Σ) → P(Γ, Π; ∆, Σ) .

for each Γ, ∆, A, Π, Σ, coherent with re-ordering.

This data should satisfy identity and associativity laws, which we do not give here.

One thinks of P(Γ; ∆) as the collection of abstract proofs of Γ ` ∆. We write a
polymap f ∈ P(Γ; ∆) as f : Γ → ∆. We picture it as a box

Γ ∆f

with input wires Γ and output wires ∆. We have explicit identities idA. Composition
corresponds to cut: in particular maps are plugged together at a single object, not an
entire sequence. We adopt a lazy algebraic notation for composition. For f : Γ → ∆, A

3

and g : A, Π → Σ we write the composite in the diagrammatic order as f ; g : Γ, Π →
∆, Σ. We do not introduce a formal notation for composing many polymaps, but note
that such compositions are determined by trees. However it is useful to have a little
home-spun notation for simple cases. We write

{f, g}; {h, k}

to indicate compositions involving the four multimaps f , g, h and k, where the f and
g come before the h and k. For example f and g might plug into h and g also into k.
(There are essentially four distinct cases.) It will always be possible to determine what
we mean from the context.

2.1.2 ∗-polycategories

Our third design criterion amounts to the simplifying decision to treat negation implic-
itly. In proof theoretic terms that is to take a formulation with an involutory negation

(−)∗ : p → p∗ , p∗ → p

on atomic formulae, and extend it to all formulae by setting

>∗ = ⊥ ⊥∗ = > ,

(A ∧ B)∗ = B∗ ∨ A∗ (A ∨ B)∗ = B∗ ∧ A∗ ,

that is, more or less, by de Morgan duality. The cyclic choice of order may be familiar
from non-commutative linear logic (Ruet [20]). It is not strictly necessary here, but
serves as there to preserve a strict duality at the level of proofs. Exact duality permits a
purely one-sided sequent calculus as in Girard [8], but we prefer to keep both sides in
play at the semantic level. Abstractly we get a ∗-polycategory.

Definition 2.2. A symmetric ∗-polycategory (henceforth just ∗-polycategory) P con-
sists of a polycategory P equipped with an involutory negation (−)∗ on objects to-
gether with for each Γ, ∆, A, an isomorphism P(Γ; ∆, A) ∼= P(A∗, Γ; ∆) coherent
with re-ordering and composition.

With this in place one should not take the talk of input and output above too literally:
according to the ∗-polycategorical perspective an input wire of kind A is effectively an
output wire of type A∗. We shall not need to pay much attention to the (−)∗ operation
which takes polymaps Γ → ∆, B to polymaps B∗, Γ → ∆. However we shall need
notation for variants of the identity idA : A → A. We write these as

inA : − → A∗ , A and evA : A, A∗ → − .

These can be pictured as follows.

A∗

Ain
A∗

Aev

4

We note that the operation taking a polymap f : Γ → ∆, B to f ∗ : B∗, Γ → ∆ say
is implemented by composition: one has f ∗ = f ; in. Similarly for the operation taking
g : A, Γ → ∆ to g∗ : Γ → ∆, A∗, one has g∗ = ev; g. In particular we have equations
of the form in; ev = id as in the following picture. 1

in
ev = id

The notion of a ∗-polycategory satisfies our design criteria and so gives a first step
towards a definition of a model for classical proof. It describes a notion of proof with
associative cut, identities and strict duality, but without logical operations and without
structural rules. For classical logic we need to add the propositional connectives and the
structural rules of weakening and contraction. We treat these two in turn.

2.2 Logical rules

We consider how rules of inference for the classical connectives should be treated.
We first describe the operations together with the properties (naturality, commutative
conversions) which we regard as implicit; and then we consider which proof diagrams
should further be identified as a result of meaning preserving reductions.

2.2.1 Logical operations

As logical operators we consider only >, ∧, and their de Morgan duals, ⊥, ∨. Negation
is defined implicitly by de Morgan duality, and other logical operators in terms of those
given.

We recall the rules for ∧ and > in sequent calculus form.

A,B,Γ ` ∆

A ∧ B,Γ ` ∆
∧-L

Γ ` ∆, C Π ` Λ, D

Γ,Π ` ∆,Λ, C ∧ D
∧-R Γ ` ∆

>,Γ ` ∆
>-L

` >
>-R .

We recast these rules in terms of ∗-polycategories. So we require operations

P(A, B, Γ; ∆) −→ P(A ∧ B, Γ; ∆) : h → h ,

P(Γ; ∆, C) × P(Π; Λ, D) −→ P(Γ, Π; ∆, Λ, C ∧ D) : (f, g) → f · g ,

P(Γ; ∆) −→ P(>, Γ; ∆) : h → h+ ,

? ∈ P(;>) ,

encapsulating the ∧-L, ∧-R, >-L and >-R rules. This imprecise notation will serve for

1 To avoid misunderstanding we stress that there is no composition of the form ev; id. There is
nothing to plug into.

5

this paper. We can picture the rules thus.

h∧A ∧ B
f

g

∧C ∧ D
Γ ∆h

>

? >

A notion of duality is built into the notion of ∗-polycategory. So given what we have
said about the operations > and ∧, there is no need for substantial discussion of the de
Morgan duals ⊥ and ∨. We may as well overload the notation and take operations

P(Γ; ∆, C, D) −→ P(Γ; ∆, C ∨ D) : h → h

P(A, Γ; ∆) × P(B, Π; Λ) −→ P(A ∨ B, Γ, Π; ∆, Λ) : (f, g) → f · g

P(Γ; ∆) −→ P(Γ; ∆,⊥) : h → h+

? ∈ P(⊥;)

each being the dual of the corresponding operation above.

2.2.2 Naturality

Composition in a ∗-polycategory corresponds to Cut, so the general naturality condi-
tions implicit in proof nets are clear. Two involve a local operation on just one proof,
and are compelling. In our imprecise notation, these are as follows.

• Naturality for ∧-L. Suppose h : A, B → E. Then for w : E → E ′ we have the
naturality condition

h; w = h; w .

• Naturality for >-L. Suppose h : A → B. Then for v : B → B ′ we have the naturality
condition

h+; v = (h; v)+ .

(We omit irrelevant contexts.) By duality that gives us naturality as follows

w; h = w; h and v; h+ = (v; h)+ ,

in the right rules for ∨ and ⊥. We adopt these naturality equations.

On the other hand we shall argue against adopting the following condition.

• Naturality for ∧-R. Suppose f : A → C, g : B → D. Then for u : A′ → A and
v : B′ → B we have the naturality equation

{u, v}; (f · g) = (u; f) · (v; g)

where on the right we have the obvious composition of f · g : A, B → C ∧ D with
u and v.

6

(Note that there is no context in >-R and so no corresponding naturality.) The problem
which we will come to in 4.3 is that taken together with contraction and weakening
this naturality equation identifies proofs with essentially different collections of normal
forms.

However there are cases where that cannot happen; and it does seem reasonable to allow
some maps u and v to slip harmlessly past the imagined box around (f · g). After all
we inevitably have

{id, id}; (f · g) = f · g = (id; f) · (id; g) .

So we adopt a restricted form of an idea from [11]. We call maps u, v for which both
the ∧ equations

u; (f · g) = (u; f) · g , v; (f · g) = (f) · (v; g) , and so {u, v}; (f · g) = (u; f) · (v; g)

and the dual equations for ∨ hold linear. (This definition does make sense!) We have
the following.

Additional assumption Linear maps are closed under the logical operations intro-
duced above.

In view of the other naturalities, the essential assumption is that ? is linear and that
linear maps are closed under − · −.

2.2.3 Commutation: logical rules

The polycategorical perspective supports equalities arising from the commuting con-
versions in sequent calculus. We sketch, again using our imprecise notation, the basic
phenomena for the binary operators.

First given proofs

f : Γ1 → ∆1, A, B , g : Γ2 → ∆2, C , h : Γ3 → ∆3, D ,

we have (perhaps modulo exchange) an equality of the form

(f · g) · h = (f · h) · g : Γ → ∆, A ∧ C, B ∧ D

(with Γ, ∆, the sum of the Γi and ∆i respectively). Of course there are other versions
obtained by duality

Secondly given proofs

f : A, B, Γ1 → ∆1, C , g : Γ2 → ∆2, D ,

we have an equality of form

f · g = f · g : A ∧ B, Γ → ∆, C ∧ D

7

(with Γ, ∆, the sum of the Γi and ∆i respectively). As before there are variants by
duality.

Finally from a proof
f : A, B, Γ → ∆, C, D ,

we can apply the operation () in two different orders getting an equality of the form

f = f : A ∧ B, Γ → ∆, C ∨ D .

There are variants by duality. The picture is as follows.

f∧A ∧ B ∨ C ∨ D

So far we have only considered the binary operators. There are many similar examples
involving also the rules for > which we merely list.

f+ · g = (f · g)+ , f
+

= f+ , f++ = f++ .

(The final equation reflects the two different orders of applying rules to obtain a proof
of >, Γ ` ∆,⊥.) We are happy to adopt all these equalities.

2.2.4 Reduction

Most of our equalities on proofs keep track of inessential rewritings, but in itself that
is dull. The critical equalities take account of meaning preserving reductions. We take
these to arise from logical cuts.

Suppose that f : A ` C, g : B ` D and k : C, D ` E are proofs. (Again we suppress
further contexts.) We can form the proof

A `f C B `g D
A,B ` C ∧ D

C,D `k E

C ∧ D ` E

A,B ` E
CUT

which reduces to
A `f C B `g D C,D `k E

A,B ` E
CUTs

where by associativity we write the two Cuts together. This gives a simple equation for
our polycategory:

(f · g); k = {f, g}; k .

Similarly suppose that f : A ` B is a proof. We can form the proof

`? >
A `f B
>, A ` B

A ` B
CUT

and this reduces outright to
A `f B .

8

This gives another equation in our polycategory:

?; f+ = f .

These equations (and their duals) constitute the reduction principle for logical cuts. For
us the reduction of logical cuts is meaning preserving.

2.3 Structural Rules

2.3.1 Implementation

The structural rule of Exchange is implicit in our notion of symmetric ∗-polycategory,
but we need to consider Weakening and Contraction.

Γ ` ∆
A,Γ ` ∆

W-L
,

Γ ` ∆
Γ ` ∆, B

W-R
,

A,A,Γ ` ∆

A,Γ ` ∆
C-L

,

Γ ` ∆, B,B

Γ ` ∆, B
C-R

.

Naturalities implicit in proof nets in tandem with our reduction principle for logical
cuts suggest a nice way to represent these in our ∗-polycategory.

We treat contraction first. For all A, ‘generic’ instances of contraction give maps d :
A → A ∧ A and m : A ∨ A → A arising from the proofs

A ` A A ` A
A,A ` A ∧ A

∧-R

A ` A ∧ A
C-L

,

A ` A A ` A
A ∨ A ` A,A

∨-L

A ∨ A ` A
C-R

.

These are obviously constructed as de Morgan duals, so we assume that they are inter-
changed by the duality in our ∗-polycategory, that is,

(dA)∗ = mA∗ , (mA)∗ = dA∗ .

It is consonant with earlier assumptions to suppose that we can implement the C-L rule
by composition with its ‘generic’ instance d: that is, we form f : A ∧ A, Γ ` ∆ and
then compose with d to give d; f : A, Γ ` ∆ as in the following picture.

f∧A ∧ AdA

Dually m : A∨A → A implements contraction on the right: contracting g : B → D, D

on the right is g; m.

Similarly we have a way to implement weakening. In our polycategory we should have
maps t : A → > and u : ⊥ → A arising from the proofs

` >
>-R

A ` >
W-L

,
⊥ `

⊥-L

⊥ ` A
W-R

.

Again these are de Morgan duals and should be interchanged by duality:

(tA)∗ = uA∗ , (uA)∗ = tA∗ .

9

Now suppose that we have a proof f : Γ ` ∆, and we wish to weaken on the left. We
form f+ : >, Γ ` ∆ and compose with t to give t; f+ : A, Γ ` ∆. Thus t can be used
to implement weakening on the left. Dually u can be used to implement weakening on
the right: in that case g is weakened to g+; u.

2.3.2 Commuting conversions

Implementing rules by composition with generic instances takes care of naturality is-
sues; and some commuting conversions are an immediate consequence of the associa-
tivity of composition in a polycategory. However there are more such.

We expect C-L to enjoy the same commuting possibilities as ∧-L. This requires equa-
tions of the form

(d; f) · g = d; (f · g) , d; f = d; f , d; f+ = (d; f)+ .

(In the second equation, the typing should give a commuting conversion in d; f , not a
logical cut.) Similar considerations for W-L and >-L give the equations

(t; f) · g = t; (f · g) , t; f = t; f , t; f+ = (t; f)+ .

(In the last equation the typing should give a commuting conversion in t; f +, not a
logical cut.) We take all these.

2.3.3 Correctness equations

There are further issues to consider arising from the decision to implement the structural
rules. We implement contraction via composition with d : A → A∧A and m : A∨A →
A. But d and m are themselves produced by contractions on proofs idA · idA : A, A →
A∧A and idA · idA : A∨A → A, A respectively. So we need to make these agree. This
gives us equations:

d; (idA · idA) = d , (idA · idA); m = m .

Similarly, we implement weakening via composition with t : A → > and u : ⊥ → A.
But again these are themselves produced by weakening proofs ? : (−) → > and
? : ⊥ → (−) respectively. Making these agree gives us equations

t; ?+ = t , ?+; u = u .

There is a further delicate point which we mention here. Given Γ `f ∆ there are two
distinct ways to introduce > on the left:

Γ ` ∆
>,Γ ` ∆

>-L
,

Γ ` ∆
>,Γ ` ∆

W-L
.

In our notation these are f+ and t; f+ respectively: they are not taken as equal. This
decision arises from an austere view of cut reductions where a last rule is structural. In
this paper we make no equality assumptions in such circumstances.

10

2.3.4 Structural congruence

In the interests of simplicity, we subject the structural rules to structural congruence in
a sense popular in concurrency theory.

Consider the process of Weakening only immediately to Contract:

A,Γ ` ∆

A,A,Γ ` ∆

A,Γ ` ∆ .

That seems as pointless a detour as a logical Cut, and we allow it to be deleted. Given
the analysis above we can express this by the equation:

d; (t; f+) = f .

Similarly it seems willful to distinguish between the various ways in which a series of
contractions may be performed. This provides the seemingly pointless equation

d; (d; f) = d; (d; f) ,

which properly indexed is a version of associativity. Finally there is an issue relating
contraction to exchange: one can exchange before contracting two copies of A. One
may as well identify the proofs. Write (−)s to indicate a use of symmetry. Then modulo
elimination of logical cuts we can express this by

d; idA · idA
s

= d : A −→ A ∧ A .

Thus structural congruence gives us identity, associativity and commutativity condi-
tions. We assume these in the interests of mathematical elegance.

3 Categorical formulation

In section 2 we surveyed all the structure on a ∗-polycategory needed to model classical
proofs, and we gave the equations which we think should hold. This gives us a genuine
though unwieldy notion of model. We shall not spell it out. Instead we shall extract
from the ∗-polycategorical formulation structure on its underlying category giving an
equivalent notion of categorical model.

Before we get down to work, we note that the involutary negation (−)∗ extends to maps
as we have (for example) natural isomorphisms

C(A; B) ∼= C(−; A∗, B) ∼= C(B∗; A∗) .

It is easy to see that

Proposition 3.1. The operation (−)∗ : Cop → C is a strict functorial self-duality on our
category C.

11

The duality more or less halves the work which we now have to do. Whenever we have
structure we shall have its dual.

3.1 Categorical Preliminaries

We start by introducing some preliminary notions. We consider categories C equipped
with a special class of Cid of idempotents, which we shall call linear idempotents. In
our application these will be idempotents (maps e with e; e = e) which are linear in the
sense of 2.2.2. For the moment we need assume nothing beyond the obvious require-
ment that every identity is in the class. We call such data a guarded category. 2

Definition 3.2. A guarded functor F : C → D between guarded categories consists of
the usual data for a functor such that F maps linear idempotents to linear idempotents;
and whenever e and e′ are linear idempotents, then

F (e); F (f); F (g); F (e′) = F (e); F (f ; g); F (e′)

We say that a guarded functor F is domain absorbing when F (e); F (f) = F (e; f) for
linear idempotents e; it is codomain absorbing when F (f); F (e) = F (f ; e) for linear
idempotents e.

We should interpret this in the case C is the trivial one object category 1 with its only
choice of linear idempotents. A guarded functor D : 1 → D is a choice of object D ∈ D
and linear idempotent eD : D → D. We call this a guarded object.

We also need some notion of 2-cell between guarded functors

Definition 3.3. Let F, G : C → D be guarded functors. A guarded transformation or
simply transformation consists of data αA : FA → GA satisfying

F (idA); F (u); αB = αA; G(u); G(idB)

for all u : A → B in C.

We do not spell out here the consequences of these definitions, but note the following.

Theorem 3.4. Guarded categories, guarded functors and transformations form a 2-
category, the guarded 2-category.

The only subtle point is the composition of 2-cells along a 0-cell, where one needs to
compose additionally with maps of the form GF (id). We shall not need that here. The
composition of 2-cells along a 1-cell by contrast is straightforward, and we shall need
terminology suggested by it.

2 The terminology is intended to suggest a focus on good behaviour once we compose with the
idempotents or guards. There is no stronger connections with other uses of “guarded” in logic
or computer science.

12

Definition 3.5. Suppose that α : F → G and β : G → F are (guarded natural)
transformations. α and β are mutually inverse (α inverse to β) just when αA; βA =
F (idA) and βA; αA = G(idA).

This amounts to taking inverses of 2-cells in the guarded 2-category.

3.2 Logical operators

3.2.1 Extension to maps

Clearly C must be equipped on objects with the structure, true, and, false, or, not of
classical logic: we write this structure as 1, ∧, 0, ∨. There is a compelling way to
extend the propositional operators to maps. Given proofs A `f B and C `g D, there is
a canonical proof A ∧ C `f∧g B ∧ D given by the following

A ` B C ` D
A,C ` B ∧ D

A ∧ C ` B ∧ D

Similarly we have f ∨g a proof of A∨C ` B∨D. So in terms of our algebraic notation
we should define

f ∧ g = (f · g) , f ∨ g = (f · g) .

Thus C is equipped with operations ∧ and ∨ on maps. It turns out that they are not
functorial, but in a suitable sense guarded functorial. To make sense of that we need a
collection of linear idempotents. We identify that class as follows.

We first note a useful computation in our ∗-polycategories for classical logic. We give
just the version for conjunction as that for disjunction is dual to it.

Proposition 3.6. Suppose that f : A → C, g : B → D, h : C → E and k : D → F

are maps. Then (f ∧ g); (h ∧ k) = {f, g}; (h · k).

Using also the Additional Assumption of 2.2.2 we deduce at once the following.

Proposition 3.7. If eA : A → A and eB : B → B are linear and idempotent, then so
are eA ∧ eB and eA ∨ eB .

We now associate with our categorical model C a class of linear idempotents. We simply
close the collection of identity maps under the logical operations. (We make clear what
that means in case of > and ⊥.) We introduce some notation for the canonical linear
idempotents which we have identified. We write

eA,B = eA∧B = idA ∧ idB , eA,B = eA∨B = idA ∨ idB .

We also take a nullary version of these, setting

e> = ?+ e⊥ = ?+

with the obvious interpretation in each case.

13

Theorem 3.8. (i) > with e> and dually ⊥ with e⊥ are guarded objects.
(ii) The operator ∧ : C × C → C is a domain absorbing guarded functor, while dually
∨ : C × C → C is a codomain absorbing guarded functor.

3.2.2 Coherence

When we come to reconstruct a ∗-polycategory from our category we need to observe
some relations between our canonical linear idempotents. We illustrate the point here.
Concentrating on conjunction we have on the one hand the idempotent

eA,B∧C = idA ∧ idB∧C : A ∧ (B ∧ C) −→ A ∧ (B ∧ C)

and on the other

eA,B,C = idA ∧ (idB ∧ idC) : A ∧ (B ∧ C) −→ A ∧ (B ∧ C) .

Intuitively the second decomposes things more than the first, and this is reflected in the
fact that the second absorbs the first in the sense that

eA,B,C ; eA,B∧C = eA,B,C and eA,B∧C ; eA,B,C = eA,B,C .

The first calculation depends on the linearity of idB · idC from the Additional Assump-
tion of 2.2.2.

Generally the situation is as follows. Given propositions Ai we have many bracketings
to give a conjunction

∧
Ai. Given one such we have a variety of idempotents depending

on how deeply we ‘analyse the bracketings’. The shallowest analysis yields id∧
Ai

, the
deepest e∧

Ai
=

∧
idAi

. The coherence of these idempotents is the following fact.

Proposition 3.9. Suppose in the given situation that e1 is an idempotent corresponding
to a deeper analysis than e2. Then e1; e2 = e1 = e2; e1.

We note the nullary version of the proposition: e>; id> = e> = id>; e>.

3.3 Structure

3.3.1 Units and associators

Our logical operations are only guarded functorial, but they do come equipped with
structure familiar in the case of tensor products. We concentrate on the case of > and
∧; the case of ⊥ and ∨ follows by duality.

First we can define maps

l = ? · idA : A → >∧ A l̃ = id+
A : > ∧ A → A

r = idA · ? : A → A ∧ > r̃ = (id+
A)s : A ∧ > → A

14

where the superscript s indicates a tacit use of exchange. We also have associativity
maps defined as follows

a = (idA · idB) · idC : A ∧ (B ∧ C) −→ (A ∧ B) ∧ C ,

ã = idA · (idB · idC) : (A ∧ B) ∧ C −→ A ∧ (B ∧ C) .

(There is only one sensible way to read those definitions!) We note at once that all these
structural maps are linear.

By direct computation we show the following.

Theorem 3.10. The pairs of maps l and l̃, r and r̃, a and ã, are in each case mutually
inverse guarded transformations.

Note that the equations given by our definitions are not quite the familiar ones. For
example since ∧ is domain absorbing we do have

(f ∧ g) ∧ h; ã = ã; f ∧ (g ∧ h); eA′∧(B′∧C′)

but we only have the more familiar

(f ∧ g) ∧ h; ã = ã; f ∧ (g ∧ h)

when f , g and h are linear.

Perhaps surprisingly, it is automatic that our associativities satisfy the Mac Lane pen-
tagon condition and the usual unit conditions on the nose. The diagrams are familiar
and we do not exhibit them here.

Theorem 3.11. The Mac Lane pentagon and unit conditions

aA,B,C∧D; aA∧B,C,D = idA ∧ aB,C,D; aA,B∧C,D; aA,B,C ∧ idD

aA,I,C ; rA ∧ idB = idA ∧ lB

both hold.

Of course many other version of the diagrams (e.g. involving ã, l̃, r̃) hold. However the
information contained in the coherence diagrams is quite subtle. One needs to bear in
mind that e.g. aA,B∧C,D is not guarded natural in B and C. Let us say that a mixed path
in the pentagon is one which involves both a and ã. Many but by no means all mixed
paths are equal. For example, the two maps

a : A ∧ (B ∧ (C ∧ D)) −→ (A ∧ B) ∧ (C ∧ D)

and
idA ∧ a; a; a ∧ idD; ã : A ∧ (B ∧ (C ∧ D)) −→ (A ∧ B) ∧ (C ∧ D)

are not equal. (There are some similar issues for the triangle diagrams.)

15

3.3.2 Symmetry

We have maps induced by the symmetry of our ∗-polycategory. We use a superscript
()s to indicate a use of a symmetry in P , and define a twist map

c = (idB · idA)s : A ∧ B −→ B ∧ A .

The picture is as follows.

idB

idA

∧∧A ∧ B B ∧ A

We note at once that this further structural map is linear. We then compute.

Proposition 3.12. cA,B; cB,A = eA∧B : A∧B −→ A∧B, that is, c is a transformation
inverse to itself in the guarded sense.

Finally we look at coherence.

Theorem 3.13. The Mac Lane hexagon and unit conditions

aA,B,C ; cA ∧ B, C; aC,A,B = idA ∧ cB,C ; aA,C,B; cA,C ∧ idB c>,A; rA = lA

both hold.

We note a nuance. A symmetry of the form cA,(B∧C) : A ∧ (B ∧ C) → (B ∧ C) ∧ A

cannot be defined in the usual way from associativities and symmetries cA,B and cA,C .
Rather one has an equation of the form

cA,(B∧C); e(B∧C)∧A = aA,B,C ; cA,B ∧ idC ; ãB,A,C ; idB ∧ cA,C ; aB,A,C .

Thus the usual definition holds in the guarded sense. However this is quite enough to
establish the following.

Theorem 3.14. The symmetry c satisfies the standard braid identities.

cA,B ∧ idC ; idB ∧ cA,C ; cB,C ∧ idA = idA ∧ cB,C ; cA,C ∧ idB; idC ∧ cA,B .

3.3.3 Linear distributivity

So far we have the operations >, ∧ and ⊥, ∨, which are dual. We need something like
the usual connection between them from Linear Logic to capture general polycategori-
cal composition. We define

w = idA · (idB · idC) = (idA · idB) · idC : A ∧ (B ∨ C) −→ (A ∧ B) ∨ C

w̃ = (idA · idB) · idC = idA · (idB · idC) : (A ∨ B) ∧ C −→ A ∨ (B ∧ C)

16

where the many commuting conversions are indicated in the following pictures.

idC

idB

idA

∨

∧∧
∨
(A∧B)∨C

A∧(B∨C)

idC

idB

idA

∨

∧∧
∨(A∨B)∧C
A∨(B∧C)

Note that these maps are linear.

There are two distinct kinds of symmetry at play here. On the one hand we have the
following.

Proposition 3.15. w and w̃ are self-dual: that is, we have

(wA,B,C)∗ = wC∗,B∗,A∗ and (w̃A,B,C)∗ = w̃C∗,B∗,A∗ .

Essentially this follows from the de Morgan duality of the proof rules. On the other
hand we have the following.

Proposition 3.16. w and w̃ are interderivable using the symmetry: that is, we have the
following equation and its dual.

wA,B,C = cA,B∨C ; cB,C ∧ idA; w̃C,B,A; idC ∨ cA,B; cC,A∧B

Many other relations between w and w̃ are consequences of these equations and the
idempotency of the symmetry c.

The basic result is as follows.

Theorem 3.17. The linear distributivities are guarded transformations.

There are a considerable number of coherence diagrams for weak distributivities. They
are clearly laid out in [2] and we do not have space to repeat them here.

Theorem 3.18. The coherence diagrams for weak distributivities hold.

The only place where this bears interpretation is in the case of ‘Unit Coherence’ where
one finds canonical idempotents (identities in the 2-category of guarded functors).

3.3.4 Duality

A ∗-polycategory supports polymaps inA : − → A∗, A and evA : A, A∗ → − which
enable us to define something like a unit

ηA
B = inA · idB : B → A∗ ∨ (A ∧ B) ,

and something like a counit

εA
B = evA · idB : A ∧ (A∗ ∨ B) → B .

17

One expects that the unit and counit are interchanged by the self-duality, though our
conventions on duality require mediating symmetries. (With the other choice of con-
vention, the problem emerges elsewhere!)

Proposition 3.19. The η and ε are dual in the sense that the equations
cA∗,B∗ ∧ idA; (ηA

B)∗ = cA∗∨B∗,A; εA
B∗ and (εA

B)∗; cA∗,B∗∧A∗ = ηA
B∗ ; idA∗ ∨ cB∗,A hold.

Finally we get triangle identities in a guarded sense.

Theorem 3.20. We have idA ∧ ηA
B; εA

A∧B = eA∧B and ηA
A∗∨B ; idA∗ ∨ εA

B = eA∗∨B .

This essentially gives an adjunction in the guarded 2-category.

3.3.5 Algebras and coalgebras

We consider now the structural maps

d : A → A ∧ A t : A → > m : A ∨ A → A u : ⊥ → A

The de Morgan duality of the proof rules shows that these structures are dual to one
another:

d∗

A = mA∗ , m∗

A = dA∗ , t∗A = uA∗ , u∗

A = tA∗ .

In familiar category theoretic settings maps of these kinds are usually associated with
product and coproduct structure; but here we do not even have guarded naturality. But
the correctness equations of 2.3.3 give at once the following relation to canonical linear
idempotents.

Proposition 3.21. The maps d, t are codomain absorbing while m and u are domain
absorbing in the sense that following equations hold.

d; eA∧A = d , t; e> = t and eA∨A; m = m , e⊥; u = u .

Moreover some structure holds on the nose.

Proposition 3.22. The structure (A, tA, dA) forms a commutative comonoid, while the
structure (A, mA, uA) forms a commutative monoid.

We list the equations involved in the comonoid case.

d; t ∧ idA; r̃ = idA d; idA ∧ t; l̃ = idA

d; idA ∧ d; a = d; d ∧ idA d; d ∧ idA; ã = d; idA ∧ d

d; c = d .

18

3.4 The definition

We are now in a position to explain a notion of categorical model for classical proof.
In the definition one should think of the hom-sets C(A; B) as being the collection of
classical proofs of A ` B. Proofs of more complex sequents are coded indirectly in the
model.

Definition 3.23. A (static) model for classical (propositional) proofs consists of the
following data satisfying the given axioms.

• A guarded category C equipped with a (strictly) involutive self-duality (−)∗.
• Guarded objects > and ⊥ of C and guarded functors ∧, ∨ (respectively domain and

codomain absorbing) satisfying the usual de Morgan laws with respect to the duality.
Linear maps are maps u, v such that

u ∧ v; f ∧ g = (u; f) ∧ (v; g) and f ∨ g; u ∨ v = (f ; u) ∨ (g; v) .

• Linear mutually inverse guarded transformations for > and ∧

l : A → >∧ A, l̃ : > ∧ A → A,

r : A → A ∧ > r̃ : A ∧ > → A

a : A ∧ (B ∧ C) → (A ∧ B) ∧ C ã : (A ∧ B) ∧ C → A ∧ (B ∧ C)

of the left and right unit laws and associativity satisfying the usual pentagon and
triangle laws .
By duality we have also the same structure for ⊥ and ∨.

• A linear self-inverse guarded transformation

c : A ∧ B → B ∧ A

giving a symmetry for ∧, and satisfying the usual hexagon condition.
By duality we have also the same structure for ∨.

• Linear guarded transformations

w : A ∧ (B ∨ C) → (A ∧ B) ∨ C, w̃ : (A ∨ B) ∧ C → A ∨ (B ∧ C)

interchanged by duality, interdefinable using the symmetry and satisfying standard
coherence conditions for distributivities.

• Linear and mutually dual guarded transformations ηA
B : B → A∗ ∨ (A ∧ B) and

εA
B : A ∧ (A∗ ∨ B) → B satisfying the triangle identities.

• An association to all objects A of maps d : A → A ∧ A, t : A → 1, and their duals
m : A ∨ A → A and u : ⊥ → A in C, codomain and dually domain absorbing, and
giving to each object A the structure of a commutative comonoid with respect to ∧
and the structure of a commutative monoid with respect to ∨.

This definition may seem substantially more complex than analogues for linear logic;
but that may well be more a matter of lack of familiarity. Much of the definition is

19

concerned to say that one has a ∗-autonomous category, modulo issues of canonical
idempotents.

We now explain how, given a model C of classical proof in the sense just described, we
can construct a ∗-polycategory C modelling classical proof in the sense analyzed earlier.
Splitting idempotents is a basic tool in category theory, familiar in particular from the
theory of Morita equivalence. Here we could use it for a novel purpose: splitting some
canonical idempotents provides objects representing polysets of objects on either sides
of polymaps. This means that we recover the sets of polymaps C(Γ, ∆). We explain the
point in a simple case. We have canonical polymaps

iA∧B = idA · idB : A, B → A ∧ B and iC∨D = idC · idD : C ∨ D → C, D .

Since iA∧B ; f ; iC∨D = {idA, idB}; f ; {idC , idD} = f , we can regard C(A, B; C, D) as
arising by splitting the idempotent

g → iA∧B ; g; iC∨D = eA∧B ; g; eC∨D

on C(A ∧ B; C ∨ D).

So in outline the construction of the polycategorical model is as follows. We make
a choice of bracketings of both Γ and ∆. This gives us hom-sets C(

∧
Γ,

∨
∆) and

canonical idempotents e∧
Γ and e∨

∆. We can then take C(Γ; ∆) to consist of the
f ∈ C(

∧
Γ,

∨
∆) such that e∧

Γ; f ; e∨
∆ = f . Finally we have a series of fiddly but

routine tasks.

(1) We show that C(Γ; ∆) is essentially independent of the bracketing chosen. This
follows from the coherence of the canonical linear idempotents.

(2) We show how to define composition on the sets of polymaps. This combines point
(1) with heavy use of the linear distributivities. And we show that the result is
indeed a ∗-polycategory.

(3) We define the logical operations on the collections of polymaps and derive the
many equations. This is pretty much routine.

4 Explanation and comparison

4.1 Representable polycategories

We recall the relationship between ∗-polycategories and ∗-autonomous categories (see
[2] or [11] for example). Take the obvious 2-categories ∗Poly of ∗-polycategories and
∗Aut of ∗-autonomous categories: all 2-cells are invertible so we are in the groupoid
enriched setting. Any ∗-autonomous category determines a ∗-polycategory, with the
linear tensor and par representing polymaps; so one sees that there is a groupoid en-
riched forgetful functor SPoly : ∗Aut → ∗Poly. On the other hand one can freely
construct a ∗-autonomous category generated by a ∗-polycategory, subject to obvious

20

identifications. This gives a groupoid enriched functor SAut : ∗Poly → ∗Aut and a
groupoid enriched adjunction SAut a SPoly. The basic conservativity result proved
by direct syntactic considerations in [2] (though see [11] for an indication of a semantic
proof) is as follows.

Theorem 4.1. In the groupoid enriched adjunction SAut a SPoly, the unit

P → SPolySAut(P)

is full and faithful for any ∗-polycategory P .

When does a ∗-polycategory P arise from a ∗-autonomous category, that is when is it
in the essential image of SPoly? This occurs just when there are maps

iA,B : A, B → A ∧ B i> : − → > iC,D : C ∨ D → C, D i⊥ : ⊥ → −

composition with which induces isomorphisms

P(A ∧ B, Γ; ∆) ∼= P(A, B, Γ; ∆) P(>, Γ; ∆) ∼= P(Γ; ∆) ,

P(Γ; ∆, C ∨ D) ∼= P(Γ; ∆, C, D) P(Γ; ∆⊥) ∼= P(Γ; ∆) .

In particular for any Γ, ∆ we have isomorphisms C(Γ; ∆) ∼= C(
∧

Γ;
∨

∆) where we
write

∧
Γ and

∨
∆ for a conjunction and disjunction according to some bracketings.

In these circumstances we say that iA,B, i>, iC,D and i⊥ provide a representation of
polymaps, or more loosely that ∧, >, ∨, ⊥ represent polymaps.

4.2 Representability and functoriality

Consider now a ∗-polycategorical model C for classical proof: it comes equipped with
structure

iA,B = iA∧B , i> = ? , iC,D = iC∨C , i⊥ = ?

(using earlier notation) potentially providing a representation of polymaps.

From our outline of the reconstruction of the ∗-polycategory, we see that we have rep-
resentability just when the canonical linear idempotents

eA∧B = iA,B , e> = (i>)+ , eC∨D = iC,D , e⊥ = (i⊥)+

are in fact identities. By duality, we only need half of this so representability is equiva-
lent to the conditions

e> = id> and idA ∧ idB = idA∧B .

Next note that, as ∧ is guarded domain absorbing, we have

f ∧ g; h ∧ k; idE ∧ idF = (f ; h) ∧ (h; k); idE ∧ idF

21

so that idE ∧ idF = idE∧F gives

f ∧ g; h ∧ k = (f ; h) ∧ (h; k)

which is functoriality of ∧. One should regard e> = id> as functoriality of >. Then one
can summarise the discussion in the following.

Theorem 4.2. Let C be a model for classical proof. Then the following are equivalent.

(1) The identity conditions idA ∧ idB = idA∧B and e> = id>.
(2) Full functoriality of ∧, and >.
(3) Representability of polymaps by ∧, > and ∨, ⊥.

This makes clear the oversight in [11]. There linear maps were assumed to form a
∗-autonomous category; but that gives idA ∧ idB = idA∧B and so functoriality of the
logical operators. Note also that the condition f∧g; h∧k = (f ; h)∧(h; k) follows from
that naturality of the ∧-R rule which we did not adopt. However that condition is weaker
than full functoriality. It is easy to find models in which it holds but idA ∧ idB = idA∧B

fails.

4.3 Why functoriality should fail

As we shall see the assumption of representability provides a substantial simplification
of the notion of categorical model. So it is time to explain why we do not adopt it.

First we argue against the tempting naturality of ∧-R

{u, v}; (f · g) = (u; f) · (v; g) .

Consider first {m, idB}; (idA, idB). Composing with idB does nothing so this is equal
to m; (idA, idB), which is represented by the proof

A ` A A ` A
A ∨ A ` A,A

A ∨ A ` A
A ` A B ` B
A,B ` A ∧ B

A ∨ A,B ` A ∧ B (1)

There are two distinct ways to eliminate the Cut. One results in the normal form

A ` A A ` A
A ∨ A ` A,A

A ∨ A ` A B ` B
A ∨ A,B ` A ∧ B (2)

and the other in the normal form

A ` A B ` B
A,B ` A ∧ B

A ` A B ` B
A,B ` A ∧ B

A ∨ A,B,B ` A ∧ B,A ∧ B

A ∨ A,B ` A ∧ B (3)

22

Now consider (m; idA) · (idB; idB). This is clearly equal to m · idB which is represented
by the first of the above two normal forms. There is no way to get at the second (though
that is the normal form in which m has done its intended job of copying). Now we take
the view that failure to have the same normal forms (even modulo obvious rewritings)
is a clear sign of non-identity. We conclude that the naturality equation

{m, idB}; (idA · idB) = (m; idA) · (idB; idB)

is not faithful to the notion of proof encapsulated in the sequent calculus.

We explain the significance of this for the functoriality of ∧. Consider idA ∧ idB. Note
that

(m ∧ idB); (idA ∧ idB) = {m, idB}; (idA · idB) and m ∧ idB = m · idB .

Now we just argued that we should not have

{m, idB}; (idA · idB) = m · idB .

But as iA∧B ; h = h, the operation () is injective. So we cannot have the equation

(m ∧ idB); (idA ∧ idB) = m ∧ idB .

The general point seems to be this. If we cut a classical proof even with such simple
proofs as given by our canonical linear idempotents, then we can, in general, obtain
additional normal forms that were not available from the classical proof on its own.

4.4 Führmann-Pym Axioms

We observed already that a ∗-polycategory in which the polymaps are represented by
∧ and ∨ is in effect a ∗-autonomous category. If one has a model for classical proof of
this kind the structure simplifies drastically.

Theorem 4.3. To give a model of classical proof in which ∧, > and ∨, ⊥ represent
polymaps is to give the following data.

• A ∗-autonomous category C (with a strict duality): tensor is ∧ and par ∨.
• The equipment on each object A of C of the structure of a commutative comonoid

with respect to tensor (and so dually the structure of a commutative monoid with
respect to par).

This is the equality component of the structure proposed in Führmann and Pym [6]. (It
is not the only simple possibility. We have recently seen work [14] of Lamarche and
Strassburger which leads to an even more restrictive notion.)

There are a number of further connections between the Führmann-Pym notion and the
one described in this paper. One simple thought is as follows. Suppose that C is a model
for classical logic in the general sense, freely generated by some category of objects and

23

maps. (This makes sense by Kelly-Power [13].) We can inductively define idempotents
eA on objects A of C: we set eA = idA for atomic objects (which includes the duals A∗)
and then set eA∧B = eA ∧ eB and eA∨B = eA ∨ eB . (Implicitly we have taken e> and e⊥
as we found them.) Then we can define a quotient Ĉ of C with

Ĉ(A, B) = {f ∈ C(A, B) | eA; f ; eB = f} .

The quotient functor is given by

C(A, B) −→ Ĉ(A, B) : f → eA; f ; eB .

Now it is easy to see that Ĉ has on the nose the structure which C has up to idempotents.

Theorem 4.4. If C is a model for classical proof freely generated by a category, then Ĉ
is a model in the Führmann-Pym sense.

4.5 Semantic possibilities

We hope to write more fully about models in further papers, so for now we survey the
possibilities. We distinguish between the following.

• Degenerate models: that is categorical models based on compact closed categories
(and so ignoring the difference between ∧ and ∨). We think of these as abstract in-
terpretations, allowing one in particular to associate a variety of invariants to proofs.
Preliminary observations are in [12], [7].

• Categorical models: that is models satisfying the Führmann-Pym equality axioms
[6]. We know some examples of these, and have a little theory, but there is more to
do.

• General models: that is, models which are equivalent to polycategories which do not
arise from ∗-autonomous categories. We know almost nothing about these.

5 Provisional Conclusions

5.1 Guiding Principles

The notion of model for classical proof theory which we have developed has unfamiliar
features. Hence it seems worth reflecting on the principles which have informed our
analysis.

Reduction principle for logical cuts. For us this is the remnant of the Martin-Löf
criterion (see Prawitz [18]) for identity of proofs. At least some part of normalisation
preserves meaning: we ask that simple detours should not matter. This is an essential
component of our analysis, without which we would not have interesting equalities
between (representations of) proofs.

Structural congruence. This an idea taken from concurrency theory. We follow that

24

culture in taking the structural rules of Weakening and Contraction to behave well with
respect to themselves: so we end up with commutative comonoid structure for >, ∧
and commutative monoid structure for ⊥, ∨. However not a great deal rides on this
choice. We note that the optical graphs of Carbone [3] provide free models for a notion
of abstract interpretation in which this choice is not made.

Computation of values. We take something from ideas of non-determinism: a classical
proof has a non-deterministic choice as to the normal forms to which it reduces. We take
account of all plausible commuting conversions and the like, with a view to having some
good representation of proofs. For these we hope that it is plausible that if proofs are
equal then they should have the same normal forms. Where we have evidence of distinct
normal forms we have taken it to be evidence that the proofs are distinct. Though we
need to say more about equality to make the claim precise, we believe that our analysis
is consistent with this principle in the following sense.

Proposition 5.1. If two proofs are equal then they reduce to the same collection of
normal forms.

5.2 Further issues

Normal forms and meaning. We consider the question whether our general principle
in the last proposition should be an equivalence: does having the same set (or maybe
multiset) of normal forms entail equality of proofs? At the moment we would argue
against that.

MIX. There is something right about the idea that proofs in classical logic involve
some kind of non-determinism: the computation or reduction process is in principle
non-deterministic. But we do not for example have primitives for non-deterministic
choice. In particular in view of [1] we should investigate an approach to the idea of
non-deterministic choice in proofs using the MIX rule.

Idempotents. While it is not clear whether our formulation of semantics for classical
proof is robust, its use of canonical idempotents would bear further investigation. We
have not space to describe here the consequence of splitting idempotents in a model for
classical proof in our sense.

Linearity. In this paper we have used a notion of linearity which has mitigated to
some extent the general failure of functoriality of the logical operations. We have not
troubled with natural refinements (linearity in the domain or codomain). In a properly
algebraic formulation we would expect to follow Power [17] and take this explicitly
as part of the structure. Before doing that we should probably decide just how much
use to make of it. In [11] where already an explicit notion of linearity is proposed,
the idea was that linear maps would also be maps of the commutative coalgebra and
commutative algebra structure. It seems that to make good sense of that one must forbid
some superficially natural ways to reduce Cuts. (For example we would allow to reduce
proof (1) in Section 4.3 to only (2) but not (3).)

25

Acknowledgements: We should like to thank colleagues with whom we have discussed
the matters described here, and also the anonymous referee for penetrating observations
to which we have tried to respond as best we are able.

References

[1] G. Bellin. Two paradigms of logical computation in Affine Logic? In Logic for
Concurrency and Synchronisation (R. de Queiroz Ed.), Kluwer Trends in Logic n.18, 2003,
pp.115-150.

[2] R. F. Blute, J. R. B. Cockett, R. A. G. Seely and T. H. Trimble. Natural deduction and
coherence for weakly distributive categories. Journal of Pure and Applied Algebra 113
(1996) 229-296.

[3] A. Carbone. Duplication of directed graphs and exponential blow up of proofs. Annals of
Pure and Applied Logic 100 (1999), 1-67.

[4] J. R. B. Cockett and R. A. G. Seely. Weakly distributive categories. Journal of Pure and
Applied Algebra 114 (1997), 133-173.

[5] V. Danos and J.-B. Joinet and H. Schellinx. LKT and LKQ: sequent calculi for second
order logic based upon dual linear decomposition of classical implication. In: Advances in
Linear Logic (J.-Y. Girard and Y. Lafont and L. Regnier eds), Cambridge University Press
(1995), 43-59.

[6] C. F ührmann and D. Pym. Order-enriched Categorical Models of the Classical Sequent
Calculus. To appear in Journal of Pure Applied Algebra.

[7] C. F ührmann and D. Pym. On the Geometry of Interaction for Classical Logic (Extended
Abstract). In Proceedings of LICS 04, IEEE Computer Society, 2004, 211-220.

[8] J.-Y. Girard. Linear Logic. Theoretical Computer Science 50, (1987), 1-102.

[9] T. Griffin. A Formulae-as-Types Notion of Control. In Proceedings of POPL 90, ACM
Press, 47-78.

[10] H. Herbelin and P.-L. Curien. The duality of computation. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming, M. Odersky and P.
Wadler (eds), ACM Press 2000, 233-243.

[11] J. M. E. Hyland. Proof Theory in the Abstract. Annals of Pure and Applied Logic 114
(2002), 43-78.

[12] M. Hyland. Abstract Interpretation of Proofs: Classical Propositional Calculus. In
Computer Science Logic, J. Marcinkowski and A. Tarlecki (eds). LNCS 3210, Springer-
Verlag 2004, 6-21.

[13] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers and presentations
of enriched monads, Journal of Pure and Applied Algebra, 89 (1993), 163-179.

26

[14] F. Lamarche and L. Strassburger. Naming Proofs in Classical Logic. To appear in
Proceedings of TLCA 2005.

[15] C. R. Murthy. Classical Proofs as Programs: How, What, and Why. LNCS 613, Springer-
Verlag 1992.

[16] M. Parigot. Lambda-mu-calculus: An Algorithmic Interpretation of Classical natural
Deduction. In Logic Programming and Automated Reasoning ed A. Voronkov, LNCS 624
Springer 1992, 190-201.

[17] A. J. Power. Premonoidal categories as categories with algebraic structure. Theoretical
Computer Science. 278(1-2), 303-321.

[18] D. Prawitz. Ideas and results in proof theory. In Proceedings of the Second Scandinavian
Logic Symposium. J.-E. Fenstad (ed), North-Holland 1971, 237-309.

[19] E. P. Robinson. Proof Nets for Classical Logic. Journal of Logic and Computation 13,
2003, 777-797.

[20] P. Ruet and M. Abrusci. Non-commutative logic I : the multiplicative fragment. Annals of
Pure and Applied Logic 101(1): 29-64.

[21] H. Schellinx. The Noble Art of Linear Decorating. PhD Dissertation, University of
Amsterdam, 1994.

[22] M. E. Szabo. Polycategories. Comm. Alg. 3 (1975), 663-689.

[23] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science 11(2): 207-260 (2001).

[24] C. Urban and G. M. Bierman. Strong Normalisation of Cut-Elimination in Classical Logic.
Fundamenta Informaticae 45, (2000) 123-155.

[25] C. Urban. Classical Logic and Computation. PhD Dissertation, University of Cambridge,
2000.

[26] P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM
SIGPLAN International Conference on Functional Programming, C. Runciman and O.
Shivers (eds), ACM Press 2003, 189-201.

27

