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1.1. Grand projects.

Project I - Double negation

Gentzen’s Sequent Calculus LK with
Categorical model of it ? (a)

‖
∼∼ transl. + Prawitz ⊥C (b)

⇓
λµ-calc with

Control Categories (c)

(a) Which one?
- Bellin-Hyland-Robinson-Urban. Categorical Proof
Theory of the Classical Prop. Calculus TCS [2005]
- Führmann-Pym. Order-enriched categorical models
of the class. seq. calculus. J.Pure App.Algebra [2006]
- Lamarche-Strassburger. Naming Proofs in Classical
Logic, TLCA [2005]
- Dominic Hughes. Classical Logic = Fibered MLL,
LICS 2005.
- Kosta Dos̆en, Zoran Petrić Proof-Net Categories,
Belgrade, 2007.

(b) Who knows?

(c) Peter Selinger. Control Category and Duality: on

the categorical semantics of the lambda-mu calculus,

MSCS [2001]



Project II - S4 translation

Natural Deduction NJ with
Cartesian Closed Categories

‖
S4 transl (a)

⇓
Sequent calculus S4 with

Categorical model of it ?? (b)

(a) Which translation?

(b) Extension of which classical model??



1.2. Elementary remarks.

• Glivenko’s and Gödel’s double negation
translation can be defined functorially:

- on formulas:
(p)∗ =∼∼ p, (A ∧B)∗ = A∗ ∩B∗,
(A → B)∗ = A∗ ⊃ B∗, (A ∨B)∗ =∼ (∼ A∗∩ ∼ B∗);

- on proofs:
by a map ( )∗ : LK → LJ such that

(A `LK A)∗ = A∗ `LJ A∗ and(
d1 d2 cut

S

)∗
=

d∗1 d∗2 cut
SM

Prawitz NK does not fit in here!

• Gödel’s McKinsey and Tarski’s modal trans-
lation can be defined functorially:

- on formulas:
(p)M = 2p, (A ∩B)M = AM ∧BM ,
(A ⊃ B)M = 2(AM → BM), (A∪B)M = AM∨BM);

- on proofs:
by a map ( )M : LJ → LK− S4 such that

(A `LJ A)M = AM `S4 AM and(
d1 d2 cut

S

)M
= dM

1 dM
2 cut

SM



1.3. So what is Prawitz NK?

• Natural Deduction:
classical NK = intuitionistic NJ + ⊥C

where

[∼ A]
...
⊥ ⊥C
A

≡ ∼∼ A
A

• but wait: it uses the ∼∼ translation on
formulas
letting (p)∗ = p, and then (A ∧B)∗ = A∗ ∩B∗,

(A → B)∗ = A∗ ⊃ B∗, (A ∨B)∗ =∼ (∼ A∗∩ ∼ B∗);

and a proof d is

- intuitionistic and classical if it makes no use

of ⊥C

- classical otherwise.

• We may think of a translation LK → NK, but the

symmetries between ∧ and ∨ in LK are completely

lost. Essentially, we extend intuitionistic NJ.

• Look for representations of classical logic
within intuitionism (other than ∼∼-trans)!



1.4. Hopeful projects.

Project I - Double negation

Gentzen’s Sequent Calculus LK with
Categorical model of it.

‖
functorially? λµ transl.?

⇓
Polarized bi-intuitionistic logic + modality

with Categorical model of it?
‖

S4 transl
⇓

Sequent calculus S4 with
Categorical model of it ??



2.1. Polycategories and proof-net
categories. Hyland et al. 2005.

Definition. (Szabo 1975) A symmetric polycategory

P consists of

• A collection obP of objects and

- for every pair of finite sequences Γ and ∆ of objects,

a collection P(Γ;∆) of polymaps from Γ to ∆.

• For each re-ordering of the sequence Γ to pro-

duce a sequence Γ′, an isomorphism from P(Γ;∆)

to P(Γ′;∆), functorial in its action, and dually for ∆

(exchange).

• An identity idA ∈ P(A;A) for each object A; and a

composition (cut)

P(Γ;∆, A)× P(A,Π;Σ) → P(Γ,Π;∆,Σ)

for each Γ,∆, A,Π,Σ coherent with reordering; these

data satisfy the familiar identity and associativity laws.

Definition. A symmetric ∗-polycategory P consists of

a polycategory P equipped with an involutory negation

(−)∗ on object together with, for each Γ,∆, A, an

isomorphism P(Γ;∆, A) ∼= P(A∗,Γ;∆) coherent with

reordering and composition.



We need:

1. operations for classical connectives ∧, >
corresponding to

A, B,Γ ` ∆ ∧ LA ∧B,Γ ` ∆
Γ ` ∆, A Π ` Λ, B ∧-RΓ,Π ` ∆,Λ, A ∧B

Γ ` ∆ > L>,Γ ` ∆ >-R` >

2. negation is defined implicitly: given an
involutory negation on atoms,

>∗ = ⊥ ⊥∗ = >,
(A ∧B)∗ = B∗ ∨A∗ (A ∨B)∗ = B∗ ∧A∗;

thus operations for ∨ and ⊥ follow by duality;

3. equalities on polymaps from naturality,

commutative conversions and meaning-

preserving reductions;

4. implementation of weakening and con-

traction.



Proofs can be represented as proof-nets;
- also in the single-sided representation;
- it gives a simple algebraic notation for proofs

idA, f ; g, f · g, f, ?, f+

- two-sided nets are better for categories.

idA : axiom
A∗ A

f ; g

{
f
A

g
A∗

cut

f

{
f

A B
A ∨B

f · g

{
f
A

g
B

A ∧B

f+

{
f
A

⊥ A
? : axiom

>

weak:

{
Γ

A,Γ
contr:

{
A A

A

However proof-nets suggest unwanted identifica-

tions of proofs! (see below)

We work with polycategories then translate into cats.

Notes: (a) Cut elimination is highly non-deterministic.

(b) Cut-elimination does not preserve identity of proofs.

(c) Equal proofs have the same set of normal forms

(d) but not necessarily the converse!

(e) We indicate explicitly equations of proofs and mean-

ing preserving reductions (also in proof-net notation).



2.2. Reductions, commutations.
- For simplicity, omit contexts Γ, ∆ in f : Γ, A ⇒ C,∆.

- for f : A ⇒ C, g : C ⇒ D, u : A′ ⇒ A, v : B′ ⇒ B
write

{u, v}; (f · d) for

u
A′ ⇒ A

v
B′ ⇒ B

f
A ⇒ C

g
B ⇒ D

A, B ⇒ C ∧D
cuts

A′, B′ ⇒ C ∧D

Logical cuts are meaning preserving.

∧ reduction:
for all f : A ⇒ C, g : B ⇒ D, k : C, D ⇒ E

(∧) (f · g); k = {f, g}; k

where

f
A ⇒ C

g
B ⇒ D

A, B ⇒ C ∧D

k
C, D ⇒ E

C ∧D ⇒ E
cut A, B ⇒ E

reduces to

f
A ⇒ C

g
B ⇒ D

k
C, D ⇒ E

cuts A, B ⇒ E



> reduction:

(>) ?; f+ = f , for all f : Γ ⇒ ∆

where

?
⇒ >

f
Γ ⇒ ∆
>,Γ ⇒ ∆

cut Γ ⇒ ∆

red. to f
Γ ⇒ ∆

Commutation equations.

For all f :⇒ A, B, g :⇒ C, h ⇒ D,

(f · g) · h = f · (g · h) :⇒ A ∧ C, B ∧D

For all f : A, B ⇒ C, g :⇒ D,

f · g = f · g : A ∧B ⇒ C ∧D

For all f : A, B ⇒ C, D, f = f
where

f
A, B ⇒ C, D

A ∧B ⇒ C, D
A ∧B ⇒ C ∨D

=

f
A, B ⇒ C, D

A, B ⇒ C ∨D
A ∧B ⇒ C ∨D

f+ · g = (f · g)+, f+ = f+, f++ = f++

and all variants by duality.



2.3. Naturality equations.

(i) for ∧ L: for h : A, B ⇒ E and w : E ⇒ E′

h;w = h;w

i.e.,
h

A, B ⇒ E
A ∧B ⇒ E

w
E ⇒ E′

cut
A ∧B ⇒ E′

=

h
A, B ⇒ E

w
E ⇒ E′

cut
A, B ⇒ E′

A ∧B ⇒ E′

(ii) for T L: for h : A ⇒ B, v : B ⇒ B′

h+;w = (h;w)+

(iii) for ∧ R: for arbitrary u, v, f, g,

(§) {u, v}; (f · g) 6= (u; f) · (v; g)



Namely:

u
A′ ⇒ A

v
B′ ⇒ B

f
A ⇒ C

g
B ⇒ D

A, B ⇒ C ∧D
cuts

A′, B′ ⇒ C ∧D

(§) is not equal to

u
A′ ⇒ A

f
A ⇒ Ccut

A′ ⇒ C

v
B′ ⇒ B

g
B ⇒ Dcut

B′ ⇒ D
A′, B′ ⇒ C ∧D

Definition. (a) We call maps u, v for which

u; (f · g) = (u; f) · g, v; (f · g) = f · (v; g)

(and so also (§), and their dual) hold linear.

(b) Axioms (id and ?) are linear; linear maps

are closed under the logical operations

(− · −), (−), (−)+ (and their duals).



2.4. Nonlinear maps.

We implement weakening and contraction by

cut with generic instances of them:

tA :
{
⇒ > W LA ⇒ > dA :

 A ⇒ A A ⇒ A
A, A ⇒ A ∧A

C LA ⇒ A ∧A

Dually, have uA : ⊥ ⇒ A and mA : A∨A ⇒ A.

To weaken f with A we reduce the cut tA; f+

where f+ : >,Γ ⇒ ∆;

to contract A in g we reduce the cut dA; g

where g : A ∧A,Γ ⇒ ∆ (and dually!).

Remember that logical cuts preserve meaning!.

There are obvious naturality and commuting conver-

sions (e.g., for C L analogue to those of ∧ R) and

other equalities (omitted).

Claim: we must have

(§§) mA; (idA · idB) 6= (mA; idA) · idB



The l.h.s. of (§§) mA; (idA · idB):

A ⇒ A A ⇒ A
A ∨A ⇒ A, A

C R A ∨A ⇒ A
A ⇒ A B ⇒ B

A, B ⇒ A ∧B
cut A ∨A, B ⇒ A ∧B

First reduction. “mA up” yields mA · idB

NF1:

A ⇒ A A ⇒ A
A ∨A ⇒ A, A

C R A ∨A ⇒ A B ⇒ B
A ∨A, B ⇒ A ∧B

the r.h.s. of (§§) (mA; idA) · idB red. to NF1.

Second reduction: “(idA · idB) up” yields

db; (idA · idB · idA · idB);mA∧B

NF2:

A ⇒ A B ⇒ B
AB ⇒ A ∧B

A ⇒ A B ⇒ B
A, B ⇒ A ∧B∨ L A ∨A, B, B ⇒ A ∧B, A ∧B

C R, CR
A ∨A, B ⇒ A ∧B

No reduction from r.h.s. (§§) to NF2.

So the l.h.s. and the r.h.s. of (§§) have

different sets of normal forms, qed.



2.5. Non-functoriality of ∧.

Given f : A ⇒ B, g : C ⇒ D, write f ∧ g = f · g :

A ∧ C ⇒ B ∧D.

Functoriality of ∧ fails:

(u ∧ v); (f ∧ g) = {u, v}; (f · g) (∧ red)
6= (u; f) · (v; g) (§§)
= (u; f) ∧ (v; g) (∧ red)

Note: the operation (−) is injective.

Definition. Linear idempotents are linear maps e s.t.
e; e = e.
Fact: identities are linear idempotents; e> = ?+ is a
linear idempotent;
if eA : A ⇒ A and eB : B ⇒ B are linear idempotents
then so are

eA ∧ eB = eA · eB and dually definedeA ∨B .

Notice that eA∧B 6= eA ∧ eB, i.e., idA∧B 6= idA · idB.

Definition. (guarded categories) A guarded

category is a category with a class of linear

idempotents.



2.6. Categorical models compared.

Definition. (1) (guarded functors) A guarded func-
tor F : C → D between guarded categories consists
of the usual data for a functor such that F maps lin-
ear idempotents to linear idempotents and whenever
e and e′ are linear idempotents then

F (e);F (f);F (g);F (e′) = F (e);F (f ; g);F (e′)

(2) (guarded transformations) Let F, G : C → D be
guarded functors. A guarded transformation consists
of data αA : F (A) → G(a) satisfying

F (idA);F (u);αB = αA;G(u);G(idB)

for all u : A → B in C.
We define a categorical model for classical logic letting
logical operations be guarded functorial. Details are
omitted.

Theorem. Let C b a categorical model for classi-

cal proof in the above sense. Then the following are

equivalent.

(1) The identity conditions idA ∧ idB = idA∧B and

e> = id>.

(2) Full functoriality of ∧ and >.

(3) Representability of polymaps by ∧, > and ∨, ⊥.

Conditions (1) - (3) are satisfied in Fühman-Pym’s

model and Lamarche-Strassburger’s models accept an

even larger set of equalities of proofs.



3. Polarized bi-intuitionism.

Language LAH:

A, B := `p > ∼ A A ⊃ B A ∩B ∼ C

C, D := Hp ⊥ a C C r D C gD a A

`p: the type of assertions that prop. p is true.

`denotes the illocutionary force of assertion.

Hp: the type of hypotheses that p may be true.

H the illocutionary force of hypothesis.

• `p, A ⊃ B, A ∩B,>: assertive types,
(implication, conjunction, validity);

• H p, C r D, C gD,⊥: hypothetical types,
(subtraction, disjunction, invalidity);

(C r D perhaps C and not D).
• definitely not: ∼ A =df A ⊃ inv,

inv invalid assertive sentence;
• perhaps not: a C =df val r C,

val valid conjectural sentence;
• ∼ C, a A dualities.

Extended KHB interpretation for LAH.

• `p is justified by conclusive evidence that p is true;
• Hp is justified by a scintilla of evidence that p is true;
• A ⊃ B is justified by a method transforming
a justification of A into a justification of B
• C r D is justified by a scintilla of evidence that
there is a justification of C and no justification of D; etc.



3.1. Interpretation in S4.

(>)M =df true (⊥)M =df false
( `p)M =df 2p ( Hp)M =df 3p

(A ⊃ B)M =df 2(AM → BM) (C r D)M =df 3(CM ∧ ¬DM)
(A1 ∩A2)M =df AM

1 ∧AM
2 (C1 g C2)M =df CM

1 ∨ CM
2

(∼ A)M = 2¬AM (a C)M = 3¬CM

(∼ C)M = ¬CM (a A)M = ¬AM

• Epistemic interpretation of S4: models (W, R,)
with R a pre-order representing the evolution of
states of knowledge wi ∈ W .

• AH: the set of all expressions in LAH that are valid
in the S4 modal translation.

• AH-G1: a sequent calculus for AH sound and
complete for S4 where sequents are of the form

Θ ; ⇒ A ; Υ

Θ ; C ⇒ ; Υ

• Θ is a sequence of assertive formulas A1, . . . , Am;

• Υ a sequence of hypothetical formulas C1, . . . , Cn.



Basic laws of AH:

A ≡∼a A as (∼a A)M = 2AM = AM .

C ≡a∼ C as (a∼ C)M = 3CM = CM .

Sequent calculus AH-G1
rules for implication, subtraction

right ⊃:
Θ, A ; ⇒ B ; Υ

Θ ; ⇒ A ⊃ B ; Υ

left r:
Θ ; C ⇒ ; Υ, D

Θ ; C r D ⇒ ; Υ

left ⊃:
Θ ; ⇒ A ; Υ B,Θ ; ε ⇒ ε′ ; Υ

A ⊃ B, Θ ; ε ⇒ ε′ ; Υ

right r:
Θ ; ε ⇒ ε′ ; Υ, C Θ ; D ⇒ ; Υ

Θ ; ε ⇒ ε′ ; Υ, C r D

intuitionistic modalities:
2IC = ∼a C (assertive necessity)
- where (∼a C)M = 2CM

3IC = a∼ A (hypothetical possibility)
- where (a∼ A)M = 3AM .

Write Ep =df 2I Hp (expectation that p)
- the type of assertions that p has to be a hypothesis.

Write Cp =df 3I `p (conjecture that p)
- the type of hypotheses that p could be asserted.



3.2. Bi-intuitionistic illocutions.

3p
↖

↗ 323p
↗ ↖

p 32p 23p
↖ ↗

↖ 232p
↗

2p

The modalities of S4

Hp
↖

↗ aa Hp
↗ ↖

p Cp Ep
↖ ↗

↖ ∼∼ `p
↗

` p

Assertions, hypotheses, conjectures, expectations



3.3. Bimodal Interpretation.

( `p)M = 2p ( Hp)M =3p
(A ⊃ B)M = 2(AM → BM) (C r D)N =3(CM ∧ ¬DM)

(A ∩B)M = AM ∧BM (C gD)M = CM ∨DM

(A ∪B)M = AM ∨BM (C fD)M = CM ∧DM

(∼ C)M = 2¬CM (a A)M =3¬AM

- Bimodal S4 frames have the form (W, R, S) where
both R and S are preorders over the set W .
- Kripke models for bimodal S4 have the form M =
(W, R, S,V), with V a valuation of the atoms over W
and the forcing conditions are

1. w  2X if and only if ∀w′, wRw′ implies w′  X;

2. w 3X if and only if ∃w′ such that wSw′ and
w′  X.

• Consider bimodal frames where S ⊆ R.

- In such a model it is easier to falsify 3X than 3X.

• Let ASH be the set of LAH formulas valid in all such

frames.

• Let ASH-G1 be the sequent calculus sound and

complete for the semantics of ASH.

Sequent calculus ASH-G1
specific rules

right ⊃:
Θ, A ; ⇒ B ;

Θ ; ⇒ A ⊃ B ; Υ

left r:
Θ ; C ⇒ ; Υ, D

Θ ; C r D ⇒ ; Υ



3.4. Categorical semantics?

The categorical semantics of subtraction is given by
coexponents.
- Given two objects A, B ∈ C, a coexponent for A, B is
an object BA, together with an arrow 3A,B: B → BAtC
in C, satisfying the following property:
For any object C and any arrow f : B → C t A, there
is a unique h : BA → C (written f?) such that the
following diagram commutes:

B
f //

3A,B
""DD

DD
DD

DD
DD

DD
C tA C

BA tA

ht1A

OO

BA

h

OO

Lemma. (T. Crolard) In the category of sets, the
coexponent BA of two sets A and B is defined if and
only if A = ∅ or B = ∅.

Proof. In Sets, the coproduct t is the disjoint union;
thus if A 6= ∅ 6= B then the functions f and 3A,B for
every b ∈ B must choose a side, left or right, of the
coproduct in their target and moreover f? t 1A leaves
the side unchanged. Hence, if we take a nonempty set
C and f with the property that for some b different
sides are chosen by f and 3A,B, then the diagram does
not commute. QED.

Thus co-intuitionistic logic with disjunction and sub-

traction has only a degenerate model in Sets. Look

for models in linear logic and monoidal categories.



• Additive intro rules for disjunction involve a

choice between the disjunct. Thus we must

have multiplicative rules for disjunction.

- “Commas” in the right hypothetical area

are Girard’s par.

Sequent calculus AH-G1
rules for disjunction

right g:
Θ ; ε ⇒ ε′ ; C0, C1,Υ

Θ ; ε ⇒ ε′ ; , C0 g C1,Υ
left g:

Θ ; C0 ⇒ ; Υ Θ′ ; C1 ⇒ ; Υ′

Θ,Θ′ ; C0 g C1 ⇒ ; Υ



4.1. Normalization in Prawitz 1965.

• Technically, ⊥C is an anomaly.
Natural Deduction inferences consist of
introduction - elimination rules;
- Intuitionistic “ex falso” ⊥ ⊥I

A
is an intro.

- classic ⊥C is neither an intro nor an elim.

• A derivation is a redex if it ends with an elim

whose main premise is conclusion of an intro.

A reduction eliminates the intro-elim pair.

[A]
d1
B ⊃I

A ⊃ B
d0
A ⊃E

B

reduces to

d0
[A]
d1
B

Under the ∼∼ translation the rule ⊥C is
needed only with atomic conclusions
(“minimize the disturbance to the intro-
elim pattern”).

• Not possible with disjunction!



4.2. Prawitz 1977: “Meaning as
use”.

• Principle of harmony:
- Intro rules give the operational meaning
to a connective (Gentzen).

Γ ` A Γ ` B∩ I Γ ` A ∩B

- Elim rules are justified by the meaning
given by an intro rule.

Γ ` A ∩B∩1E
Γ ` A

Γ ` A ∩B∩2E
Γ ` B

Then an intro followed by an elim should
yield the same information than was al-
ready in (one of) the premises (inversion
principle, Prawitz 1965).

Γ ` A Γ ` B∩I
Γ ` A ∩B∩1E

Γ ` A
reduces to Γ ` A

A ∩∗ I rule not in harmony with ∩1 E and ∩2 E:

Γ ` A ∆ ` B∩∗I
Γ,∆ ` A ∩B



4.3. Prawitz: revision of use.

• The double negation rule neither gives op-
erational meaning nor is not justified by it.
Revision of use is needed when classical
logic conflicts with intuitionism in mathemat-
ics and in ordinary language.

Dummett’s justificationism.
Intuitionism is the logic of assertions and
of their justifications.
Some assertions about the past, the future, some

applications of the notion of classical continuum to

physics, Laplace’s determinism, etc. are in principle

unjustifiable.

In this case Dummett holds that not only these as-

sertions, but also their propositional content ought to

be regarded as meaningless.

• Dummett refuses to apply a correspondence the-

ory of truth to abstract mathematical constructions;

in particular, unlike Prawitz and Martin-Löf, does not

accept that proofs have an atemporal existence, inde-

pendently of our knowledge of them.

• Dummett appears to accept a correspondence the-

ory of truth w.r.t. the objects of perception (e.g., in

Thought and Reality).



4.4. Prawitz on proofs and justi-
fications.
”Is there a general concept of proof?”

• The conceptual problem: how and why a proof suc-

ceeds in giving knowledge.

- why does a proof justify the last assertion?

- it gives conclusive grounds for that assertion.

• Why an inference succeeds in justifying the conclu-

sion given the justification of the premisses?

• What constitutes a justification of an assertion?

- Direct, canonical means to justify an assertion (in-

troduction rule)

- Indirect, non-canonical means must be reduced to

canonical ones.

• Heyting: A proof is the realization of the intention

expressed by the proposition.

• Prawitz: To know the meaning of a sentence A is

to know what forms a canonical ground for A has and

what conditions the parts of A satisfy.

- Inference acts may now be seen as the act of oper-

ating on grounds from the premises.

- The conjecture on identity of proofs is no longer

valid. It becomes a definition about the identity of

grounds. (My notes from CLMPS 2011, Nancy.)



4.5. Comments by GB, 2012

• Whether or not the notion of truth can

be separated form the notion of justification,

there are pragmatic components of meaning.

• A pragmatic interpretation of classical

logic is the specification of domains of dis-

course where the use of classical logic yields

correct inferences.

Classical logic may be not only about (Frege’s bivalent

notion of) truth, but also about properties of epis-

temic attitudes and illocutionary acts different from

assertions; see below expectations.

• Classical reasoning may become “pragmat-

ically justified” when formulas express differ-

ent “intentions” and have different justifica-

tions from those required by the illocutionary

act of assertion.

• Thus revision of use is about fallacies of

scientific or common sense reasoning.



5. Classical logic in bi-intuitionism.

The language LE of the pragmatic interpretations of
classical logic:

LE = {E, F, Hp} where E, F := E p | E ⊃ F | E ∩ F | ∼ E

with interpretation into S4:

(
LE

)M
= {EM , F M , 3p} with (E p)M = 23p;

(E ⊃ F )M =2(EM→F M), (E ∩ F )M =EM∧F M , (∼ E)M =2¬EM .

To the calculus AH-G1 add the following rules:

Θ ; ⇒ ; Hp, ΥE-R Θ ; ⇒ Ep ; Υ
Θ ; Hp ⇒ ; ΥE-L Θ, Ep ; ⇒ ; Υ

Here is a derivation of ∼∼ Ep :⇒; Ep.

; Hp ⇒ ; HpE-L Ep ; ⇒ ; Hp⊃-R ; ⇒ ∼ Ep ; Hp⊃-L ∼∼ Ep ; ⇒ ; HpE-R ∼∼ Ep ; ⇒ Ep ;

Notice that (E ∪ ¬E)M = 23EM ∨ 2¬EM) is invalid;

- only (E ∪ ¬E)23 = 23(EM ∨ 2¬EM) is valid.



5.1. λµ -calculus.

In (a variant of) Parigot’s λµ-calculus, terms

are defined by the grammar

t, u := x | α| tu | λx.t | [α]t | µα.t

and are typed by sequents of the form Γ ` t :
A | ∆, with contexts Γ = x1 : C1, . . . , xm : Cm
and ∆ = α1 : D1, . . . , αn : Dn, where the xi
are variables and the αj are µ-variables and
a term t is assigned to the formula A occur-
ring in the stoup. In addition to the rules of
the simply typed lambda calculus, there are
naming rules

Γ ` t : A | α : A,∆

Γ ` [α]t : ⊥ | α : A,∆
[α]

Γ ` t : ⊥ | α : A,∆

Γ ` µα.t : A | ∆
µ



5.4. Typing λµ with expectations.
We type the λµ-calculus in a logic of expectations:

namely, all formulas which an abstraction [α] or the

µ-rule is applied to elementary expressions of the form

Ep.

We consider a sequent-style Natural Deduc-
tion with AHL-G1 sequents of the forms

Θ ; ⇒ A ; Υ or ; Hp ⇒ ; Υ

where A and all formulas in Θ are assertive
and Υ consists of expressions of the form Hpi
only.
Then the [α] and µ rules become the elimina-
tion and introduction rules for expectations:

Γ ` t : Ep | α :Hp,∆ α :Hp ` α :Hp
E E [α]

Γ ` [α]t : ⊥ | α :Hp,∆

Γ ` t : ⊥ | α :Hp,∆
E I µ

Γ ` µα.t : Ep ; ∆

The renaming and µη operations on λµ terms,

[α]µβ.t  t[α/β] µα.[α]t t (1)

are interpreted as β and η reductions for E.



6. Lax Logic and “non-standard”
bi-intuitionism.

Propositional Lax Logic PLL is intuitionis-

tic logic extended with a modal operator ©,

interpreted as “true modulo constraints”.

The sequent calculus rules for the modality
PLL:

Γ ⇒ A © R
Γ ⇒©A

Γ, A ⇒©B © L
Γ,©A ⇒©B

(2)

Characteristic of PLL is the invalidity of

standard axioms for 3:

3(A ∨B) ⇒ 3A ∨3B and ⇒ ¬3⊥

with © for 3.

- Fairtlough and Mendler. Propositional Lax Logic,

Information and Computation, [1997]

- Alechina De Paiva, Mendler and Ritter. Categori-

cal and Kripke Semantics for Constructive S4 Modal

Logic, CSL [2001]



6.1. ASH decomposition.

Bi-intuitionistic modalities in ASH are
- hypothetical possibility modality �,
- assertive necessity modality 2I and
- constants �f and 2If.

These are interpreted in bimodal S4 on frames
(W, R, S) with S ⊆ R;

- LA and “2I” are interpreted through R and
- “�” through S.

The bi-intuitionistic sequent calculus for pragmatic
PLL has sequents of the forms

Γ ; ⇒ A ; Γ ; ⇒ ; �A Γ ; �A ⇒ ; �B

and in addition to the assertive intuitionistic rules, the

following axioms and rules for modalities.

hypotheses
; �f ⇒ ; �f

non-assertability
Γ, 2If; ⇒ B ;

Θ ; ⇒ A ; � R
Θ ; ⇒ ; �A

Θ, A ; ⇒ ; �B
� L

Θ ; �A; ⇒ ; �B

Θ ; ⇒ ; �A
2I R

Θ ; ⇒ 2I�A ;
Θ ; �A ⇒ ; �B

2I L
Θ, 2I�A ; ⇒ ; �B



Pragmatic interpretation: decompose

©B = 2I�B.

Then the right and left rules for © in the
sequent calculus for PLL

Γ ⇒ A © R
Γ ⇒©A

Γ, A ⇒©B © L
Γ,©A ⇒©B

(3)

are decomposed in our setting as follows:

Γ ;⇒ A ;
� R

Γ ;⇒; �A
2I R

Γ ;⇒ 2I�A;

Γ, A; ⇒; �B
� L

Γ; �A ⇒; �B
� R

Γ, 2I�A ;⇒; �B
2I L

Γ, 2I�A ;⇒ 2I�B ;
(4)



Allowing intuitionistic disjunction A∪B in the

language, the first characteristic properties

of © obviously holds in our interpretation:

2I�(A ∪B) ; 6⇒ (2I�A) ∪ (2I�B) ; (5)

To show that the second characteristic prop-

erty of PLL also holds in our interpretation:

; 6⇒ ∼ 2I�f ; (6)

we must look for a sentence f which is never

justifiably asserted, but that may become a

possibly true hypothesis under some constraint.



7. Summary.

In this talk we have done the following;

• Argued for Hyland et al [2005] as a cat-
egorical proof theory of classical logic.

• Introduced polarised bi-intuitionistic logic
as logics of assertions and hypotheses.

• Used the modality of “expectations” to
interpret the double negation law and to
type the λµ calculus.

• Suggested that this pragmatic interpre-
tation of classical logic is acceptable in
M. Dummett’s “justificationism”.

• Given an interpretation of Lax Logic in a
“non standard” system of bi-intuitionistic
logic.

• Thank you!


