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Summary. We consider a “polarized” version of bi-intuitionistic logic [9, 7, 10, 11]
as a logic of assertions and hypotheses and show that it supports a “rich proof the-
ory” and an interesting categorical interpretation, unlike the standard approach of
C. Rauszer’s Heyting-Brouwer logic [48, 49], whose categorical models are all partial
orders by Crolard’s theorem [19]. We show that P. A. Melliès notion of chirality
[42, 43] appears as the right mathematical representation of the mirror symme-
try between the intuitionistic and co-intuitionistc sides of polarized bi-intuitionism.
Philosophically, we extend Dalla Pozza and Garola pragmatic interpretation of in-
tuitionism as a logic of assertions [21] to bi-intuitionism as a logic of assertions and
hypotheses. We focus on the logical role of illocutionary forces and justification con-
ditions in order to provide “intended interpretations” of logic systems that classifies
inferential uses in natural language and remain acceptable from an intuitionistic
point of view. Although Dalla Pozza and Garola originally provide a constructive
interpretation of intuitionism in a classical setting, we claim that some conceptual
refinements suffice to make the “pragmatic interpretation” a bona fide representation
of intuitionism. For co-intuitionism we sketch a meaning-as-use interpretation that
appears as able to fulfill the requirements of Dummett and Prawitz’s justificationist
approach. We extend the Brouwer-Heyting-Kolmogorov interpretation of intuition-
ism by regarding co-intuitionistic formulas as types of the evidence for them. Next,
assuming a notion of duality between assertions and hypotheses, we give a “dialogic
interpretation” of multiplicative linear polarized bi-intuitionistic logic which can be
regarded as a translation into intuitionistic multiplicative linear logic with products.
Mathematically, the interplay between evidence for and evidence against assertions
and hypotheses is inspired by Chu’s construction [8], usually regarded as an abstract
form of the “game semantics” for linear logic.
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1 Introduction. A mathematical prelude.

The mathematical case study of this paper is a variant of Cecylia Rauzer’s
bi-intuitionistic logic [48, 49] (called Heyting-Brouwer logic by Rauszer) and
the relations between the two parts that can be identified within it, namely
intuitionistic logic, on one hand, and co-intuitionistic (also known as anti-
intuitionistic or dual-lintuitionistic), on the other hand1. Our main goal is to
identify, among the mathematical models of bi-intuitionism, those which may
be regarded as its intended interpretations. The quest for an intended interpre-
tation of a formal system often arises when several mathematical structures
have been proposed to characterise an informal, perhaps vague notion and
furthermore more unfamiliar and vaguer extensions arise by analogy or by
opposition: here philosophical analysis may be invoked to assess which formal
systems belong to logic, in the sense that they do capture actual forms of
human reasoning, rather than to pure or applied mathematics.

It is very appropriate to ask such a question about bi-intuitionism: following
Rauszer’s approach researchers in this area usually define bi-intutionism by
extending intuitionistic logic with the connective of subtraction C rD, to be
read as “C excludes D”, which in algebraic terms is left adjoint to disjunction
in the same way as implication is the right adjoint to conjunction (see the rules
in (1) below). This pair of adjunctions establishes a duality between the core
minimal fragments of intuitionism and co-intuitionism, namely, intuitionistic
conjunction and implication with a logical constant for validity, on one hand,
and co-intuitionistic disjunction and subtraction with invalidity, on the other.

However when bi-intuitionistic logic is defined in this way essential properties
of the model theory and proof theory of co-intuitionism and of bi-intuitionism
no longer hold. Recently Tristan Crolard ([19, 20]) developed bi-intuitionistic
proof theory by adding rules for subtraction to classical proof theory and then
introduced restrictions to characterize the constructive fragment. A reason for
this choice is that if bi-intuitionism is regarded as an extension of intuitionistic
logic with the connective of subtraction, then the “intuitionistic status” of bi-
intuitionism becomes unclear: it was probably E. G. K. López-Escobar [39]
the first to notice that first order bi-intuitionistic logic is not a conservative
extension of first order intuitionistic logic2, since in the standard theory of
first order bi-intuitionistic logic one can prove the intuitionistically invalid
formula

∀x(Ax ∨B) ` (∀x.Ax) ∨B.
Now it it is well-known that any first order theory containing this for-
mula is complete for the semantics of constant domains. Thus first order

1 We are mostly indebted with Paul-André Melliès for pointing at his work on
dialogue chirality and at its relevance to our approach to bi-intuitionism. We are
grateful for this insight that does clarify the nature of polarized bi-intuitionistic
logic and the issue of its categorical models.

2 We are grateful to Rodolfo Ertola Biraben for giving us this reference.
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bi-intuitionistic logic is an intermediate system between classical and intu-
itionistic logic (see T. Crolard [19] for a clear and detailed account of this mat-
ter). It turns out that when topological and categorical models are taken into
account, very serious problems emerge that make Rauszer’s bi-intuitionism
unsuitable as a framework for developing intuitionistic and co-intuitionistic
model-theory and proof-theory.

1.1 Bi-Heyting algebras and Kripke models.

The early model theory of bi-intuitionism, namely, bi-Heyting algebras and
Kripke-style semantics is due to Cecylia Rauszer [48, 49].

Definition 1. A Heyting algebra is a bounded lattice A = (A,∨,∧, 0, 1)
(namely, with join and meet operations, the least and greatest element), and
with a binary operation, Heyting implication (→), which is defined as the right
adjoint to meet. A co-Heyting algebra is a lattice C such that its opposite Cop
(reversing the order) is a Heyting algebra. C has structure (C,∨,∧, 1, 0) with
an operation of subtraction (r) defined as the left adjoint of join. Thus we
have the rules

Heyting algebra

c ∧ b ≤ a

c ≤ b→ a

co-Heyting algebra

a ≤ b ∨ c
ar b ≤ c

(1)

A bi-Heyting algebra is a lattice that has both the structure of Heyting and of
a co-Heyting algebra.

Definition 2. (Rauszer’s Kripke semantics) Kripke models for bi-intuitionistic
logic have the formM = (W,≤,) where the accessibility relation ≤ is reflex-
ive and transitive, and the forcing relation “” satisfies the usual conditions
for ∨, ∧, 0 and 1 and moreover

w  A→ B iff ∀w′ ≥ w.w′  A implies w′ ` B;
w  B rA iff ∃w′ ≤ w.w′  A and w′ ` B.

Such conditions are sometimes explained by saying that implication has to
hold in all possible worlds “in the future of our knowledge” and subtraction in
some world “in the past of our knowledge”. In fact Rauszer’s Kripke semantics
for bi-intuitionistic logic is associated with a modal translation into (what is
called today) tensed S4.

1.2 No categorical bi-intuitionistic theory of proofs.

In the corpus of mathematical intuitionism very basic constructions are the
Brouwer-Heyting-Kolmogorov interpretation, where formulas are interpreted
as types of their proofs, and the Extended Curry-Howard correspondence be-
tween the typed λ-calculus, intuitionistic Natural Deduction and Cartesian
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Closed Categories, in the interpretation of William Lawvere. Here model the-
ory and proof theory meet at a new level, where also categorical proof theory
plays an essential role. Indeed categorical proof theory is concerned not only
with algorithm to establish the provability of formulas in given proof systems,
but has also mathematical tools to characterize the identity of proofs. To
quote the simplest example, the philosophical conjecture by Martin-Löf and
Prawitz that Natural Deduction derivations reducing to the same normal form
represent the same intuitive proof can be treated axiomatically and refined in
terms of the functorial properties and natural equivalences in Cartesian Closed
Categories. Such a mathematical study where the notion of a proof can be
appropriately characterised in relation to significant aspects of computation
may be called a rich proof theory.

How are these ideas extended from intuitionism to co-intuitionism and bi-
intuitionism? Recent work in co-intuitionistic and bi-intuitionistic proof the-
ory (starting from the notes in appendix to Prawitz [45]) exploits the formal
symmetry between intuitionistic conjunction and implication, on one hand,
and co-intuitionistic disjunction and subtraction, on the other, in various for-
malisms, the sequent calculus, as in Czemark [22] and Urbas [55], the display
calculus by Goré [33] or natural deduction by Uustalu [56]. Luca Tranchini
[54] shows how to turn Prawitz Natural Deduction trees upside down, as it
was done also by the first author in [9, 7, 10], who has also developed a compu-
tational interpretation and a categorical semantics for co-intuitionistic linear
logic [10, 11].

But the most striking fact is a theorem by Tristan Crolard [19]:

Theorem 1. If a Cartesian Closed Category has also the dual structure of a
co-Cartesian Closed category, then it is a partial order.

Thus for Rauszer’s bi-intuitionistic logic we can no-longer have a categorical
theory of proofs: between two objects there is at most one morphism. The
outcome is devastating: there cannot be a “rich proof theory” for Rauszer
bi-intuitionism by a simple notion of duality.

In this paper we explore a solution to this problem that has been suggested
in [9, 7], namely, “polarizing” bi-intuitionistic logic so as to “keep the dual
intuitionistic and co-intuitionistic parts separate”, but connected by “mixed
operators”, most notably, negations.

1.3 Co-intuitionistic disjunction is “multiplicative”.

A second results by Tristan Crolard [19] shows that intuitionistic dualities are
not modelled in the naif way in the category Set. The category Set is an im-
portant model of intuitionism, as the adjunction between categorical products,
given by cartesian products, and exponents, given by sets of functions, models
the adjunction between conjunction and implication. By duality, a categorical
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model of co-intuitionism is based on the adjunction between categorical co-
products modelling disjunction and co-exponents modelling subtraction. But
here there is a main difference between intuitionism and co-intuitionism: Tris-
tan Crolard [19] shows that in the category Sets the co-exponent of two non-
empty sets does not exist. A proof of Crolard’s lemma is given in Appendix
7.1.

The reason for this failure lies in the fact that in Sets co-products are given
by disjoint unions; in logical terms, this corresponds to the fact that a proof of
A or B is always either a proof of A or a proof of B; intuitionistic disjunction
involves a choice between the disjuncts. Following Girard’s classification of
connectives in linear logic [27], it is the additive form of intuitionistic disjunc-
tion that makes it an unsuitable candidate as a right adjoint of subtraction.

The solution advocated in [11] is to take multiplicative disjunction, namely,
J-Y. Girard’s par, as basic for the co-intuitionistic consequence relation and
construct a categorical model of linear co-intuitionistic logic in monoidal cat-
egories, where co-exponents modelling subtraction, are indeed the left adjoint
of co-products modelling par. Thus we have categorical models of multiplica-
tive linear intuitionistic and co-intuitionistic logic and we are left with the
problem of extending such models to full bi-intuitionistic logic, rather than
its linear part.

1.4 Bi-intuitionistic logic as a chirality.

In our reformulation of bi-intuitionism as a polarized system the idea emerges
of a logic where the intuitionistic and the co-intuitionistic sides remain sepa-
rated and form what P-A. Melliès [42, 43] calls a chirality, i.e., a mirror sym-
metry between independently defined structures (A,B), rather than a pair
(C, Cop) where one element is defined as the opposite of the other. More pre-
cisely, a chirality is an adjunction L a R between monoidal functors L : A → B
and R : B → A, where A = (A,∧, true) and B = (B,∨, false), together with
a monoidal functor ( )∗ : A → Bop that allows to give a “De Morgan represen-
tation of implication” in A through disjunction of B. The notion of chirality
applies both to linear bi-intuitionism and to full bi-intuitionism and it appears
as the right mathematical framework to develop these logics. We sketch the
proof-theoretic treatment corresponding to the categorical notion of chiral-
ity (see also the Appendix, Section 7.2), but we shall not do the categorical
construction here.

But linear logic and the consideration of the relations between classical and
intuitionistic linear logic give us also the tools of Chu’s construction [8],
a method to produce models of classical multiplicative linear logic from a
pair of models of intuitionistic multiplicative linear logic, namely, from a pair
(C, Cop) of monoidal closed categories. A simple application of Chu’s construc-
tion yields also models of bi-intuitionistic linear logic from a pair of monoidal
closed categories. Conceptually, this is important because Chu’s construction
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suggests a dialogue semantics of bi-intuitionism inspired by an abstract form
of the game semantics for linear logic. It is also clear that the two sides of the
interpretation are exactly mirror images, i.e., form a chirality in an obvious
sense.

In the rest of this paper we discuss the conceptual aspects of our pragmatic
interpretation of bi-intuitionism. Next we give a precise definition of the lan-
guage of polarized bi-intuitionistic and of linear polarized bi-intuitionistic logic
and of our dialogue interpretation. Finally in the Appendix we recall the
basic definitions of our “proof theoretic” Chu’s construction and show how
to produce the dialogue interpretations of linear intuitionism and linear co-
intuitionism as mirror images, i.e. as a chirality.

2 Philosophical interpretations of co-intuitionism.

An important contribution to a philosophical understanding of co-intuitionism
has been given by Yaroslav Shramko [51]. Co-intuitionistic sentences are in-
terpreted as statements that have not yet been refuted, thus evoking the status
of scientific laws in Popper’s epistemology. In this view universal empirical
statements can never be conclusively justified, but can be refuted by cumu-
lative evidence against them (if not by a single crucial experiment). A clear
merit of this approach is to have pointed at formal epistemology as a large
domain where co-intuitionistic logic can be usefully applied.

Granted that the hypothetical status of empirical laws opens the way for ap-
plication of co-intuitionism to formal epistemology, a question arises about the
interpretation of the co-intuitionistic consequence relation and of inferences
in co-intuitionism. We may consider a relation of the following form:

H ` H1, . . . ,Hn (2)

to be read as

H.0: “the disjunction of H1, . . . ,Hn may justifiably be taken as a
hypothesis given that it is justified to take H as a hypothesis.

Here we follow ideas of D. Prawitz [47] on the explanation of deductive in-
ference and justification of inference rules and assume that a consequence
relation should be explained not only in terms of validity in a Kripke-style
semantics, namely, by saying that the disjunction of H1, . . . ,Hn is true in all
possible world in which H is true, but also by in terms of the justification
conditions for the act of making hypotheses, namely, by explaining how the
evidence giving sufficient grounds for making the hypothesis H would also give
sufficient grounds for taking the disjunction of H1, . . . ,Hn as a hypothesis.

Thus assuming that we know what “sufficient grounds for making a hypothesis
H” are and borrowing the notion of “effective method” from the Brouwer-
Heyting-Kolmogorov interpretations of intuitionism, we may give an effective
interpretation of (2) as follows:
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H.1: “there is a method F transforming sufficient evidence for regard-
ing H as a justified hypothesis into sufficient evidence for regarding
the disjunction of H1, . . . ,Hn as a justified hypothesis.

Let’s assume that meaning of a co-intuitionistic statement H is “H is a still
un-refuted hypothesis”: this seems to imply that a justification for taking H
as a hypothesis is the fact that H has not been refuted. Also this presupposes
that we do know what “sufficient grounds for refuting a hypothesis H” are.
But denying a hypothesis is asserting its falsity and refuting a hypothesis
is giving conclusive grounds for such a denial, in particular in the case of
a mathematical statement a proof of the falsity of H. We are back in the
well-known environment of the Brouwer-Heyting-Komogorov interpretation;
an effective interpretation of the relation (2) is as follows:

H.2: “there is a method F op to transform evidence refuting all the
hypotheses H1, . . . ,Hn into evidence refuting the hypothesis H.

So what is the primary notion, that of sufficient grounds for making a hypoth-
esis H (evidence for H) or that of sufficient grounds for refuting H (evidence
against H)? Or do we need both notions?

We may expect a fundamental objection to taking H.1 as primitive. Many
would say that no matter how “evidence for a hypothesis” is defined, it is the
business of empiric sciences and of probability theory, not of logic, to deal
with it. Hypothetical reasoning is inferring assertable propositions from the
assumption that some propositions are assertable; strictly speaking, logic can
only be about the refutation of hypotheses, as in the medieval practice of
disputation [4].

Mathematical reasoning is mainly assertive and its proofs provide the paradig-
matic notion of “conclusive evidence”. However, other areas of deductive rea-
soning, including legal argumentation [32, 18], are about statements for which
only non-conclusive degrees of evidence are available. We cannot discuss such
applications here. Let us explore co-intuitionism as a logic of hypotheses and
take the elementary expressions of our object language to represent types of
hypotheses and the interpretation H.1 of the consequence relation as primi-
tive, as in work by the first author, [9, 7, 10, 11] aiming at a “rich proof the-
ory” for co-intuitionism and bi-intuitionism. One should recognize that such
mathematical treatment has focussed on the duality between intuitionism and
co-intuitionism in order to designe Gentzen systems, term assignments and
categorical proof-theory for co-intuitionism. One should not underestimate
the difficulty of taking co-intuitionism “on its own” and H.1 as primitive:
there is only one degree of conclusive evidence, but there are uncountably
many degrees of partial evidence, according to probability theory. Do we need
infinitely valued logics here?3

3 Of course this problem is already there in intuitionism, if we take into account
what counts as evidence against an assertion, not only the evidence for it.
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Remark 1. From a mathematical point of view it would seem appropriate,
given a hypothesis H p and the evidence we have to justify it, to assign a
probability to H p expressing our degree of confidence in its validity. This
could be done in a classical probabilistic model, or in a Bayesian setting.
In the literature on linear logic we find work by P. Lincoln, J. Mitchell and
A. Scedrov [38] with a stochastic interaction semantics modelling proof search
in multiplicative and additive linear logic MALL; in that framework logi-
cal connectives are interpreted as probabilistic operators. But to construct a
model of co-intuitionistic logic we would need a translation into linear logic
with exponential operators ? and ! and we do not have a stochastic interpreta-
tion of them. How should we interpret the consequence relation in H.1, H.2
and H.3 in terms of probability functions? Are probabilities assigned accord-
ing to proof-search algorithms appropriate in our case? We cannot speculate
about such questions here.

It is clear to us that a proper treatment of hypotheses both in applied contexts
such as legal or medical evidence or formal epistemology and in a purely the-
oretical context does eventually require a probabilistic framework4. However
it is also clear that if we regard making the hypothesis that p (H p) as an illo-
cutionary act in natural language, then the act of asserting that p is true with
probability Pr(p)” conveys more information and is justified by much stronger
conditions that simply making a hypothesis; nevertheless a probabilistic mod-
elling of H p would certainly be adequate in any application to common sense
reasoning.

2.1 A meaning-as-use justification of co-intuitionism?

If co-intuitionism is to stand as a logic on its own, representing informal
practices of common sense reasoning, the question may be asked whether
its inferential principles are compatible with the basic tenets of intuitionistic
philosophy: mathematical duality may not suffice to justify such compatibility.
A way to answer such a question and dispel doubts about its constructive
nature is to give a meaning-as-use interpretation of co-intuitionism in the
sense of Michael Dummett [25] and Dag Prawitz (in a sequence of papers
from [46] to [47]).

Here we recall the main ingredients of such an interpretation. We take Natural
Deduction rules of introduction and elimination for subtraction (in sequent-
style form) and check that they satisfy the inversion principle (see [45]).

H ` Γ,C D ` ∆
r-intro

H ` Γ,C rD,∆

H ` ∆,C rD C ` D,Υ
r-elim

H ` ∆,Υ

4 Carlo Dalla Pozza in private conversation has often pointed out that hypotheses
in science are best modelled in a Bayesian framework rather than through purely
logical methods.
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Notice that in the r-elimination rule the evidence that D may be derivable
from C given by the right premise has become inconsistent with the hypothesis
C rD in the left premise; in the conclusion we drop D and we set aside the
evidence for the inconsistent alternative. We may think that such evidence is
not destroyed, but rather stored somewhere for future use.

If the left premise of r-elimination, deriving the disjunction of C r D with
∆ from H, has been obtained by a r-introduction, then such an occurrence
of C rD is a maximal formula and the pair of introduction/elimination rules
can be eliminated: using the removed evidence for D derivable from C (right
premise of the r-elim.) we can conclude that the disjunction of ∆1, ∆2, Υ is
derivable from H. This is, in a nutshell, the principle of normalization (or
cut-elimination) for subtraction.

d1
H ` Γ,C

d3
D ` ∆

r-I
H ` Γ,∆,C rD

d2
C ` D,Υ

r-E
H ` Γ,∆, Υ

reduces to

d1
H ` Γ,C

d2
C ` D,Υ

subst
H ` Γ,D, Υ

d3
D ` ∆

subst
H ` Γ,∆, Υ

Now suppose d1 and d3 are simply assumptions (in the sequent form of ax-
ioms). Then we have the following reduction:

C ` C D ` Dr-I
C ` D,C rD

d2
C ` D,Υ

r-E
C ` D,Υ

reduces to
d2

C ` D,Υ

In words, if we use the hypothesis that C excludes D (CrD) to remove possible
consequences of C of the form D from consideration, but the hypothesis CrD
was itself derived from C by an inference that yields the hypothesis D as a
possible consequence, then nothing has been achieved by performing such
a pair of operations. We conclude not only that the two derivations have
the same deductive consequences but also that in some sense they may be
regarded as the same deductive process. The latter assertion may be disputed,
but the above argument is the core of a proof theoretic justification of the
introduction and elimination pair for subtraction. Here we assume that the
primary operational meaning is given by the elimination rule, by which some
conclusions are “excluded from consideration”; the introduction rule is shown
to be in harmony with it (in the sense of Dummett [25]). The choice of the
elimination rule as primary is also supported by the fact that it is invertible
while the introduction rule, in its general form, is not.
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A similar procedure may be give justification for disjunction.

H ` Γ,C,D
g-intro

H ` Γ,C gD
H ` Γ,C gD C ` ∆ D ` Υ

g-elim
H ` Γ,∆, Υ

We have the following reduction:

d1
H ` Υ,C,D

g-I
H ` Υ,C gD

d2
C ` Γ

d3
D ` ∆

g-E
H ` Υ, Γ,∆

reduces to

d1
H ` Υ,C,D

d2
C ` Γ

subst
H ` Υ, Γ,D

d3
D ` ∆

subst
H ` Υ, Γ,∆

Again let’s suppose that d2 and d3 are simply assumptions. Then the reduction
is as follows:

d1
H ` Υ,C,D

g I
H ` Υ,C gD C ` C D ` D

g-E
H ` Υ,C,D

reduces to
d1

H ` Υ,C,D

In words, the g-introduction rule connects two possible conclusions C and
D into one C g D and the g-elimination rule uses the resulting connection
to join into the same deductive context two separate contexts, one resulting
from C and the other from D. But C and D were already in the same context
to start with, thus the possibility for joining the context was already there in
the preconditions of the g-introduction rule. Thus the two derivations have
not only the same deductive consequences but also they may be regarded as
the same deductive method. It is completely clear that the two rules are in
harmony. We have chosen the introduction rule as giving the primary mean-
ing also considering that it is invertible, while the elimination in its general
form is not. It may be possible to argue that the context-joining operation
exhibited by the g-elimination rule is defining the operational meaning of
co-intuitionistic disjunction.

If we take the g-introduction rule as defining the operational meaning of (mul-
tiplicative) disjunction, we can say that it exhibits a possibility of connection
between two conclusions given by the fact of being in the same context. It may
be objected that the meaning of multiplicative disjunction is already given by
the multiple-conclusion context; so the interpretation is in some sense circular.
The objection is sensible, but it may only show a feature of such meaning-as-
use interpretations that does not make them irrelevant. Making an implicit
possibility of connection explicit is precisely what the g-introduction rule
does.
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In this paper we shall not flesh out the meaning-as-use interpretation in full
detail. However our pragmatic interpretation contributes to a justificationist
approach by providing an analysis of the contribution to meaning given by ele-
mentary expressions in virtue of their illocutionary force. This analysis allows
us to extend the meaning-as-use interpretation beyond intuitionistic logic. It
is because we interpret the elementary expressions of co-intuitionistic logic
as expressing the illocutionary force of a hypothesis that we are allowed to
give co-intuitionistic disjunction a hypothetical mood and to justify its logical
properties, which are very different from those of the usual assertive intuition-
istic disjunction. By regarding co-intuitionism as the logic of the justification
of hypotheses, we can explain and justify the duality between intuitionism and
co-intuitionism in terms of common sense reasoning, in so far as the notion of
a hypothesis can be seen as dual to that of an assertion.

We focus on the proposal of a semantic for multiplicative linear bi-intuitionistic
logic, a pragmatic dialogue interpretation of co-intuitionism and to bi-intuitionism
in which the two views H.1 and H.2 are combined; such a dialogue interpre-
tation uses the general notion of a method that is characteristic of linear
intuitionistic logic but is applied here to transform not only proofs to proofs,
but also non-conclusive evidence into non-conclusive evidence. In this frame-
work we have a stricter interpretation for linear co-intuitionistic multiplicative
disjunction than that of a “contextual compatibility” evoked above, which is
implicit in the form of the co-intuitionistic co-intuitionistic relation. does not
rely on a meta-theoretic understanding of such a disjunction. Moreover such
an interpretation can be formalized within multiplicative intuitionistic linear
logic with products, in a way that evokes Chu’s construction [8] (sketched in
Appendix, Section 8).

3 Pragmatic interpretation of bi-intuitionism.

We develop our interpretation by expanding and reinterpreting Dalla Pozza
and Garola’s pragmatic interpretation of intuitionistic logic [21], which is in
accordance with M. Dummett’s suggestion that intuitionism is the logic of
assertions and of their justifications. The main feature of Dalla Pozza and
Garola’s approach is to take elementary expressions of the form ` p, where
Frege’s symbol “`” represents an (impersonal) illocutionary force of assertion
and p is a proposition. The grammar of Dalla Pozza and Garola’s language
LP is as follows:

A,B := `p | g | u | A ⊃ B | A ∩B | A ∪B (3)

and (strong) negation “∼” is defined as ∼ A = A ⊃ u. Here g is an assertion
which is always justified and u is an always unjustified assertion.

The justification of intuitionistic formulas is given precisely by Brouwer-
Heyting-Kolmogorov’s interpretation of intuitionistic connectives: the justi-
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fication of `p is given by conclusive evidence for p (e.g., a proof of the math-
ematical proposition p) and the justification of an implication A ⊃ B is a
method that transforms a justification of A into a justification of B. Moreover
a justification of a conjunction A ∩B is a pair 〈j, k〉 where j is a justification
of A and k a justification of B; a justification of a disjunction A0 ∪ A1 is a
pair 〈j, 0〉 where j is a justification of A0 or 〈k, 1〉 where k is a justification of
A1.

To be sure, from an intuitionistic viewpoint the proposition p must be such
that conclusive evidence for it can be effectively given: the (informal) proof
justifying ` p must be intuitionistic. Thus we cannot let p be q ∨ ¬q where
q is intuitionistically undecidable and claim that ` (p ∨ ¬p) is justified by a
classical proof. Thus Dalla Pozza and Garola assume that in the representation
of intuitionism the proposition p must be regarded as atomic. If this is granted,
then the expressions of LP are types of justification methods; in a propositions
as types framework they are intuitionistic propositions.

Having introduced the consideration of illocutionary forces in the elementary
expression of logical languages, we can then ask in which sense intuitionistic
types are assertive expressions: do molecular expressions inherit illocutionary
force from their elementary components? is an illocutionary assertive force
implicit in the way of presenting their justification? This is an interesting
question, which Dalla Pozza and Garola do not give an explicit answer to.
It seems clear to us that the molecular expressions of the above language
must have an “assertive mood”, which sets them apart from other forms of
reasoning, say, in a hypothetical or conjectural mood.

Gödel, McKinsey, Tarski and Kripke’s modal S4 interpretation is naturally
considered here as a reflection of the pragmatic layer of the logic for pragmatics
into the semantic layer, where the image �A′ of a pragmatic expression A is
indeed a proposition of classical modal logic S4, and the necessity operator
of S4 is read as an operator of “abstract knowability”. Briefly put, the modal
meaning of pragmatic assertions is provided by a translation of pragmatic
connectives where

( `p)M = �p, (A ⊃ B)M = �(AM → BM ),
(g)M = t, (u)M = f

(A ∩B)M = AM ∧BM , (A ∪B)M = AM ∨BM ,
(4)

where “→”, “∧”, “∨” are the classical connectives, t and f the truth values.
Thus Dalla Pozza and Garola develop a two-layers formal system where the
propositions p occurring in an elementary expression `p are interpreted ac-
cording to classical semantics. Moreover they seem to think that the meaning
of the intensonal expressions of intuitionistic pragmatics are adequately rep-
resented by their extensional translations in S4. Finally they develop their
pragmatic interpretation in a classical metatheory. Thus what they obtain
is a constructive interpretation of intutionism in a classical framework. This
is certainly unacceptable to an intuitionistic philosopher but is fully in the
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spirit of Dalla Pozza and Garola’s pragmatics: broadly speaking, their goal is
to show how classical logic, as a theory of truth, can be reconciled with intu-
itionism, as a theory of justified assertability, by the principle that a “change
of logic is a change of subject matter”.

We believe that such a classical twist in not essential to the project of an intu-
itionistic pragmatics and indeed that not much needs to be changed to obtain
a bona fide representation of intuitionism. Granted that the “semantic projec-
tion” into S4 is only an “extensional abstract interpretation” of intuitionistic
pragmatic expressions and that we must work in an intuitionistic metatheory,
the pragmatic interpretation of intuitionistic logic becomes compatible with
intuitionistically acceptable interpretations according to a justificationist ap-
proach, either in a theory of meaning-as-use or in some kind of game-theoretic
semantics.

3.1 Co-Intuitionistic Logic as a logic of hypotheses

A clear example of how a change of epistemic attitudes, particularly as ex-
pressed in the elementary formulas, drastically affects the resulting logic is
given by considering the illocutionary force of hypothesis as basic. When hy-
pothetical force is given also to co-intuitionistic formulas, the meaning of
connectives changes: assuming that we know what counts as a justification of
an elementary hypothesis, the meaning of hypothetical disjunction C gD and
hypothetical conjunction C f D are obviously different from their assertive
counterparts. So long as C is justifiably given the illocutionary force of a hy-
pothesis, it is inevitable to accept that we there may be justified reasons to set
aside such a hypothesis, i.e., we still justifably entertain a doubt (a C) about
C: thus the principle Cg a C is valid. Also no contradiction seem to derive
from a simultaneous considerations Cf a C of the hypotheses C and ∼ C.
Notice however that since a C is definable as j r C it is only because of the
hypothetical mood of subtraction that the law of excluded middle is valid and
para-consistency obviously holds: indeed a non-hypothetical reading of a C
as “the valid hypothesis excludes C” would make the law of excluded middle
intuitionistically problematic for such connectives.

It is even possible to have mixed connectives operating on assertive and hy-
pothetical sentences and building assertive or hypothetical connectives in the
framework of polarized bi-intuitionistic loigc: this has been done in [9] and
completeness of the resulting logic with respect to the classical S4 translation
has been checked. Here we consider only the fragment of such logic that allows
us to express the duality between intuitionism and co-intuitionism.

Our co-intuitionistic logic of hypothesis is built from elementary hypothetical
expressions H p and a constant f for a hypothesis which is always unjusti-
fied, using the connectives subtraction C rD (“C excludes D”), hypothetical
disjunction C gD and hypothetical conjunction C fD.
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C,D := H p | f | j | C rD | C gD | C fD (5)

Here supplement (weak negation) “a” is defined as a C = (j r C); also “f”
is an always unjustified hypothesis and “j” an always justified one.

A straightforward extension of the S4 modal translation to co-intuitionism is
as follows:

(H p)M = ♦p, (C rD)M = ♦(CM ∧ ¬DM ),
(f)M = f , (j)M = t

(C gD)M = CM ∨DM , (C fD)M = CM ∧DM ,
(6)

where “¬”, “∧”, “∨” are the classical connectives, t and f the truth values.
Here we clearly see that such an extension of Gödel’s, McKinsey and Tarski’s
and Kripke’s translation unacceptably collapses assertive and hypothetical
constants:

(g)M = t = (j)M and (f)M = f = (u)M . (7)

But what constitutes a justification for a hypothesis (H p) and how does
it differ from a justification of an assertion ( ` p)? In the familiar Brouwer-
Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic evidence for
a mathematical statement p is a proof of it; in the case of non-mathematical
assertive statements, we speak of conclusive evidence for p. What constitutes
conclusive or inconclusive evidence for p depends on the context and scientific
discipline.

Consider for example, the theory of argumentation in legal reasoning. Here
six proof-standards have been identified from an analysis of legal practice: no
evidence at alll, scintilla of evidence, preponderance of evidence, clear and con-
vincing evidence, beyond reasonable doubt and dialectical validity, in a linear
order of strength [32, 18]. Can such distinctions be taken up in our approach
in some way? It seems that a scintilla of evidence suffices to justify H p,
making the hypothesis that p, and that dialectical evidence ought to coincide
with assertability ` p, which in our framework is conclusive evidence. The
other proof-standards are defined through probabilities; this goes beyond our
purely logical approach here.

If we assume the notion of “negative evidence” (evidence against the truth of
a proposition) as basic, in addition to “positive evidence” (evidence for), then
another logical relation is evident between scintilla of evidence and conclusive
evidence, in addition to the order of strength: we cannot have at the same
time conclusive evidence for and a scintilla of evidence against the truth of a
proposition. On this basis we can attempt an interpretation of intuitionistic
and co-intuitionistic connectives which is reminiscent of game semantics and
also of Nelson’s treatment of constructive falsity.
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4 The language and sequent calculus of “polarized”
bi-intuitionism.

We consider two formal systems for “polarized” bi-intuitionism as our“official
languages”. One, the logic AH of assertions and hypotheses, is a conservative
extension of both intuitionistic and co-intuitionistic logic; the other MLAH
is the multiplicative fragment of the linear version of AH. The language of
AH is built from elementary expressions of the form “ `p” for elementary as-
sertions or “H p” for elementary hypotheses; ; moreover we have the sentential
constants g (assertive validity), u ( assertive absurdity), f (hypothetical ab-
surdity) and j (hypothetical validity). We build intuitionistic assertive formu-
las within the assertive intuitionistic side using implication (⊃), conjunction
(∩) and disjunction (∪); also we build co-intuitionistic hypothetical formulas
within the hypothetical co-intuitionistic side using subtraction (C r D, dis-
junction (g) and conjunction (f). We also have two defined negations, the
familiar intuitionistic one ∼u A and the co-intuitionistic one ja C (also called
supplement):

∼u A = A ⊃ u ja C = j r C.

Two negations relate the two sides, a strong one (∼) transforming a hypothesis
C into an assertion ∼ C and a weak one (a) transforming an assertion A into a
hypothesis a A.Through these negations the duality between the intuitionistic
and the co-intuitionistic sides is expressed within the language.

Definition 3. (intuitionistic assertions, co-intuitionistic hypotheses)

• assertive intuitionistic formulas:
A,B := `p | g | u | A ⊃ B | A ∩B | A ∪B | ∼ C

• hypothetical co-intuitionistic formulas:
C,D :=H p | f | j | C rD | C gD | C fD | a A

• defined negations:
∼u A =df A ⊃ u ja C =df j r C.

In this paper we shall not consider assertive disjunction (A ∪ B) and hypo-
thetical conjunction C fD.

4.1 Informal Interpretation.

The language of polarized bi-intuitionism has an informal “intended interpre-
tation” where formulas denote types of acts of assertion and of hypothesis and
must be given justification conditions, namely, epistemic conditions that con-
stitute evidence for illocutionary acts of these types. We take the notions of
“conclusive evidence” and “scintilla of evidence” as primitive notions, with
the obvious ordering, namely, we assume that conclusive evidence is also a
scintilla of evidence, but not conversely. Thus we can define simultaneously
what it means for assertive and hypothetical expressions to be justified.
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Definition 4. (a.i) the assertion `p is justified by conclusive evidence of the
truth of p;
(a.ii) the assertion g is always justified and assertion u is never justified;
(a.iii) A ⊃ B is justified by a method transforming conclusive evidence for
A into conclusive evidence for B; evidence for ∼ C is a method transforming
evidence for C into a contradiction;
(a.iv) A ∩ B is justified by conclusive evidence for both A and B; A ∪ B is
justified by conclusive evidence either for A or for B.

Dually:
(h.i) the hypothesis H p is justified by a scintilla of evidence of the truth of p;
(h.ii) the hypothesis f is never justified and hypothesis j is always justified;
(h.iii) CrD is justified by a scintilla of evidence for C together with a method
showing that evidence for C and for D are incompatible; evidence for a A is a
justification for disregarding evidence for A, i..e, for doubting of justifications
of A;
(h.iv) C gD is justified by a scintilla of evidence for C or for D; C fD is
justified by a scintilla of evidence for both C and D.

Remark 2. (i) We have four justification values, assertive validity (g) and
invalidity (u) and hypothetical invalidity (f) and validity (j). We cannot
identify assertive and hypothetical validity, nor hypothetical and assertive
invalidity; we must think of u as an expression ` p which is always invalid
although p may be sometimes true, and similarly j as an expression H p which
is always valid although p may be sometimes false.

(ii) Assertive validity g and hypothetical invalidity f can be related to >
and 0 of linear logic as they are interpreted categorically as the terminal and
the initial object in their respective categories. However there are no obvious
reasons for relating u with ⊥ and j with 1.

(iii) The meaning of subtraction is a delicate point. The accepted informal
interpretation of A r B as “A excludes B” was proposed by I. Urbas [55],
in place of “A but not B”, as suggested by N. Goodman [31]. 5 Here how-
ever “C rD” has a hypothetical mood. Suppose we have a method showing
incompatibility between any evidence for C and any evidence for D, the hy-
pothetical character of subtraction may come either (a) from the fact that
the actual evidence for C may be fairly weak or (b) from the nature of the
evidence for incompatibility. In this former case the hypothetical mood for

j a C or j a A would depend on the fact that evidence for j is weak. No such
hypothesis is necessary in the latter case.

4.2 Sequent calculus for Polarized Bi-intuitionism.

The sequent calculus AH-G1 has sequents of one of the forms

5 We thank the anonymous referee for this reference.
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Θ ; ⇒ A ; Υ or Θ ; C ⇒ ; Υ

where the multiset Θ and A are assertive formulas and the multiset Υ and C
are hypothetical formulas. We use the abbreviation

Θ ; ε ⇒ ε′ ; Υ

where exactly one of ε or ε′ is non-null. The inference rules of AH-G1 are in
the following Tables 1, 2, 3, 4, 5.

logical axiom:
A ; ⇒ A ;

logical axiom:
; C ⇒ ; C

cut1:
Θ ; ⇒ A ; Υ A,Θ′ ; ε ⇒ ε′ ; Υ ′

Θ,Θ′ ; ε ⇒ ε′ ; Υ, Υ ′

cut2:
Θ ; ε ⇒ ε′ ; Υ,C Θ′ ; C ⇒ Υ ′

Θ,Θ′ ; ε ⇒ ε′ ; Υ, Υ ′

Table 1. Identity Rules

contraction left

A,A,Θ ; ε ⇒ ε′ ; Υ

A,Θ ; ε ⇒ ε′ ; Υ

contraction right

Θ ; ε ⇒ ε′ ; Υ,C.C

Θ ; ε ⇒ ε′ ; Υ,C

weakening left

Θ ; ε ⇒ ε′ ; Υ

A,Θ ; ε ⇒ ε′ ; Υ

weakening right

Θ ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,C

Table 2. AH-G1 Structural Rules

Remark 3. (i) The core fragment of intuitionistic logic consists of the rules
for assertive conjunction (∩), implication (⊃)and validity (g), without the
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assertive validity axiom:

Θ ; ⇒ g ; Υ

⊃ right:
Θ,A1 ; ⇒ A2 ; Υ

Θ ; ⇒ A1 ⊃ A2 ; Υ

⊃ left :
Θ1; ⇒ A1 ; Υ1 A2, Θ2 ; ε ⇒ ε′ ; Υ2

A1 ⊃ A2, Θ1, Θ2 ; ε ⇒ ε′ ; Υ1, Υ2

∩ right:

Θ ; ⇒ A1 ; Υ Θ ; ⇒ A2 ; Υ

Θ ; ⇒ A1 ∩A2 ; Υ

∩ left:

Ai, Θ ; ε ⇒ ε′ ; Υ

A0 ∩A1, Θ ; ε ⇒ ε′ ; Υ

for i = 0, 1.

assertive absurdity axiom:

u, Θ ; ε ⇒ ε′ ; Υ

assertive disjunction left

A,Θ ; ε ⇒ ε′ ; Υ B,Θ ; ε ⇒ ε′ ; Υ

A ∪B,Θ ; ε ⇒ ε′ ; Υ

assertive disjunction right (two rules)

Θ ; ⇒ Ai ; Υ

Θ ; ⇒ A0 ∪A1 ; Υ

for i = 0, 1

Table 3. AH-G1 intuitionistic rules

rules for assertive disjunction (∪) and absurdity (u); in this core fragment the
symbol “u” in the definition of intuitionistic negation is just a sentential con-
stant without special properties. Dually, the core fragment of co-intuitionistic
logic has the rules for assertive disjunction (g), subtraction (r) and absurdity
(f), without the rules for hypothetical conjunction (f) and validity (j), which
in the definition of co-intuitionistic negation is just a sentential constant. We
shall consider only the core fragment of intutionistic and co-intuitionistic logic.

(ii) The form of bi-intuitionistic sequents, where only one expression occurs
in the focusing area, forces the rules for assertive disjunction and hypothetical
conjunction to have additive form; thus “∪” has the disjunction property and
6` A∪ ∼ A; dually, f has the conjunction property (C fD ` implies C ` or
D `) and is para-consistent (Cf a C 6` g).

(iii) On the other hand, the rules for assertive conjunction and hypotheti-
cal disjunction could be given in the additive or in the multiplicative form;
in presence of the structural rules of the structural rules of weakening and
contraction the two formulations are equivalent. For the categorical consid-
erations sketched above, we give additive rules for assertive disjunction “∩”
and multiplicative rules for hypothetical disjunction “g”.
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hypothetical absurdity axiom:

Θ ; f ⇒ ; Υ

r right:
Θ1 ; ε ⇒ ε′ ; Υ1, C1 Θ2 ; C2 ⇒ ; Υ2

Θ1, Θ2 ; ε ⇒ ε′ ; Υ1, Υ2, C1 r C2

r left:
Θ; C1 ⇒ ; Υ,C2

Θ ; C1 r C2 ⇒ ; Υ

g right:
Θ ; ε ⇒ ε′ ; Υ,C0, C1

Θ ; ε ⇒ ε′ ; Υ,C0 g C1

g left:
Θ1 ; C1 ⇒ ; Υ1 Θ2 ; C2 ⇒ ; Υ2

Θ1, Θ2 ; C1 g C2 ⇒ ; Υ1, Υ2

hypothetical validity axiom:

Θ ; ε ⇒ ε′ ; Υ, j

hypothetical conjunction left (two rules)

Θ ; Ci ⇒ ; Υ

Θ ; C0 f C1 ⇒ ; Υ

for i = 0, 1

hypothetical conjunction right

Θ ; ε ⇒ ε′ ; Υ,C Θ ; ε ⇒ ε′ ; Υ,D

Θ ; ε ⇒ ε′ ; Υ,C fD

Table 4. AH-G1 Co-Intuitionistic Rules

∼ right:

Θ ; C ⇒ ; Υ

Θ ; ⇒ ∼ C ; Υ

∼ left:

Θ; ε ⇒ ε′ ; Υ,C

∼ C,Θ ; ε ⇒ ε′ ; Υ

a right:

Θ,A ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,a A

a left:

Θ; ⇒ A ; Υ

Θ ; a A ⇒ ; Υ

u/j left

u ; j ⇒ ;

u/j right

; ⇒ u ; j

`/ H left

`p ; j ⇒ ; H p

`/H right
`p ; ⇒ u ; H p

Table 5. AH-G1 Duality Rules

Proposition 1. The sequent calculus AH-G1 is sound and complete for the
Kripke semantics over preordered frames determined the S4 interpretation in
(4) and (6). The rules for cut are admissible in AH-G1.

Let us use the following abbreviations:

�· C =df ∼u∼ C and ♦· A =df j aa A
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Proposition 2. The following sequents are provable in AH-G1.

(i) ∼a A ; ⇒ A; and A ;⇒ ∼a A;. Dually, ;C ⇒ ;a∼ C and ;a∼ C ⇒ ;C.

(ii) A ; ⇒ �· ♦· A; and ; ♦· �· C ⇒ ; C.

(iii) M ⊃ �· C ⇐⇒ �·
(
(ja ♦·M)g C

)
.

Proof. (ii) and (iii)

; ⇒ u ; j

A ; ⇒ A ;
a L

A ; a A⇒ ;
r R

A ; ⇒ u ; jaa A
∼ L

A,∼jaa A ; ⇒ u ;
⊃ R

A ; ⇒ ∼u∼ jaa A︸ ︷︷ ︸
�· ♦· A

;

; C ⇒ ; C
∼ R⇒ ∼ C ; C u ; j ⇒ ;

⊃ L∼u∼ C ; j ⇒ ; C
∼ R

; j ⇒ ; a∼∼ C,C
r L

jaa∼u∼ C︸ ︷︷ ︸
♦· �· C

; ⇒ ; C

;⇒ u ; j

M ; ⇒M ;

; C ⇒ ;C
∼ R

; ⇒ ∼ C ; C u ; j⇒
⊃ L

�· C ; j ⇒ ; C
⊃ L

M,M ⊃�· C ; j ⇒ ; C
a R

M ⊃�· C ; j ⇒ ; aM,C
r L

M ⊃�· C ; ♦·M ⇒ ; C
r R

M ⊃�· C ; ⇒ u ; ja♦·M,C
g R

M ⊃�· C ; ⇒ u ; (ja♦·M) g C
∼ L

M ⊃�· C,∼ ((ja♦·M) g C) ; ⇒ u ;
⊃ R

M ⊃�· C ; ⇒ �· ((ja♦·M) g C) ;

; j ⇒ ; j

M ;⇒M ;
a L

M ;aM ⇒ ;
r R

M ; j ⇒ ; ♦·M
r L

M ; ja♦·M ⇒ ; ; C ⇒ ;C
g L

M ; (ja♦·M) g C ⇒ ; C
∼ R

M ; ⇒∼ (ja♦·M g C) ; C u ; ⇒ u;
⊃ L ∼u∼ ((ja♦·M) g C),M ; ⇒ u ; C

∼ L
�· ((ja♦·M) g C),M,∼ C ; ⇒ u;

⊃ R
�· ((ja♦·M) g C),M ; ⇒�· C;

⊃ R
�· ((ja♦·M) g C) ; ⇒M ⊃�· C;

The categorical definition of dialogue chirality is given in the Appendix, where
we also sketch the proof of the following proposition.

Proposition 3. Polarized bi-intuitionism forms a dialogue chirality.
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5 Linear Bi-Intuitionism and Chu’s constuction.

In several occasions J-Y. Girard has indicated that his linear logic [27] should
not be understood as a logical system on the same level as classical or intu-
itionistic logic, but rather as a tool to analyse the underlying common ground
of those logics from the viewpoints not only of proof theory, but also of cate-
gory theory, the geometry of interaction, game semantics and ludics6. These
mathematical theories characterize the “deep structure” underlying proof the-
oretic analysis of the static structure of proofs and their dynamic behaviour,
including criteria of identity of proofs in the process of cut-elimination. There
are many possible translations of classical and intuitionistic logic into linear
logic that were used in the early 1990s to analyse and regiment the essential
non-determinism of classical cut-elimination in Gentzen’s sequent calculus LK
[28, 23]. In these early studies we find the notion of polarization of linear logic,
later developed in the work by Olivier Laurent [35], and the technique of se-
quent with focussing [3, 29] which are applied here.

Girard’s linear logic is classical in the sense that it has an involutory negation
( )⊥ such that A⊥⊥ ≡ A for all A; this negation is modelled categorically
by the operation ( )∗ of ∗-autonomous categories [5]. But intuitionistic linear
logic has also been extensively studied especially in categorical treatments of
linear logic: indeed the intuitionistic system has very natural models in terms
of monoidal closed categories. More recently P-A. Melliès [42], starting from
abstract forms of game semantics, on one hand, and of tensor logic and braids,
on the other, came to the conclusion that linear systems with non-involutory
negation are structurally “more basic” than classical linear logic: indeed the
study of proofs in terms geometry of braids and the mathematical theory of
games do provide most general but also very informative characterizations of
logical computation.

With respect to our present concern we notice that non-commutative linear
logics, in particular Lambek calculi, have significant applications to linguistics;
moreover interesting applications of ludics to conversational analysis have
proposed that are related to the theory of meaning (see A. Lecomte [37]). But
no attempt has been made, as far as we know, to specify in a systematic way
the forms of common sense reasoning that are represented in linear logic. The
paper [12] rather than providing a “pragmatic interpretation” of linear logic,
claims that linear logic is suitable for representing schemes where illocutionary
force is unspecified but can be determined in various ways; an attempt is made
there to show that the absence of structural rules of contraction (thus of reuse
of “logical resources”) is required to guarantee such property in general.

Here we show that a natural “dialogue interpretation” of linear bi-intuitionistic
logic, still regarded as a logic of justifications conditions for and against

6 See [30] for recent reflections on the overall contribution of linear logic to con-
temporary logic.
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assertions and hypotheses, has a mathematical counterpart in a variant of
Chu’s construction [5]. Chu provides a way to construct ∗-autonomous cat-
egories from monoidal closed categories: here a ∗-autonomous category A,
a model of classical linear logic, is built where objects are pairs (C,Cop)
where C is an object of a monoidal closed category C, and morphisms
(f, gop) : (C,Cop) → (D,Dop), where f : C → D may be seen as a proof
of D from B and g : D → C is a refutation of C from a refutation of D. Thus
Chu’s construction has the “dialogic” form of an abstract game semantics.
Moreover there is an involutory operation (C,Cop)⊥ = (Cop, C), modelling
negation of classical linear logic.

Now if we retain the “pragmatic” interpretation of C as an assertion type,
then a “proof” of C is conclusive evidence for C but a “disproof” of C is
just a scintilla of evidence against C; conversely, if C is a hypothetical type,
then a justification of C is a scintilla of evidence for it and a disproof of C is
conclusive evidence against C. Hence evidence against an assertion amounts
to evidence for the dual hypothesis and conversely; but “conclusive evidence”
and a “scintilla of evidence” are entities of differt types. It follows that the
involutory operation (X,Y )⊥ = (Y,X) does not interpret a classical notion
of negation but rather the duality between justifications of assertions and
of hypotheses, between intuitionism and co-intuitionism. As suggested above
we interpret such a duality in terms of the notion of a chirality, i.e., of an
adjunction L a R between functors L : A → B and R : B → A. This notion
generalizes the notion of a duality (C, Cop) in a way that allows us to recognize
interesting structure within linear bi-intuitionism. It is a fact that our dialogue
interpretation resulting from Chu’s construction applies to the connectives, in
particular, the notion of disjunction must be Girard’s multiplicative linear
disjunction (par): thus here we have a reasonable characterization of a form
of common sense reasoning represented in linear logic, which is obtained by
determining the abstract schemes of linear logic with suitable assignments
of illocutionary forces to atoms and of “illocutionary moods” to molecular
formulas, in the spirit of the suggestions in the paper [12].

5.1 Language and sequent calculus of linear polarized
bi-intuitionism.

Definition 5. (multiplicative linear bi-intuitionistic language)

• assertive linear intuitionistic formulas:
A,B := `p | 1 | A −◦ B | A⊗B | − C

• hypothetical linear co-intuitionistic formulas:
C,D :=H p | ⊥ | C −D | C℘D | − A

• defined negations:
−u A =df A −◦ u j− C =df j− C

where u is an assertive constant and j a hypothetical constant.
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The sequent calculus MLAH-G1 for multiplicative linear “polarized” bi-
intuitionistic logic has the inference rules in Tables 1, 6, 7 and 8.

1 left

Θ ; ε ⇒ ε′ ; Υ

1, Θ ; ε ⇒ ε′ ; Υ

assertive validity axiom:

; ⇒ 1 ;

−◦ left :
Θ1; ⇒ A1 ; Υ1 A2, Θ2 ; ε ⇒ ε′ ; Υ2

A1 −◦ A2, Θ1, Θ2 ; ε ⇒ ε′ ; Υ1, Υ2

−◦ right:
Θ,A1 ; ⇒ A2 ; Υ

Θ ; ⇒ A1 −◦ A2 ; Υ

⊗ left:

A0, A1Θ ; ε ⇒ ε′ ; Υ

A0 ⊗A1, Θ ; ε ⇒ ε′ ; Υ

⊗ right:
Θ1 ; ⇒ A1 ; Υ1 Θ2 ; ⇒ A2 ; Υ2

Θ1, Θ2 ; ⇒ A1 ⊗A2 ; Υ1, Υ2

Table 6. MLAH-G1 intuitionistic rules

hypothetical absurdity axiom:

; ⊥ ⇒ ;

⊥ right

Θ ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,⊥

− left:

Θ; C ⇒ ; D,Υ

Θ ; C −D ⇒ ; Υ

− right:

Θ1 ; ε ⇒ ε′ ; Υ1, C Θ2 ; D ⇒ ; Υ2

Θ1, Θ2 ; ε ⇒ ε′ ; Υ1, C −D,Υ2

℘ left:

Θ0 ; C0 ⇒ ; Υ0 Θ1 ; C1 ⇒ ; Υ1

Θ0, Θ1 ; C0 ℘ C1 ⇒ ; Υ1, Υ2

℘ right:

Θ ; ε ⇒ ε′ ; Υ,C0, C1

Θ ; ε ⇒ ε′ ; Υ,C0 ℘ C1

Table 7. MLAH-G1 Co-intuitionistic rules

The following proposition is analogue to (but easier than) proposition 3.

Proposition 4. Multiplicative linear polarized bi-intuitionism forms a dia-
logue chirality.
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− right:

Θ ; C ⇒ ; Υ

Θ ; ⇒ − C ; Υ

− left:

Θ; ε ⇒ ε′ ; Υ,C

− C,Θ ; ε ⇒ ε′ ; Υ

− right:

Θ,A ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,− A

− left:

Θ; ⇒ A ; Υ

Θ ; − A ⇒ ; Υ

u/j left

u ; j ⇒ ;

u/j right

; ⇒ u ; j

`/H left

`p ; j ⇒ ; H p

`/H right
`p ; ⇒ u ; H p

Table 8. MLAH-G1 Duality Rules

5.2 Dialogue semantics.

Remember that evidence for an elementary assertive expression ` p is con-
clusive evidence that p is true and that evidence against `p is a “scintilla of
evidence” that p is false. Dually, evidence for a hypothetical assertive expres-
sion H p is a “scintilla of evidence” that p is true and that evidence against `p
is conclusive evidence that p is false. For linear co-intuitionistic expressions
we have the following interpretation.

Definition 6. (dialogue semantics for linear co-intuitionistic logic)

1. Evidence for H p is a scintilla of evidence that p may be true;
- evidence against H p is conclusive evidence that p is not true.

2. Evidence for a subtraction C−D is given by evidence for C together with
evidence against D;
- evidence against C −D is a method that transforms evidence for C into
evidence for D and also evidence against D into evidence against C.

3. Evidence for a disjunction C℘D is a method that transforms evidence
against C into evidence for D and also evidence against D into evidence
for C;
- evidence against C℘D is evidence against both C and D.

4. Evidence for a conjunction C&D is evidence for C and also for D; evidence
against C&D is conclusive evidence against C or against D.

Remark 4. (linear terms) We shall borrow notation from the theory of linear
types (see, e.g., [13]) and use the term calculus informally to denote evidence
for and evidence against hypothetical expressions of MLAH and the basic
operations to combine and transform evidence.

• We write c+ : H+ and c− : H− to denote evidence c+ for H and evidence
c− against H. Thus a hypothetical expression H of MLAH, regarded as
a type of jusitfication values, is in fact a pair (H+, H−).
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• The co-intuitionistic linear consequence relation E ` D1, . . . , Dn is reflex-
ive and transitive; it is formally represented by a sequent E → D1, . . . , Dn

with logical axioms ant the rule of cut. Writing D = D1℘ . . . ℘Dn, such a
sequent is interpreted by a pair of functions 〈f1, f2〉 between types of jus-
tification methods, where f1 : C+ → D+ sends evidence for C to evidence
for D, and f2 : D− → C− sends evidence against D to evidence against
C.

• if c+ : C+ and d− : D−, then c+ ⊗ d− : (C −D)+;
• if g+ : C+ → D+ and g− : D− → C−, then 〈g+, g−〉 : (C −D)−.
• If h : C− → D+ and h′ : D− → C+ then 〈h, h′〉 : (C℘D)+;
• if c− : C− and d− : D−, then c− ⊗ d− : (C℘D)−.
• if c+ : C+ and d+ : D+, then 〈c+, c+〉 : (C&D)+;
• if c− : C−, then inl(c) : (C&D)−; if d− : D− then inr(d) : (C&D)−.

With this definition we can prove the following proposition.

Proposition 5. Let C, D and E be hypothetical expressions. Then the basic
adjunction

C ` D℘E
C −D ` E

(8)

is valid in the dialogue semantics.

Proof. (1) Let f1, f2 be methods, where f1 : C+ → (D℘E)+ and f2 :
(D℘E)− → C−. We define methods g1 : (C − D)+ → E+ and g2 : E− →
(C − D)−. We know that if c+ : C+ then f1(c+) : (D℘E)+ is a pair of
maps 〈k, k′〉 with k : D− → E+ and k′ : E− → D+. Moreover we have
f2(d− ⊗ e−) : C− if d− : D− and e− : E−.

(i) Now evidence for C−D is a pair 〈c, d〉 where c+ : C+ and d− : D−. Hence
we may define g1(c+ ⊗ d−) = (f1(c+))(d−) where f1(c+) = k : D− → E+ as
above and k(d−) : E+ is evidence for E as required.

(ii) Moreover let e− : E−. We need to define g2(e−) : (C −D)− as a pair of
maps 〈m,m′〉 where m : C+ → D+ and m′ : D− → C−. But if c+ : C+ then
f1(c+) is a map k : E− → D+ as above, so we let g2(e−)(c+) = f1(c+)(e−) :
D+. Also if d− : D− then f2(d− ⊗ e−) : C−, so we define g2(e−)(d−) =
f2(,.e〉) : C− as required.

(2) Now given methods g1 : (C − D)+ → E+ and g2 : E− → (C − D)− we
define f1 : C+ → (D℘E)+ and f2 : (D℘E)− → C−.

(i) Given c+ : C+ and d− : D− we may let (f1(c+))(d−) = g1(c+ ⊗ d−) : E+

and (f1(c+))(e−) = (g2(e−))(c+) : D+, since g2(e−) maps C+ to D+.

(ii) Finally, given d− : D− and e− : E− we let f2(d− ⊗ e−) = (g2(e−))(d−) :
C−, since g2(e−) maps D− to C−. qed

Remark 5. Suppose in clause (3) of definition 6 we replace the multiplicative
notion of par C℘D with an additive notion of disjunction C ⊕D; here we let
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evidence for C⊕D be either a pair (c, 0) where c is is a scintilla of evidence for
C, or a pair (d, 1) where d is a scintilla of evidence for D and also we define
evidence against C ⊕ D as a pair 〈c−, d−〉 where c− and d− are conclusive
evidence against C, D respectively. We claim that with an additive interpre-
tation the above lemma cannot be proved, at least not in an intuitionistic
metatheory.

The argument goes through in case (1)(i) since now f1(c) = (d, 0) or (e, 1)
with d : D+ or e : E+; but we have d : D− and d is conclusive evidence
against D; therefore f1(c) can only be (e, 1) as required. Also in case (1)(ii)
given e : E− and c : C+, we have f1(c) : (D ⊕ E)+, but since e is conclusive
evidence against E, we have f1(c) = (d, 0) for some d : D+. The argument
goes through also in case (2)(ii) without changes.

But consider case (2)(i): given c : C+, if there is some d : D+ then we can
set f1(c) = (d, 0) and if d : D− then we take f1(c) = (e, 1) where e = g1(〈c, d〉)
but it may still be possible that there is no evidence whatsoever for or against
D. However, if we take positive or negative evidence for D to be represented in
classical S4 as w  ♦DM or w  �¬DM in some possible world w belonging
to a Kripke model M = (W,≤,) then the absence of any evidence for D in
w entails the existence of negative evidence for D.

The above remark shows that we need to take hypothetical disjunction
as the multiplicative par in order to have our dialogue semantics for co-
intuitionism: in fact we have a dialogue semantics only for the linear fragment
of co-intuitionism.

The “dialogue interpretation” of intuitionistic linear expressions, is the exact
dual of definition 6.

Definition 7. (dialogue semantics for linear intuitionistic logic)

1. Evidence for `p is conclusive evidence that p is true;
- evidence against H p is a scintilla of evidence that p may not be

2. Evidence for A −◦ B is a method that transforms evidence for A into
evidence for B and also evidence against B into evidence against A.
- evidence against an implication A −◦ B is given by evidence for A
together with evidence against B;

3. Evidence for a conjunction A ⊗B is evidence for A and for B.
- evidence against a conjunction A ⊗B is a method that transforms evi-
dence for A into evidence against B and also evidence for B into evidence
against A;

4. Evidence for a disjunction A ⊕B is evidence for A or for B;
evidence against A ⊕B is evidence against S and against B.

The proof of the following proposition is completely analogous to that of the
proposition 8.
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Proposition 6. Let A, B and C be assertive expressions. Then the basic ad-
junction

A ⊗B ` C
A ` B −◦ C

(9)

is valid in the dialogue semantics.

5.3 Dialogue semantics and Chu’s construction.

It remains to be shown how the dialogue interpretation can be mathematically
formalized by a modification of Chu’s construction in [8], which is briefly
recalled in Appendix, Section 8. Within linear polarized bi-intuitionistic logic
MLAH, we consider the assertive fragment MLA and hypothetical fragment
MLH which we map to intuitionistic linear logic with products (IMALL)
given in definition 14 and Table 11, Section 8 of the Appendix. Let A be a
categorical model of MLA, namely, a symmetric monoidal closed category
with bifunctor ⊗ and its right adjoint −◦, free on a set of objects modelling
elementary formulas. Similarly let H be a categorical model of MLH, namely,
a free symmetric monoidal category with bifunctor ℘ and its left adjoint −.

It is evident from Definitions (7), (6) and from the remark (4) that the dialogue
semantics of both linear intuitionistic and linear co-intuitionistic logic can
be expressed with terms typed within multiplicative linear intuitionistic logic
with products (IMALL), namely, with the tensor type (⊗), linear implication
(−◦) and product type (&). In fact the dialogue semantics of MLA and MLH
can be modelled by a pair of functors F : A → Ad and G : H → Hd where the
categories Ad and Hd are built on pairs (C, C)op and (D,D)op, respectively,
where C and D free symmetric monoidal closed categories with products; in
a similar way a model of classical multiplicative linear logic CMLL is given
by a functor F : A → (C, Cop), where A is a free *-autonomous category and
C is a symmetric monoidal closed category with products.

We define a translation A 7→ (A+, A−) of formulas A of multiplicative linear
assertive logic (MLA) into pairs of formulas (A+, A−) of IMALL, where A+

is regarded as a type of expressions representing conclusive evidence for A
and A− the type of expressions representing a scintilla of evidence against A.
The translation of formulas is given in Table 9, Part A.

Similarly, the translation C 7→ (C+, C−) of formulas A of multiplicative linear
hypothetical logic (MLA) maps C to pairs of formulas (C+, C−) of IMALL,
where C+ is the type of expressions representing a scintilla of evidence for C
and A− the type of expressions representing conclusive evidence against C.
The translation of formulas is given in Table 9, Part B.

Remark 6. Special attention is needed to the interpretation of the constant 1
of MLA and ⊥ of MLH. Clearly, in (10) we can set 1+ = 1 and ⊥− = 1:

1 7→ (1+,1−) and ⊥ 7→ (⊥+,⊥−) (10)
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Part A: multiplicative linear assertive MLA

`p 7→ ( `p+, `p−);
A⊗B 7→ (A+ ⊗B+, [A+ −◦ B−]&[B+ −◦ A−]);
A −◦ B 7→ ([A+ −◦ B+]&[B− −◦ A−], A+ ⊗B−).

Part B: multiplicative linear hypothetical MLH

H p 7→ (H p+, H p−);
C℘D 7→ ([C− −◦ D+]&[D− −◦ C+], C− ⊗D−)
C −D 7→ (C+ ⊗D−, [C+ −◦ D+]&[D− −◦ C−]).

Table 9. Dialogue interpretation, formally.

But what are 1− and ⊥+? Although perhaps unintuitive from the viewpoint
of our pragmatic interpretation, the natural solution is to let 1− = > = ⊥+,
where > is the additive identity for &.

We shall not consider here the axioms ` /H left and right and the role of the
special constants u and j in them.

Example: The following derivations in the sequent calculus of Table 11 are
part of the proofs of A− ≡ (1⊗A)− and C+ ≡ (⊥℘C)+.

A− ` A−
1 L

A−,1+ ` A−
−◦ R

A− ` 1+ −◦ A−

> axiom:

A−, A+ ` 1−
−◦ R

A− ` A+ −◦ 1−
& R

A− ` [1+ −◦ A−]&[A+ −◦ 1−]

C+ ` C+

1 L
C+,⊥− ` C+

−◦ R
C+ ` ⊥− −◦ C+

> axiom:

C−, C+ ` ⊥+

−◦ R
C+ ` C− −◦ ⊥+

& R
C+ ` [⊥− −◦ C+]&[C− −◦ ⊥+]

Definition 8. We assume that the set Prop = {p0, p1, p2 . . .} of propositional
letters is given together with an involution without fixed point ( )⊥ : Prop→
Prop (so that p⊥ 6= p and p⊥⊥ = p). The duality ( )⊥ : MLA→MLH and
( )⊥ : MLH→MLA is defined as follows7.

7 We agree with P. Schroeder-Heister’s remark that A r B is dual to B → A, not
to A→ B, cfr.[9, 7], and thus A−B is dual to B −◦ A.
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( `p)⊥ =H p⊥ (H p)⊥ = `p⊥.
( `p⊥)⊥ =H p (H p⊥)⊥ = `p.

(1)⊥ = ⊥ (⊥)⊥ = 1.
(u)⊥ = j (j)⊥ = u.

(A⊗B)⊥ = A⊥℘B⊥ (C℘D)⊥ = C⊥ ⊗D⊥.
(A −◦ B)⊥ = B⊥ −A⊥ (C −D)⊥ = D⊥ −◦ C⊥.

(11)

The duality is extended to sequent derivations, sending a derivation d in the
purely assertive part MLA-G1 of MLAH-G1 to a d⊥ in the purely hypo-
thetical parts MLH-G1, and conversely. The map ( )⊥ acts on sequents and
inference rules in the obvious way:

MLA-G1 7→ MLH-G1 (and conversely):

Γ ;⇒ A; 7→ ;A⊥ ⇒;Γ⊥

logical axiom 7→ logical axiom
1-axiom 7→ ⊥-axiom

cut 7→ cut
⊗-right, ⊗-left 7→ ℘-left, ℘-right, resp.
−◦-right, −◦-left 7→ −-left, −-right, resp.

Proposition 7. Let’s make the following assumptions:

( `p)+ = (H p⊥)−, ( `p)− = (H p)⊥−,
(H p)+ = ( `p⊥)−, (H p⊥)− = ( `p⊥)−,

u+ = j−, u− = j+.
(12)

Then for any formulas A of MLA and C of MLH, A+ = A⊥−, A− = A⊥+

and C+ = C⊥−, C− = C⊥+.

Proof. The proof is by induction on the complexity of the formulas.

• (C℘D)+ = [C− −◦ D+]&[D− −◦ C+] = [C⊥+ −◦ D⊥−]&[D⊥+ −◦ C⊥−]
= (C⊥ ⊗D⊥)−, using the inductive hypothesis;

• (C℘D)− = C− ⊗D− = C⊥+ ⊗D⊥+ = (C⊥ ⊗D⊥)+

• (C−D)+ = C+⊗D− = D⊥+⊗C⊥− = (D⊥ −◦ C⊥)− using commutativity
of ⊗ and the inductive hypothesis;

• (C − D)− = [C+ −◦ D+]&[D− −◦ C−] = [D⊥+ −◦ C⊥+]&[C⊥− −◦
D⊥−] = (D⊥ −◦ C⊥)+, using commutativity of & and the inductive hy-
pothesis.

• We treat the other cases dually.

Remark 7. (i) One could may set p⊥ = ¬p, where “¬” is classical negation,
in the spirit of Dalla Pozza and Garola’s compatibilism [21]. Then there is an
implicit use of the double negation law ¬¬p = p for p atomic in the clauses
(H p⊥)⊥ = ` p and ( ` p⊥)⊥ =H p; thus in an intuitionistic metatheory one
may need to assume that the propositions in Prop are decidable.



30 G. Bellin, M. Carrara, D. Chiffi and A. Menti

(ii) In the reading of p⊥ as ¬p, the equations (12) are very plausible. If p is
decidable, conclusive evidence for asserting p is conclusive evidence against
making the hypothesis ¬p and a scintilla of evidence for making the hypothesis
p is evidence against asserting ¬p.
(iii) In the framework of a game-theoretic semantics, the “positive / negative
polarities” in equations 12 and in Proposition 7 may be read in terms of
player’s moves / opponent’s moves. We cannot expand this remark here.

Table 9 only gives the object component of the functors F : A → Ad and
G : H → Hd. and we have not defined their action on morphisms. Here
morphisms f : A → B in A are representable by [equivalence classes of]
sequent derivations of A;⇒ B; in the purely assertive MLA-G1, which sat-
isfy the appropriate β − η equations as cut-elimination and η-expansion hold
for MLA-G1. Similarly, morphisms g : C → D in H are represented by
[equivalence classes of] sequent derivations ;C →;D in the purely hypothet-
ical part MLH-G1. Thus morphisms F (f) : F (A) → F (B) are represented
by pairs [of equivalence classes] (f+ : A+ ` B+, f− : B− ` A−) of IMALL
derivations, and similarly for F (g) : F (C)→ F (D). Since IMALL enjoys the
cut-elimination property (see, e.g., Bierman’s thesis [15]) if f is cut-free, we
may choose the representatives f+ and f− to be cut-free as well.

Proposition 8. The translations of MLA and MLH formulas into IMALL
formulas given in Table 9 can be extended to proofs, namely:

1. Let f be a derivation of Γ ;⇒ A; in the purely assertive part of MLAH-
G1. By induction on f we construct IMALL derivations f+ : ⊗(Γ )+ `
A+ and f− : A− ` ⊗(Γ )−; if f is cut-free, then we may take f+ and f−

to be cut-free.
2. Let g be a derivation of ;C ⇒;∆ in the purely hypothetical part of

MLAH-G1. By induction on g we construct IMALL derivations g+ :
C+ ` ℘(Γ )+ and g− : ℘(Γ )− ` C−; if g is cut-free, then we may take g+

and g− to be cut-free.
3. Let (Γ ;⇒ A; )⊥ =;C ⇒;∆. Under the assumptions of equations 12 we

may identify f+ = g− and f− = g+.

The proof of proposition 8 is inspired by Table 13 in Section 8, but inspection
of all cases is quite long. Here consider only the case of linear implication. Let
the proof f end with −◦-right :

f

Γ,A;⇒ B;

Γ ;⇒ A −◦ B;

By inductive hypothesis we may assume we have IMALL derivations f+0 :
Γ+, A+ ` B+ and also f−1 : B−, Γ+ ` A−, f−2 : B−, A+ ` ⊗(Γ )− such that
f− : B− ` ((⊗Γ )⊗A)− is obtained from f−1 and f−2 . The derivations f+ and
f− are obtained as follows:
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f+
0

Γ+, A+ ` B+

Γ+ ` A+ −◦ B+

f−1

Γ+, B− ` A−

Γ+ ` B− −◦ A−

Γ+ ` [A+ −◦ B+]&[B− −◦ A−]

f−2

A+, B− ` (⊗Γ )−

(A+ ⊗B−) ` (⊗Γ )−

Now let the proof d end with −◦-left :

f

Γ ;⇒ A;

g

B,∆;⇒ E;

Γ,A −◦ B,∆;⇒ E;

By inductive hypothesis we may assume we have IMALL derivations f+ :
Γ+ ` A+ and f− : A− ` (⊗Γ )− and also g+ : B+, ∆+ ` E+, g−0 : E−, B+ `
(⊗∆)− and g−1 : E−, ∆+ ` B− such that g− is obtained from g−0 and g−1 by
applications of −◦-R and of &-R. The derivation d+ is obtained as follows.

f+

Γ+ ` A+

g+

B+,∆+ ` E+

Γ+, A+ −◦ B+∆+ ` E+

Γ+, (A −◦ B)+∆+ ` E+

Finally, d− results from the following pair of IMALL derivations.

f+

Γ+ ` A+

⊗(Γ )+ ` A+

g−1

E−,∆+ ` B−

E−,⊗(∆)+ ` B−

E−,⊗(Γ )+,⊗(∆)+ ` A+ ⊗B−

E−, (⊗(Γ )⊗ (⊗∆))+ ` (A −◦ B)−

E− ` (⊗(Γ )⊗ (⊗∆))+ −◦ (A −◦ B)−

f+

Γ+ ` A+

g−0

E−, B+ ` ⊗(∆)−

E−, A+ −◦ B+, Γ+ ` ⊗(∆)−

E−, (A −◦ B)+,⊗(Γ )+ ` ⊗(∆)−

E−, (A −◦ B)+ ` ⊗(Γ )+ −◦ ⊗(∆)−

g−1

E−,∆+ ` B−
f−

A− ` ⊗(Γ )−

E−, B− −◦ A−,∆+ ` ⊗(Γ )−

E−, (A −◦ B)+,⊗(∆)+ ` ⊗(Γ )−

E−, (A −◦ B)+ ` ⊗(∆)+ −◦ ⊗(Γ )−

E−, (A −◦ B)+ ` (⊗(Γ )⊗ (⊗∆))−

E− ` (A −◦ B)+ −◦ (⊗(Γ )⊗ (⊗∆))−

Remark 8. In Chu’s construction (Section 8) we have the following involutory
operation:

(XO, XI)
⊥ = (XI, XO)

This is used to define the orthogonality operation of a ∗-autonomous category
on the pair (C, Cop) of symmetric monoidal closed categories; in this way we



32 G. Bellin, M. Carrara, D. Chiffi and A. Menti

model the involutory negation of classical linear logic from models of intuition-
istic linear logic. Assuming equation 12 and using Proposition 7, we define an
operation ( , )⊥ that may be used to model the connectives “−” and “− ” of
MLAH:

(C+, C−)⊥ 7→ (C−, C+) = (C⊥+, C⊥−)
(A+, A−)⊥ 7→ (A−, A+) = (A⊥+, A⊥−).

(13)

In our setting the operations defined in (13) model the duality between the
intuitionistic side (MLA) and the co-intuitionistic side (MLH) within mul-
tiplicative linear bi-intuitionistic logic MLAH, but the two sides remain sep-
arable. A proof d of the sequent Γ ; ⇒ A ; ∆ in MLAH-G1 may be trans-
formed into a proof d′ of − ∆,Γ ;→ A; in the intuitionistic side (MLA),
modelled by a morphism in A. But d can also be transformed into a proof d′′

of ;A⊥ ⇒ ;∆,− Γ in the co-intuitionistic side (MLH), a morphism in H. See
also the example in Section 8.2.

6 Conclusions.

The mathematical test case of this paper is bi-intuitionistic logic in the
light of recent mathematical results, in particular by T. Crolard [19] and by
P. A. Melliès [42, 43]. In C. Rauszer’s original approach [48, 49] this logic is not
a conservative extension of first order intuitionistic logic; moreover all categor-
ical models of propositional bi-intuitionistic logic are isomorphic to a partial
order by Crolard’s theorem. We propose a polarized version of bi-intuitionism
(see [9, 7, 10, 11]) where the dual intuitionistic and the co-intuitionistic sides
of bi-intuitionism are separated and related by two negations that express
their duality within the system. P. A. Melliès proposed the notion of chi-
rality as an adjunction L a R between monoidal functors L : A → B and
R : B → A, where A = (A,∧, true) and B = (B,∨, false), together with a
monoidal functor ( )∗ : A → Bop that allows to give a “De Morgan represen-
tation of implication” in A through disjunction of B. The notion of chirality
“relaxes” the notion of a duality (A,Aop) and appears as the right mathe-
matical representation of the mirror symmetry between the intuitionistic and
co-intuitionistc sides of polarized bi-intuitionism.

In this paper we have considered Dalla Pozza and Garola’s pragmatic inter-
pretation of intuitionistic logic [21], and its extension to co-intuitionism and
bi-intuitionism, as a framework for logical analysis from the viewpoint of an in-
tuitionistic philosophy. This means that we made sure that such investigations
can be performed within an intuitionistic meta-theory and thus, for instance,
that any reference to Kripke semantics for classical S4 is not taken as the foun-
dation of the concepts to be investigated. Dalla Pozza and Garola interpreted
intuitionistic connectives according to the Brouwer-Heyting-Kolmogorov, but
retained a strict interpretation of Frege’s notion of a proposition as an entity
capable of being true or false in the classical sense. Thus non-elementary sen-
tences of intuitionistic logic cannot be propositions: in fact only through the
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S4 translation they can be given a truth-functional interpretation in Kripke
models. We claimed that some conceptual refinements suffice to make the
“pragmatic interpretation” a bona fide representation of intuitionism: namely,
we regard sentences as types of their justification values; we make sure that
when an atomic proposition p is asserted ( `p) or the content of a hypothesis
(H p), then p and its negation ¬p are intuitionistically meaningful and, finally,
that if the law of double negation ¬¬p = p is applied to such a proposition,
then p is decidable. For co-intuitionism we sketch a meaning-as-use interpreta-
tion that appears as able to fulfill the requirements of Dummett and Prawitz’s
justificationist approach. We extend the Brouwer-Heyting-Kolmogorov inter-
pretation of intuitionism by regarding co-intuitionistic formulas as types of
the evidence for them.

We have given an “intended interpretation” of co-intuitionistic logic as a logic
of hypotheses and of their justifications: evidence against a hypothesis is taken
as as conclusive evidence for its dual assertion, but evidence for a hypothesis is
a “scintilla of evidence”, a notion coming from the analysis of legal discourse.
Next, assuming a notion of duality between assertions and hypotheses, we give
a “dialogic interpretation” of multiplicative linear polarized bi-intuitionistic
logic which can be regarded as a translation into intuitionistic multiplicative
linear logic with products. Mathematically, the interplay between evidence for
and evidence against assertions and hypotheses is inspired by Chu’s construc-
tion [8], usually regarded as an abstract form of the “game semantics” for
linear logic.
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7 APPENDIX

7.1 Categorical models of bi-intuitionism.

Definition 9. A categorical model of MLA is built on a symmetric monoidal
closed category. A symmetric monoidal category is a category A equipped with
a bifunctor ⊗ : A×A → A and an object 1 (the identity of ⊗) together with
natural isomorphisms

1. αA,B,C : A⊗ (B ⊗ C)
∼−→ (A⊗B)⊗ C;

2. λA : 1 •A ∼−→ A
3. ρA : A⊗ 1

∼−→ A
4. γA,B : A⊗B ∼−→ B ⊗A.

which satisfy the following coherence diagrams.

A⊗ (B ⊗ (C ⊗D))

idA⊗αB,C,D

��

αA,B,C⊗D// (A⊗B)⊗ (C ⊗D)
αA⊗B,C,D// (((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)
αA,B⊗C,D

// (A⊗ (B ⊗ C))⊗D

αA,B,C⊗idD

OO

(A⊗B)⊗ C

γA,B⊗idC

��

αA,B,C// A⊗ (B ⊗ C)
γA,B⊗C// (B ⊗ C)⊗A

αB,C,A

��
(B ⊗A)⊗ C

αB,A,C

// B ⊗ (A⊗ C)
idB⊗γA,C

// B ⊗ (C ⊗A)
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A⊗ (1⊗B)

idA⊗λB
%%

αA,1,B // (A⊗ 1)⊗B
ρA⊗idB

yy
A⊗B

A⊗B

idA⊗B
##

γA,B // B ⊗A

γB,A

��
A⊗B

A⊗ 1

ρa

  

γA,1 // 1⊗A

λA
~~

A

The following equality is also required to hold: λ1 = ρ1 : ⊥ • ⊥ → 1.

Definition 10. A symmetric monoidal closed category is a symmetric monoidal
category (A,⊗, 1, α, λ, ρ, γ) such that for every object B of A the functor
⊗B : A → A has a right adjoint B −◦ : A → A. Thus for every A,C ∈ A

there is an object B −◦ C and a natural bijection

A(A⊗B,C)→ (A,B −◦ C).

The exponent of B and C is an object B −◦ C together with an arrow ∈B,C :
(B −◦ C) ⊗ C → C such that for any arrow f : A ⊗ B → C there exists a
unique f∗ : A→ (B −◦ C) making the following diagram commute:

A⊗B
f //

f∗⊗idB
��

C

(B −◦ C)⊗B
∈B,C

99

In particular a cartesian closed category (with finite products) is a symmetric
monoidal closed category where the categorical product × is the monoidal
functor ⊗. A main example of cartesian closed category is Set, where product
is the ordinary Cartesian product and exponents are defined from sets of
functions.

Definition 11. A categorical model of MLH is a symmetric monoidal cate-
gory (H, ℘,⊥, α, λ, ρ, γ), such that for every D ∈ H the functor (D℘ ) : H →
H has a left adjoint ( −D) : H → H. Thus for every C,E ∈ H there is an
object C −D and a natural bijection

H(C,D℘E)→ (C −D,E).

The co-exponent of C and D is an object C − D together with an arrow
3D,C : C → (C −D) ℘ D such that for any arrow f : C → D℘E there exists
a unique f∗ : (C −D)→ E making the following diagram commute:
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C
f //

3D,C %%

E℘D

(C −D) ℘ D

f∗ ℘ idD

OO

Lemma. (Crolard [19]) In the category Set the co-exponent C−D of two sets
C and D is defined if and only if C = ∅ or D = ∅.
Proof: In Set coproducts are disjoint unions, write E ⊕ D for the disjoint
union of E and D. If C 6= ∅ 6= D then the functions f and 3D,C for every
c ∈ C must choose a side, left or right, of the coproduct in their target and
moreover f? ⊕ 1D leaves the side unchanged. Hence, if we take a nonempty
set E and f with the property that for some c different sides are chosen by f
and 3D,C , then the diagram does not commute. It is clear that such a failure
does occur in any category where coproducts involves a choice between the
arguments: in logic this is the case of an additive disjunction such as the
intuitionistic one (C ∪D) or the linear plus (C ⊕D).

7.2 Dialogue chiralities.

The concept of chirality (see Melliès [43]) is useful to study a pair of struc-
tures (A,B), where one of the two structures cannot be defined simply as
the opposite of the other and the duality has to be somehow “relaxed”. The
case of models of bi-intuitionism is to the point: here we have two monoidal
categories, where the “intuitionistic” structure A is cartesian closed, but by
Crolard’s theorem the “co-intuitionistic” one cannot be just Aop.

Definition 12. A dialogue chirality on the left is a pair of monoidal categories
(A,∧, true) and (B,∨, false) equipped with an adjunction

A

L

%%
⊥ B

R

ee

whose unit and counit are denoted as

η : Id → R ◦ L ε : L ◦R→ Id

together with a monoidal functor8

(−)∗ ; A → Bop(0,1)

and a family of bijections

8 In the context of 2-categories, the notation Bop(0,1) means that the op operation
applies to 0-cells and 1-cells.
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χm,a,b : 〈m ∧ a|b〉 → 〈a|m∗ ∨ b〉

natural in m, a, b (curryfication). Here the bracket 〈a|b〉 denotes the set of
morphisms from a to R(b) in the category A:

〈a|b〉 = A(a,R(b)).

The family χ is moreover required to make the diagram

〈(m ∧ n) ∧ a | b〉
χm∧n

//

assoc.

��

〈a | (m ∧ n)∗ ∨ b〉

=

〈m ∧ (n ∧ a) | b〉
χm // 〈n ∧ a | m∗ ∨ b〉

χn // 〈a | n∗ ∨ (m∗ ∨ b)〉

assoc. monoid. of (−)∗

OO

commute for all objects a, m, n, and all morphisms f : m→ n of the category
A and all objects b of the category B.

We sketch the construction of a chirality “from the syntax” of the bi-
intuitionistic calculus. Let (A,∧, true) be the monoidal category, free on
objects { ` p1, ` p2, . . .}, where ∧ is ∩ and true is the constant g, whose
objects are intuitionistic assertive formulas and whose morphisms f : A→ B
are equivalence classes of AH-G1 sequent derivations (modulo permissible
permutations of inferences). Similarly, we let (B,∨, false) be the monoidal
category, free on objects {H p1, H p2, . . .}, where ∨ is g and false is the con-
stant f, whose objects are co-intuitionistic hypothetical formulas and whose
morphisms f : C → D are equivalence classes of AH-G1 sequent derivations
(modulo permissible permutations of inferences). Consider Proposition 2 in
Section 4: it gives the basic proof theoretic ingredients of the construction.

• The operations ♦· : A → B and �· : B → A are adjoint functors between
the cartesian category (A,∩,g) and the monoidal category (B,g,f).

• The proofs of Proposition 2 (ii) correspond to the construction of the unit
and the co-unit of the adjunction.

• We use the “internal” co-intuitionistic negation “j a” to define the con-
travatiant monoidal functor ( )∗ as (ja♦· ) : A → Bop.

• We let 〈A|C〉 be the set of (equivalence classes of) derivations of A⇒�· C.
• The cartesian category (A,∩,g) is in fact cartesian closed, i.e., exponents

A ⊃ B can be defined so that there is a natural bijection between
A(M ∧A,�· B) and A(A,M ⊃�· B).

• The provable equivalences in Proposition 2 (iii) provide a “De Morgan”
definition of intuitionistic implication in polarized bi-intuitionistic logic,
i.e., a natural bijection between A(A,M ⊃�· B) and A(A,�· ((ja♦·M)gB).

• By composing, we obtain the family of natural bijections

χM,A,B : 〈M ∧A|B〉 → 〈A|M∗ ∨B〉.
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8 Appendix II. Chu’s construction proof-theoretically

Here we give the main definitions of Chu’s construction, in the proof-theoretic
version of [8].

8.1 Classical and Intuitionistic multiplicative linear logic

Definition 13. (classical multiplicative linear logic CMLL) The language
of CMLL is built from the constants 1 and ⊥ and sentential letters using
multiplicative conjunction (⊗) and disjunction (℘) according to the following
grammar:

• an infinite sequence of atomic sentences p1, p2, . . .;
A,B := p | 1 | ⊥ | A⊗B | A℘B

• linear negation ( )⊥ is defined by De Morgan laws;
1⊥ =df ⊥; ⊥⊥ =df 1; (A⊗B)⊥ =df A

⊥℘B⊥; (A℘B)⊥ =df A
⊥ ⊗B⊥;

• linear implication is defined as A −◦ B =df A
⊥℘B

The sequent calculus of CMLL is given in Table 10.

logical axiom:

` A,A⊥

cut rule

` Γ,A ` A⊥,∆
` Γ,∆

exchange

` Γ,A,B,∆
` Γ,B,A,∆

1 axiom:
` 1

⊥ rule

` Γ,

` Γ,1

⊗ rule

` Γ,A ` B,∆
` Γ,A⊗B,∆

℘ rule:

` Γ,A0, A1

` Γ,A0℘A1

Table 10. Sequent Calculus for CMLL.

Definition 14. (intuitionistic multiplicative linear logic IMLL with product
types) The language of IMLL with product types is built from the constants
1, > and 0 and sentential letters using multiplicative conjunction (⊗), lin-
ear implication (−◦), and additive conjunction (&) according to the following
grammar:
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• an infinite sequence of atomic sentences p1, p2, . . .;
A,B := p | 1 | > | 0| A⊗B | A −◦ B | A&B.

The sequent calculus of IMLL with products is given in Table 11.

logical axiom:

A ` A

cut rule

Γ ` A A,∆ ` B

Γ∆ ` B

exchange

Γ,A,B,∆ ` C

Γ,B,A,∆ ` C

1 axiom:

` 1

1 L:

Γ ` A
1, Γ ` A

⊗ R:

Γ ` A ∆ ` B
Γ,∆ ` A⊗B

⊗ L:

A,B, Γ ` C

A⊗B,Γ ` C

−◦ R:

Γ,A ` B

Γ ` A −◦ B

−◦ L:

Γ ` A B,∆ ` C

Γ,A −◦ B,∆ ` C

> axiom:

Γ ` >

& R:

Γ ` A Γ ` B
Γ ` A&B

&i L:

Ai, Γ ` C

A0&A1, Γ ` C

Table 11. Sequent Calculus for IMLL with product types.

Remark 9. As discussed at the beginning of Section 5, classical and intu-
itionistic linear logic are considered here as being about abstract deductive
schemes, without specifying an “intended interpretation” for the the language
of CMLL and IMALL. On the contrary, in Section 5.1 the language MLAH
and the sequent calculus MLAH-G1 are within the “pragmatic interpreta-
tion” of polarized bi-intuitionism, elementary formulas are types of illocution-
ary acts and molecular expressions do have assertive or hypothetical mood.
However, the deductive methods available will be restricted to linear inference
rules and as a consequence, it will be possible to interpret the formulas of the
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language MLAH in terms of our “dialogue semantics”. Therefore the logic of
linear polarized bi-intuitionism is a mathematical construction that appears
to have an interpretation in common sense reasoning. If the “dialogic inter-
pretation” can be modified and extended to polarized bi-intuitionism without
the linear constraint then our understanding of the relations between linear
and non-linear polarized bi-intuitionism will be considerably improved.

(P⊥)O = PI (P atomic) (P⊥)I = PO;
1O = 1, 1I = > ⊥I = 1 ⊥O = >;

(A⊗B)O = AO ⊗BO (A℘B)I = AI ⊗BI;
(A⊗B)I = (AO −◦ BI)&(BO −◦ AI) (A℘B)O = (AI −◦ BO)&(BI −◦ AO)

Table 12. Functorial trip translation, the propositions.

Theorem 2. ([8], section 3) Let A be the free ∗-autonomous category on a
set of objects {P, P ′, . . .} and let C be the symmetric monoidal closed category
with products, free on the set of objects {PO, PI, P

′
O, P

′
I , . . .} (a pair PO, PI in

C for each P in A).
We can give C × Cop the structure of a ∗-autonomous category thus:

(XO, XI)⊗ (YO, YI) =df

(
XO ⊗ YO, (XO −◦ YI)× (YO −◦ XI)

)
with unit (1,>) and involution (XO, XI)

⊥ = (XI, XO)

where 1 is the unit of ⊗ and > the terminal object of C.

Therefore there is a functor F from A to C × Cop sending an object P to
(PO, PI).
If π : I → ℘(Γ ) is a morphism of A represented as a proof-net R with con-
clusions Γ , then the morphism (1,>)→

(
℘(Γ )O, ℘(Γ )I

)
encodes all Girard’s

trips (in a sense specified in [8]).

We are interested in the proof theoretic interpretation of this result, deter-
mined by the form of the functor F : A → C × Cop. We have the following
data:

• a language LC of classical CMLL on an infinite list of atoms p1, p2, . . .;
• a language LIIO of intuitionistic IMALL on an infinite list of atoms p1O,

p1I, p2O, p2I . . . (a pair pO, pI in LIIO for each p in LC);
• translations ( )O and ( )I of the formulas of LC into formulas of LIIO by

induction on the construction of LC formulas according to Table 12;
• derivations in the sequent calculus CMLL with pointed sequents, i.e.,

where each sequent has a selected formula (written in boldface). The
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“Pointed” CMLL sequents IMALL sequents

` P⊥,P ⇒ PO ` PO

` P⊥, P ⇒ PI ` PI

` Γ,A ` A⊥,∆,C
cut ` Γ,∆,C

⇒ ΓI ` AO A⊥I ,∆I ` CO
cut

ΓI,∆I ` CO

` Γ,A ` ∆,B⊗O ` Γ,∆,A⊗B
⇒ ΓI ` AO ∆I ` BO ⊗-R

ΓI,∆I ` AO ⊗BO

` Γ,A ` B,∆,C⊗I ` Γ,∆,A⊗B,C
⇒

ΓI ` AO BI ,∆I ` CO −◦-L
ΓI, AO −◦ BI,∆I ` CO

ΓI, (AO −◦ BI)&(BO −◦ AI),∆I ` CO

` Γ,A,B
℘O

` Γ,A℘B
and

` Γ,A, B
` Γ,A℘B

⇒
ΓI, AI ` BO

ΓI ` AI −◦ BO

ΓI, BI ` AO −◦-R
ΓI ` BI −◦ AO

ΓI ` (AI −◦ BO)&(BI −◦ AO)

` A,B, Γ,C
℘I
` A℘B,Γ,C

⇒
AI, BI, ΓI ` CO ⊗-L
AI ⊗BI, ΓI ` CO

` 1 ⇒ ` 1
` Γ⊥O ` Γ,⊥⊥ ⇒ ΓI ` >

` Γ,A
⊥I ` ⊥, Γ,A

⇒ ΓI ` AO
1-L

1, ΓI ` AO

Table 13. Functorial trip translation, the proofs.

“pointing” must respect the constraints on the sequent calculus rules ex-
hibited on the left column of Table 13: thus the selection of the “pointed
formula” in the sequent premises is uniquely determined by the selection
for the conclusion, except in the case of a par (℘O) rule, where two selec-
tions are possible.

• Given a sequent derivation d in CMLL, a switching of d is a selection
of a formula in the endsequent and, for each par inference introducing a
formula A℘B in the sequent-concluson a selection of one of the formulas
A of B in the sequent premise.

• Finally we have translations of classical CMLL derivations with a switch-
ing into intuitionistic IMALL derivations according to Table 13.

In the statement of the theorem, Girard’s switchings in a proof net are men-
tioned, which are tools to verify the correctness of the proof net representation
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of proofs. Such switchings correspond to ways of systematically selecting a for-
mula in each sequent of classical CMLL derivation (pointed sequents ` Γ,A):
see Table 13. The key insight of [8] is that the orientation of the subformu-
las X as input (XI) or output (XO) resulting from such “switchings” suffices
to recover derivations in intuitionistic linear logic with sequents of the form
ΓI ` AO.

8.2 An Example.

Let ` Γ be the sequent ` A⊥, B⊥℘(A ⊗ B) and let d be (the only) cut-fee
derivation of ` Γ :

` A⊥, A ` B⊥, B
` A⊥, B⊥, A⊗B
` A⊥, B⊥℘(A⊗B)

The derivation d, regarded as a morphism π : I → ℘(Γ ) in a free *-
autonomous category, is mapped by Chu’s functor to the morphism (1,>)→
(℘(Γ )O, ℘(Γ )I). The right contravariant component is just the axiom ℘(Γ )I `
>. By the translation in Table 13 the left component is given by cut free
IMALL derivations f1, f2 and g, which are given by the three switchings,
selecting the formulas A⊥, B⊥ and A⊗B, respectively.

1. f1 : AO ` [BO −◦ (AO ⊗BO)], f2 : AO `
[
[AO −◦ BI]&[BO −◦ AI]

]
−◦ BI;

2. g : BO ⊗ ([BO −◦ AI]&[AO −◦ BI] ` AI.

Next consider the cut-free MLAH-G1 derivations d of A;⇒ B −◦ (A ⊗ B);
and d⊥ of ; (B⊥℘A⊥)−B⊥ ⇒;A⊥, where we let A = `p and B = `q; here the
Definition 8 of the duality for formulas is extended to sequent derivations in
an obvious way.

A;⇒ A; B;⇒ B;

A,B;⇒ A⊗B;

A;⇒ B −◦ (A⊗B);

;B⊥ ⇒;B⊥ ;A⊥ ⇒;A⊥

;B⊥℘A⊥ ⇒;B⊥, A⊥

; (B⊥℘A⊥)−B⊥ ⇒;A⊥

The definition of Table 9, formalizing the dialogue semantics of definitions 6
and 7, maps MLA and MLH formulas to IMALL formulas; the translation
in proposition 8 maps the derivation d of A;⇒ B −◦ (A⊗B); to the following
pair of derivations (h1 × h2, k):
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h1 :

A+ ` A+ B+ ` B+

A+, B+ ` A+ ⊗B+

A+ ` B+ −◦ (A+ ⊗B+)

h2 :

A+ ` A+ B− ` B−

A+, A+ −◦ B− ` B−

A+, [A+ −◦ B−]&[B+ −◦ (A−] ` B−

A+ `
[
[A+ −◦ B−]&[B+ −◦ (A−]

]
−◦ B−

A+ ` [B+ −◦ (A+ ⊗B+)]&
[
[A+ −◦ B−]&[B+ −◦ A−] −◦ B−

]
k :

B+ ` B+ A− ` A−

B+, B+ −◦ A− ` A−

B+, [B+ −◦ A−]&[A+ −◦ B−] ` A−

B+ ⊗ ([B+ −◦ A−]&[A+ −◦ B−] ` A−.

Under the assumptions in (7) and given Proposition 12, it is not difficult to
see that the derivation d⊥ is mapped to a pair of derivations that can be
identified with (k, h1 × h2).


