Disambiguating bi-intuitionism.

Gianluigi Bellin
University of Verona, Italy

April 7, 2013

0. Plan of the talk.

1. Bi-intuitionistic logic revisited: mathematical collapse of its topological and categorical models and philosophical implausibility of its modal-tense interpretations.
2. No categorical model of co-intuitionism in Set: translation of co-IL into linear logic and categorical model of linear co-IL in monoidal left-closed categories with extra structure.
3. Bi-intuitionistic logic and the logic for pragmatics: an intended model for 'polarized’ bi-intuitionism. A game-like semantics of justifications for co-IL and intuitionistic acceptability of 'polarized' bi-IL.
4. No collapse of topological and categorical models of 'polarized' bi-IL. Bi-Intuitionistic modalities as intuitionistically acceptable polaritycahnging modalities. A logic of expectations as a pragmatic interpretation of the double negation rule.

1.1. A "rich" proof-theory.

- For Intuitionistic Logic IL we have the Extended Curry-Howard correspondence:
- Natural Deduction NJ (+ sequent calculus LJ)
- extended to higher order logic;
- Simply Typed λ-calculus
- extended to Dependent Types and system F;
- Cartesian Closed Categories CCCs
- subsuming Heyting algebras, topological models etc.

A "rich" proof-theory for bi-Intuitionism?

1.2. Co- and Bi-Heyting algebras

- A Heyting algebra is a (distributive) lattice with an operation \rightarrow, the right adjoint to the meet \wedge;
- A co-Heyting algebra is a lattice with an operation (subtraction) which is the left adjoint to the join \vee.
Thus we have

$$
\begin{array}{ll}
\text { in HA } \\
c \wedge a \leq b \\
c \leq a \rightarrow b
\end{array} \quad \begin{aligned}
& \text { in co-HA } \\
& b \leq a \vee c \\
& b-a \leq c
\end{aligned}
$$

- A bi-Heyting algebra is a lattice

$$
\mathcal{C}=(C, \wedge, \vee, \rightarrow,-, \perp, \top)
$$

with both Heyting and co-Heyting structures.

Strong \neg and weak \sim negations:

- $\neg a=a \rightarrow \perp$ (the largest c such that $c \wedge a=\perp$);
- $\sim a=\top-a$ (the smallest c such that $c \vee a=\top$).

1.3. Negations and modalities.

Immediate properties of negations:

- $a \leq \neg \neg a \quad \sim \sim a \leq a ;$
- $\neg a \leq \sim a$. Proof: $\frac{\backslash \leq a \vee \sim a}{\neg a \leq \neg a \wedge(a \vee \sim a)=\perp \vee(\neg a \wedge \sim a) .}$

Hence

$$
\neg \sim a \leq \sim \sim a \leq a \leq \neg \neg a \leq \sim \neg a
$$

Define

$$
\begin{aligned}
\square_{0} a & =a \\
\square_{n+1} a & =\neg \sim \square_{n} a \\
\square a & =\wedge_{n} \square_{n} a
\end{aligned}
$$

$$
\begin{aligned}
\diamond_{0} a & =a \\
\diamond_{n+1} a & =\sim \diamond_{n} a \\
\diamond a & =\vee_{n} \diamond_{n} a
\end{aligned}
$$

Proposition.

$\square a$ is the largest complemented x such that $x \leq a$ $\diamond a$ is the smallest complemented x such that $a \leq x$.

Proof. Indeed $\square a \leq \neg \sim \square a$ implies $\square a \wedge \sim \square a \leq 0$ hence $\sim \square a=\neg \square a$. Proceed dually for $\diamond a$.
Thus $\neg \neg \square a=\boxminus a$ and $\diamond a=\sim \sim \curvearrowright a$.

- Reyes and Zolfaghari, Bi-Heyting algebras, toposes and modalities, J.Phil.Log 25, 1996:
- "a new approach to the modal operators of necessity and possibility".
- Are \square and \diamond intuitionistic modalities?

1.4. Co-Heyting Boundaries.

Lawvere 1991 advocates co-Heyting algebras for representing the notion of a boundary. Let S be the set of all subgraphs of a graph $G=(V, E)$. For $Y, Z \in \mathbf{S}$ define

- $Y \wedge Z=$ the intersection of Y, Z;
- $X \vee Y=$ the union of X, Y;
- $\neg X=$ the largest subgraph Z such that $X \wedge Z=\emptyset$;
- $\sim X=$ the smallest subgraph Z s.t. $X \vee Z=G$.
$X \wedge \sim X$ is the boundary of X.

In the following graph G let $Y=\{x, f\}, Z=\{x, g\}$:

- Subgraphs of G : $\{G, Y, Z,\{x\}, \emptyset\} ; \sim Y=Z, \sim Z=$ Y.
- $Y \wedge Z=\{x\}$, the boundary of Y and of Z.
- Dual De Morgan Iaw:
$\sim(Y \vee Z)=\emptyset \neq\{x\}=\sim Y \wedge \sim Z$
$\sim(Y \wedge Z)=\sim\{x\}=G=\sim Y \vee \sim Z$.

Bibliographic note: F. W. Lawvere, Intrinsic coHeyting boundaries and the Leibniz rule in certain toposes. In Category Theory (Como 1990), Springer L.N.Math 1488, 1991, pp. 279-297.
P. Pagliani. Intrinsic co-Heyting boundaries and information incompleteness in Rough Set Analysis. In: RSCTC 1998. Springer L.N.C.S., 1424, 2009 pp. 123-130.

No advances on this topic in this paper.

1.5. Bi-Intuitionism and co-Intuitionism.

- Bi-Intuitionistic Logic (bi-IL) (also HeytingBrouwer) is the logic on the following language
- Atoms p_{0}, p_{1}, \ldots
$A, B:=p|\top| \perp|A \wedge B| A \vee B|A \rightarrow B| A-B$ with bi-Heyting algebras as algebraic models.
- Co-Intuitionistic Logic (co-IL), (aka dual intuitionistic), the fragment of bi-IL on the language

$$
A, B:=p|\top| \perp|A \wedge B| A \vee B \mid A-B
$$

with co-Heyting algebras as algebraic models.

- C. Rauszer. Semi-Boolean algebras and their applications to intuitionistic logic with dual operations, in Fundamenta Mathematicae, 83, 1974, pp. 219-249.
- C. Rauszer. Applications of Kripke Models to HeytingBrouwer Logic, in Studia Logica 36, 1977, pp. 61-71.

Also: Goré 2000, Crolard 2001, 2004, Shramko 2005, Wansing 2008, Pagliani 2009, Pinto and Uustalu 2010, Tranchini 2012.

1.6. Kripke Models for bi-IL

- $\mathcal{M}=(W, \leq, \mathcal{V})$ where
- (W, \leq) a preordered frame
- \mathcal{V} : Atoms $\rightarrow \wp(W)$ monotone.

Monotonicity: if $w \leq w^{\prime}$ and $w \in \mathcal{V}(p)$ then $w^{\prime} \in \mathcal{V}(p)$

- Forcing conditions: (Rauszer 1977)
- $w \Vdash p$ iff $w \in \mathcal{V}(p)$;
- $w \Vdash A \rightarrow B$ iff $\forall w^{\prime} \geq x$ if $w^{\prime} \Vdash A$ then $w^{\prime} \Vdash B$;
- $w \Vdash B-A$ iff $\exists w^{\prime} \leq x w^{\prime} \Vdash B$ and $w^{\prime} \Vdash A$;
- $w \Vdash A \wedge B$ iff $w \Vdash A$ and $w \Vdash B$ etc.

To show that in $\neg \sim A \supsetneqq A \supsetneqq \sim \neg A$ the order may be strict, consider the infinite Kripke model:

$$
\begin{array}{ll}
w_{m} \Vdash \neg \sim p & \text { iff } \forall v \geq w_{m} . \forall u \leq v . u \Vdash p \\
w_{m} \Vdash \neg \sim \square_{n} p & \text { iff }
\end{array} \quad \text { iff } \mathbf{m}>\mathbf{m}>\mathbf{2} \mathbf{n}+\mathbf{2}
$$

Similarly
$w_{m} \Vdash \diamond_{n} \sim p$ iff $\exists v \leq w_{m} . \exists u \geq v . u \Vdash \sim p$ iff $\mathbf{m} \leq \mathbf{2 n}+\mathbf{1}$.

1.7. Topological Models of bi-IL.

- A bi-topological space (X, \mathcal{O}) is given by

A set X and a collection $\mathcal{O} \subseteq \wp(X)$

- \mathcal{O} contains X, \emptyset and
- is closed under arbitrary unions
- and arbitrary intersections.

A bi-topological space is a Boolean algebra if all $S \in$ \mathcal{O} are clopen. There exist bi-topological spaces that aren't Boolean algebras.

Models of bi-IL in bi-topological (X, \mathcal{O}):

$$
\begin{aligned}
& \text { Let } \llbracket p_{i} \rrbracket \in \mathcal{O} \text {, } \\
& \llbracket A \wedge B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket \text {, } \\
& \llbracket \top \rrbracket=X, \llbracket \perp \rrbracket=\emptyset ; \\
& \llbracket A \rightarrow B \rrbracket=\operatorname{int}\left(\llbracket A \rrbracket^{C} \cup \llbracket B \rrbracket\right), \quad\left(\llbracket A-B \rrbracket=\operatorname{ext}\left(\llbracket A \rrbracket \cap \llbracket B \rrbracket^{C}\right)\right.
\end{aligned}
$$

Lemma. A topological space (X, \mathcal{O}) is bi-topological iff \mathcal{O} is the set of all final (initial) sections of some preorder.

Thus non-trivial topological models of bi-IL exist but "collapse to preorders".

1.8. Extending Gödel, McKinsey and Tarski S4 interpretation.

Pinto and Uustalu 2010:
"It is also a basic observation that the Gödel translation of IL into the modal logic S4 extends to a translation of bi-IL into the future-past tense logic KtT4. As the semantics of KtT4 does not enforce monotonicity of interpretations, atoms must be translated as future necessities or past possibilities (these are always monotone)":

$$
p^{M}=\square p \quad \text { or } \quad p^{M}=p
$$

Also we have ($)^{M}$: bi-IL $\rightarrow \mathbf{K t T} \mathbf{4}$

$$
\begin{array}{cc}
(A \rightarrow B)^{M}=\square\left(A^{M} \rightarrow B^{M}\right) & (B-A)^{M}=\left(B^{M} \wedge \neg A\right) \\
(A \wedge B)^{M}=A^{M} \wedge B^{M} & (A \vee B)^{M}=A^{M} \vee B^{M}
\end{array}
$$

- But how can atoms have an ambiguous epistemic interpretation between necessarily in the future and possibly in the past?

Problem 1: Linguistic ambiguity of KtT4 modal interpretations.

Bibliographical Note:

L. Pinto and T. Uustalu. Relating sequent calculi for Bi-intuitionistic Propositional Logic, van Bakel, Berardi and Berger eds. Proceedings Third International Workshop on Classical Logic and Computation. EPTCS 47, 2010. pp.57-72.

1.9. Collapse of bi-IL models.

Proposition (Gabbay 1972) First order bi-IL is the logic of constant domains (an intermediate logic between intuitionistic and classical).

Theorem (Crolard 2001) Every categorical model of bi-IL is isomorphic to a partial order. Proof: Joyal's argument showing that bi-cartesian closed categories are degenerate applies here.

Problem 2: No 'rich proof theory' for bi-IL!
T. Crolard. Subtractive logic, in Theoretical Computer Science 254,1-2, 2001, pp. 151-185.

2.1. (Philosophical) Comments to 1.

- Problem 1 is conceptually 'fatal' for the KtT4 interpretation: it is untenable, because of the ambiguous translation of atomic formulas.
- Philosophically, we need an intended interpretation of bi-intuitionistic logic. What determines the meaning of an atomic formula in bi-IL? Is the meaning of atomic formulas the same in intuitionistic and cointuitionistic logic?

Proposed solution to 1: (i) Separate

- classical logic as logic of proposition and truth from
- bi-intuitionism as logic of judgements and their justifications,
Dalla Pozza and Garola 1995, Bellin and Dalla Pozza 2002, following Dummett.
(ii) Disambiguate the interpretation of bi-IL: - intuitionism as logic of assertions.
- co-intuitionism as logic of hypotheses Bellin 2004, 2012, 2013, B.et al 2012a, 2012b, 2013.

2.2. (Mathematical) Comments to 2.

- Problem 2 is mathematical: there must be more structure in bi-intuitionistic logic for it to have a rich proof theory.
What additional structure? This depends on the desired applications.
However the 'linguistic disambiguation' of bi-intuitionism (problem 1) motivates the following solution.

Proposed solution to 2: 'Polarize' bi-IL.

 Keep the dual Heyting and co-Heyting structure separate, related by negations implementing the duality$$
()^{\perp}: \mathrm{IL} \longrightarrow \text { co-IL } \quad()^{\perp} \text { co-IL } \longrightarrow \mathrm{IL}
$$

Bellin 2004, 2012, 2013?, B.et al 2012a?, 2012b, 2013?.

Bibliographical Note:

- C. Dalla Pozza and C. Garola 1995. A pragmatic interpretation of intuitionistic propositional logic, Erkenntnis 43. 1995, pp.81-109.
- B. and C. Dalla Pozza 2002. A pragmatic interpretation of substructural logics. In S. Feferman Festschrift, ASL LN in Logic, 15, 2002, pp. 139-163.
- B. and C. Biasi 2004. Towards a logic for pragmatics. Assertions and conjectures. In: Journal of Logic and Computation, 14, 4, 2004, pp. 473-506.
- B. 2013. Assertions, hypotheses, conjectures: Roughsets semantics and proof-theory,Advances in Natural Deduction, 2013.
- B., M. Carrara and D. Chiffi 2012a?. A pragmatic framework for intuitionistic modalities: Classical Logic and Lax logic, subm. JLC, 2012.
- B. and A. Menti 2012b. On the π-calculus and cointuitionistic logic. Notes on logic for concurrency and λP systems, accepted Fundam. Informaticae
- B. 2012? Categorical Proof Theory of Co-Intuitionistic Linear Logic, LOMECS, 2012.
- B., M. Carrara and D. Chiffi 2013?. A pragmatic logic of hypotheses, Logic and Logical Philosophy.

2.3. Categorical models of co-IL.

- Disjunction is modelled by co-products and subtraction by co-exponents. In Set co-products are disjoint unions, but in Set nontrivial co-exponents don't exist!

Proposition. (Crolard 2001) The co-exponent B_{A} of two sets A and B is defined iff $A=\emptyset$ or $B=\emptyset$.
Proof: The co-exponent of A and B is an object B_{A} together with an arrow $\ni_{A, B}: B \rightarrow B_{A} \oplus A$ such that for any arrow $f: B \rightarrow C \oplus B$ there exists a unique $f_{*}: B_{A} \rightarrow C$ making the following diagram commute:

If $A \neq \emptyset \neq B$ then the functions f and $\ni_{A, B}$ for every $b \in B$ must choose a side, left or right, of the coproduct in their target and moreover $f_{\star} \sqcup 1_{A}$ leaves the side unchanged. Hence, if we take a nonempty set C and f with the property that for some b different sides are chosen by f and $\ni_{A, B}$, then the diagram does not commute.

Problem 3. No model of co-IL in Set.

2.4. A solution to Problem 3.

- Problem 3 shows that co-intuitionistic disjunction (\curlyvee) cannot be the exact dual of intuitionistic (\cup) :

$$
\begin{aligned}
& \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{0} \cup A_{1}} \cup_{i} \mathrm{I} \\
& \quad i=0,1
\end{aligned}
$$

- Intuitionistic Linear Logic ILL can be modelled by monoidal categories!
BBHdP 1993: P.N.Benton, G.M.Bierman, J.M.E.Hyland and V.C.V.dePaiva. A term calculus for Intuitionistic Linear Logic. In: Typed Lambda Calculi and Applications, L.N.C.S., 664, 1993, pp.75-90.
- Intuitionistic logic IL is translated into ILL (Girard 1986)

Proposed way out: (i) Define co-Intuitionistic Linear Logic co-ILL;
(ii) represent co-IL into co-ILL by the dual of Girard's translation.
(iii) Define categorical models of co-ILL, by dualizing the construction in BBHdP 1993.

2.5. Translation co-IL \rightarrow linear co-IL.

We sketch the solution in Bellin 2012? with no detail. Main logical features are:

- Both co-IL and co-ILL have a consequence relation with single assumption and (a list of) conclusions

$$
E \vdash C_{1}, \ldots, C_{n}
$$

co-IL has unrestricted weakening and contraction right; co-ILL does not.

- In the categorical construction we assign lists of terms in context thus:

$$
x: E \triangleright t_{1}: C_{1}, \ldots, t_{n}: C_{n} .
$$

- The fragment of co-IL on the language with ($\perp, \curlyvee, \backslash$) is mapped to the fragment of co-ILL with (\perp, \wp, \backslash, ?) where '?' is Girard's exponential whynot?:

$$
\begin{aligned}
(p)^{\circ} & =\mathrm{p} \\
(\perp)^{\circ} & =\perp \\
(C \curlyvee D)^{\circ} & =?\left(C^{\circ} \oplus D^{\circ}\right) \\
& =?\left(C^{\circ}\right) \wp ?\left(D^{\circ}\right) \\
(C \backslash D)^{\circ} & =C^{\circ}\left(? D^{\circ}\right) \\
\left(E \vdash C_{1}, \ldots, C_{n}\right)^{\circ} & \left.=?\left(E^{\circ}\right) \vdash ?\left(C_{1}^{\circ}\right), \ldots, ?\left(C_{n}^{\circ}\right)\right)
\end{aligned}
$$

2.6. A sequent calculus for co-IL.

Identity:
$\underset{A \Rightarrow A}{\operatorname{axiom}} \quad \begin{gathered}H \Rightarrow\ulcorner, C \\ H \Rightarrow\ulcorner, \Delta \Rightarrow \Delta \\ \text { Structural rules: }\end{gathered}$

$$
\frac{H \Rightarrow \Gamma, C, D, \Delta}{H \Rightarrow \Gamma, D, C, \Delta} \text { exch }
$$

$$
\frac{H \Rightarrow \Gamma}{H \Rightarrow \Gamma, C} \text { weak } \quad \frac{H \Rightarrow \Gamma, C, C,}{H \Rightarrow \Gamma, C} \text { contr }
$$

Logical rules:
unjustifiability: $\perp \Rightarrow \Delta$
$\frac{H \Rightarrow \Gamma, C \quad D \Rightarrow \Delta}{H \Rightarrow \Gamma, C \backslash D, \Delta} \backslash \mathrm{R} \quad \frac{C \Rightarrow D, \Delta}{C \backslash D \Rightarrow \Delta} \backslash \mathrm{~L}$
$\frac{H \Rightarrow \Gamma, C_{0}, C_{1}}{H \Rightarrow C_{0} \curlyvee C_{1}} \curlyvee \mathrm{R} \quad \frac{C_{0} \Rightarrow \Gamma \quad C_{1} \Rightarrow \Delta}{C_{0} \curlyvee C_{1} \Rightarrow \Gamma, \Delta} \curlyvee \mathrm{~L}$

2.6.1. A sequent calculus for linear co-IL.

Identity:

axiom

$$
\frac{H \Rightarrow \Gamma, C \quad C \Rightarrow \Delta}{H \Rightarrow \Gamma, \Delta} \text { cut }
$$

Structural: Exchange and Exponential rules:

$$
\begin{array}{cc}
C \Rightarrow ? \Gamma \\
? C \Rightarrow ? \Gamma & \begin{array}{c}
H \Rightarrow \Gamma, C \\
H \Rightarrow \Gamma, ? C \\
d y
\end{array} \\
\begin{array}{c}
H \Rightarrow \Gamma \\
H \Rightarrow \Gamma, ? C \\
\text { weak }
\end{array} & \frac{H \Rightarrow \Gamma, ? C, ? C,}{H \Rightarrow \Gamma, ? C} \text { contr }
\end{array}
$$

Logical rules:

unjustifiability:

$$
\perp \Rightarrow \Delta
$$

$$
\frac{H \Rightarrow \Gamma, C \quad D \Rightarrow \Delta}{H \Rightarrow \Gamma, C \backslash D, \Delta} \backslash \mathrm{R} \quad \frac{C \Rightarrow D, \Delta}{C \backslash D \Rightarrow \Delta} \backslash \mathrm{~L}
$$

$$
\frac{H \Rightarrow \Gamma, C_{0}, C_{1}}{H \Rightarrow C_{0} \wp C_{1}} \wp \mathrm{R} \quad \frac{C_{0} \Rightarrow \Gamma \quad C_{1} \Rightarrow \Delta}{C_{0} \wp C_{1} \Rightarrow \Gamma, \Delta} \wp \mathrm{~L}
$$

In a sequent-style natural deduction system in place of left rules we have elimination rules of the form

$$
\begin{gathered}
H \Rightarrow \Gamma, C \backslash D \quad C \Rightarrow D, \Delta \\
H \Rightarrow \Gamma, \Delta \\
\frac{E \Rightarrow \Gamma, ? C \quad C}{E \Rightarrow \Gamma, ? \Delta} \backslash ? \Delta
\end{gathered}
$$

2.7. Natural deduction (sequent-style).

Read $E \vdash C_{1}, \ldots, C_{n}$ as

- for all $i \leq n, C_{i}$ is compatible with E,
- witness a "thread of evidence" $E \mapsto C_{i}$.
"Thread of evidence": informal notion, related to DRgraphs in a proof net, Sam Buss' logical flow graph, with adjustments for weakening.

Rules for subtraction:
-intro $\frac{H \vdash \Gamma, C}{H \vdash \Gamma, C \backslash D, \Theta}$
"connect threads"
"set aside "

$$
\backslash-\operatorname{elim} \frac{H \vdash \Delta, C \backslash D \quad C \vdash D, \Upsilon}{H \vdash \mathbf{\Delta}, \Delta, \Upsilon}
$$

"Set aside": evidence threads $C \mapsto D$ are incompatible with threads $H \mapsto C \backslash D$. Store all of them away (in some location $\mathbf{\Delta}$)!

2.7.1. Inversion principle for subtraction.

In a derivation of the form

$$
\underset{- \text {-intro } \frac{H \vdash \Gamma, \mathbf{C} \mathbf{D} \vdash \Theta}{H \vdash \Gamma, \Theta, \mathbf{C} \backslash \mathbf{D}} \mathbf{C} \vdash \mathbf{D}, \Upsilon}{H \vdash \Gamma, \Theta, \mathbf{\Delta}, \Upsilon}
$$

The formula $\mathbf{C} \backslash \mathbf{D}$ is maximal (a cut).
Can remove the pair intro/elim:

$$
\begin{aligned}
& \text { subst. } \frac{H \vdash \Gamma, \mathbf{C} \quad \mathbf{C} \vdash \mathbf{D}, \Upsilon}{H \vdash \Gamma, D, \Upsilon} \\
& \quad \text { subst. } \frac{H \vdash \Theta .}{H \vdash \Gamma, \Theta, \Upsilon} .
\end{aligned}
$$

Here we use the "stored away threads $C \mapsto D$.
Substitution also "connects threads".

2.8. Term assignment to subtraction.

- a set $\left\{x_{1}, \ldots, x_{i} \ldots\right\}$ of free variables, exactly one for each sequent;
- a set $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{i} \ldots\right\}$ of unary functions; - $\mathrm{x}(M)$ means "variable x is bound, depending on M ";
- mkc(M, y): "from M make a coroutine starting with y (y becomes bound, rewritten $\mathrm{y}(M)$ everywhere);
- (threads reaching M are extended to threads from y);
- the term $\operatorname{postp}(y \mapsto N, M)$ stores the threads $y \mapsto N$ and is set aside in an untyped location (and y becomes bound, rewritten as $\mathrm{y}(M)$ everywhere).
- κ, ζ are sequences of terms.

subtraction introduction
$\frac{x: D \triangleright \kappa: \Gamma, M: A \quad y: B \triangleright \zeta: \Delta}{x: D \triangleright \kappa: \Gamma, \zeta[y:=\mathrm{y}(M)]: \Delta, \operatorname{mkc}(M, \mathrm{y}): A \backslash B} \backslash \mathrm{I}$
subtraction elimination
$\frac{x: D \triangleright \bar{M}: \Gamma, M: A \backslash B \quad y: A \triangleright \bar{N}: \Delta, N: B}{x: D \triangleright \bar{M}: \Gamma, \bar{N}[y:=Y(M)], \operatorname{postp}(y \mapsto N, M)} \backslash \mathrm{E}$

- There are β and η equations formalizing the normalization procedure.
- A dual calculus to the λ-calculus.

2.9. A categorical model of linear co-IL.

Definition. A left-closed symmetric monoidal category $(S M C)(\mathbb{C}, \bullet, 1, \alpha, \lambda, \rho, \gamma)$, is a category \mathbb{C} equipped with

- a bifunctor • : $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ with a neutral element 1 ,
- natural isomorphisms α, λ, ρ and γ (satisfying the usual diagrams for associativity, left and right identity and commutativity)
- and where • has a left adjoint
(subtraction).

Theorem 1. Left-closed symmetric monoidal categories model multiplicative co-ILL.

To prove it, define typed terms in context of the form $x: E \triangleleft \kappa: \Gamma$, where κ is a list of terms, for the logical rules and a suitable set \mathcal{A} of equations in context for them and showing \mathcal{A} is satisfied in any model over \mathcal{C}. - Next define the syntactic category as the category \mathcal{C} which has the formulas of multiplicative co-ILL as objects and typed terms as morphisms and set $x: E \triangleright \kappa: \Gamma=y: E \triangleright \zeta: \Gamma \quad$ iff $\kappa=\zeta[y:=x]$ is derivable from the equations in context \mathcal{A}. It follows

Theorem 2 The syntactic category is a symmetric monoidal left-closed category.
 The categorical completeness theorem follows.

2.9.1. Categorical model of co-ILL (cont.)

Dualize Benton, Bierman, Hyland and De Paiva 1993 to get the extra structure to model Girard's whynot?.

Definition. A dual linear category \mathbb{C} consists of

- A symmetric monoidal left-closed category with
- a symmetric co-monoidal monad (?, $\eta, \mu, n_{-,-}, n_{\perp}$) such that
(i) - each free ?-algebra (? A, μ_{A}) carries naturally the structure of a commutative \wp-monoid;
(ii) - whenever $f:\left(? A, \mu_{A}\right) \rightarrow\left(? B, \mu_{B}\right)$ is a morphism of free algebras, then it is also a monoid morphism.

Note: The term assigned to the rules of storage literally 'store' the terms \bar{N} in a separate area; terms for dereliction and contraction build lists of terms.

$$
\begin{array}{cc}
v: E \triangleright \kappa: \Gamma, M: ? C & x: C \triangleright \bar{Q} \mid \bar{N}: ? \Delta \\
\hline v: E \triangleright \kappa: \Gamma, \bar{Q}[x:=\mathrm{x}(M)], \text { store }(\bar{N}, \overline{\mathrm{y}}, \mathrm{x}, M) \mid \overline{\mathrm{y}}(\mathrm{x}(M)): ? \Delta \\
\text { dereliction } \\
\frac{x: E \triangleright \kappa: \Gamma, M: C}{x: E \triangleright \kappa: \Gamma,[M]: ? C} \\
\begin{array}{l}
\text { weakening } \\
x: E \triangleright \kappa: \Gamma
\end{array} \\
\hline x: E \triangleright \kappa: \Gamma, \text { connect to }(R): ? C \\
\text { where } R \in \kappa .
\end{array}
$$

3.1. Semantics + Pragmatics of p-bi-IL

Classically, propositions are true or false (Frege).

Claim: Intuitionistically, sentences are types of illocutionary acts.

- Illocutionary acts are events that can be justified or unjustified, i.e., have a justification value.
- Also in a given social context they are felicitous or infelicitous and have perlocutionary effects (Austin). Examples: making assertions, hypotheses, questions, answers, commands, promises, etc.
- Illocutionary acts must have a propositional content. But the propositional content of an assertion A does not suffice to determine the meaning and the justification value of A.
- Illocutionary acts can be impersonal, e.g., the statement of a theorem can be seen as an impersonal assertion, and a statute or law as an impersonal obligation.

3.2. Logic for pragmatics.

Formalizing types of illocutionary acts:

- Elementary assertions: $\vdash p$
- Dalla Pozza and Garola 1995.
- Elementary hypotheses: $\mathcal{H} p$.
- Bellin 2004, 2012, 2013?, B.et al 2012a?, 2012b, 2013?.
- Here ' \vdash ', ' \mathcal{H} ' are signs of illocutionary force
- p is the propositional content.

Question: Under which conditions are such acts intuitionistically meaningful?

Further 'illocutionary act candidates":

- Elementary conjecture: $\mathcal{C} p$
- i.e., the hypothesis that in some circumstances it may be assertable that p.
- Elementary expectation: $\mathcal{E} p$
- i.e., the assertion that in all circumstances it may be possible to make the hypothesis that p.
- Need to investigate these judgements and their intuitionistic status.

3.3. ‘Polarized’ bi-intuitionism.

Language $\mathcal{L}^{A H E C}$ of polarized bi-IL ($p \mathbf{b i} \mathbf{i}-\mathbf{I L}$):
(As) $A, B:=\quad \vdash p|\mathcal{E} p| \top|A \supset B| A \cap B|A \cup B| \ni X$
(Hy) $C, D:=\mathcal{H} p|\mathcal{C} p| \perp|C \backslash D| C \curlyvee D|C \curlywedge D| \approx X$

$$
X:=A|C|
$$

with $\Rightarrow X={ }_{d f} X \supset \perp$: certainly not X and $\approx X={ }_{d f} \top \backslash X$: perhaps not X.
As $=$ the type of assertive expressions.

- $\vdash p$: it is assertable that p;
- $\mathcal{E p}$: it is to be expected that p.
$\mathbf{H y}=$ the type of hypothetical expressions.
- भp: the hypothesis that p can be made;
- $\mathcal{C} p$: the conjecture that p can be made.

Two negations (intuitionistic and co-intuitionistic):
न: As \rightarrow As,
$\approx: \mathrm{Hy} \rightarrow \mathrm{Hy}$.

Dualities:

न: $\mathrm{Hy} \rightarrow$ As,
$\approx: \mathrm{As} \rightarrow \mathrm{Hy}$,
with the axiom
(*) $\quad \neg \approx A \equiv A \quad$ and $\quad \approx \neq C \equiv C$.

Note. In Bellin 2004, 2012, 2013?, B.et al 2012a?, 2012b, 2013? we used
'~' instead of ' \exists ' (strong negation) and
' ${ }^{\prime}$ instead of ' \approx ' (strong negation), confusing notation in discussing bi-Heyting algebras.

3.4. Dummett's justificationism.

Can the language $\mathcal{L}^{A H E C}$ represent intuitionistic reasoning in an intuitionistic metatheory?

Dummett: Intuitionism is the logic of assertions and of their justifications.

- Some assertions about the past, the future, Laplace's determinism, some applications of the classical continuum to physics, etc. are in principle unjustifiable.
- In this case Dummett holds that not only these assertions are unjustified, but also their propositional content ought to be regarded as meaningless.
- Dummett refuses to apply a correspondence theory of truth to abstract mathematical constructions.
- He gives a different ontological status to objects of perception and to thoughts (Thought and Reality).
- The justification of an empirical sentence relies on interaction with nature.
- The justification of a mathematical statement depends on a mental construction.

Claim: If p is intuitionistically meaningful, so is $\vdash p$.

Note: See e.g.,

- M. Dummett 1991 The Logical Basis of Metaphysics Harward University Press, 1991. - M.Dummett 2006 Thought and Reality Oxford UP, 2006.

3.4.1. Prawitz: proofs and justifications.

(Digression from personal notes, CLMPS Nancy, 2011.)
The conceptual problem: how and why a proof succeeds in giving knowledge.

- A proof justifies the last assertion by giving conclusive grounds for that assertion.
- Why an inference succeeds in justifying the conclusion given the justification of the premisses?
- Inference acts operate on grounds for the premises.
- What constitutes a justification of an assertion?
- Direct, canonical means to justify an assertion (e.g., by an introduction rule in Natural Deduction); - Indirect, non-canonical means (e.g., by an elimination rule in Natural Deduction); - Indirect means must be reduced to canonical ones. (principle of harmony between intro and elim rules).
- Prawitz: To know the meaning of a sentence A is to know what forms a canonical ground for A has and what conditions the parts of A satisfy.

Note. The grounds of composite sentences ultimately depend on the grounds for elementary expressions, which vary according to the illocutionary force (elementary assertions versus elementary hypotheses).

3.5. Is co-IL strongly paraconsistent?

Add hypothetical conjunction \curlywedge, with sequent rules

$$
\begin{gathered}
H \Rightarrow \Delta, C_{0} \quad H \Rightarrow \Delta, C_{1} \\
H \Rightarrow \Delta, C_{0} \curlywedge C_{1} \\
\\
\mathrm{R}
\end{gathered} \quad \begin{gathered}
C_{i} \Rightarrow \Gamma \\
C_{0} \curlywedge C_{1} \Rightarrow \Gamma \\
\text { for } i=0 \text { or } 1
\end{gathered}
$$

Question: (R. Ertola) Is co-IL strongly paraconsistent in the sense that there is a class of formulas Γ such that from $C \curlywedge \sim C$ we cannot derive some formulas in 「?

Possible solution. Define co-Harrop formulas thus:

- Co-Harrop formulas have the conjunction property:
- if $\Gamma \subset$ Har then $H \curlywedge K \vdash \Gamma$ implies $H \vdash \Gamma$ or $K \vdash \Gamma$.

Proof: From the disjunction property for intuitionistic Harrop formulas, by duality.

- Is co-IL with conjunction \curlyvee strongly paraconsistent w.r.t. co-Harrop formulas?

3.6. What is co-IL about?

Shramko 2005: co-IL is about sentences that have not yet been refuted.
It is the logic of scientific research according to Popper's refutationism.
Y. Shramko. Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research, Studia Logica 80, 2005, pp. 347-367.

$$
\operatorname{cut} \frac{E \vdash C_{1}, \ldots C_{n-1}, C_{n} \quad C_{n} \vdash}{E \vdash C_{1}, \ldots C_{n-1}} \quad C_{n-1} \vdash
$$

- Intuitionistic logic is expansive: the more you search, the more theorems you find.
- Co-Intuitionistic logic is recessive: the more you search for refutations, the less laws you are left with. [cfr. the classes Σ_{1}^{0} and Π_{1}^{0} (Girard The Blind Spot).]
- Is co-IL only a logic of refutations?
- Better: it a logic of what is compatible with the sentences that have not yet been refuted.
- We look for positive grounds for inferring unrefuted statements.

3.7. Extending the BHK interpretation.

For assertive types follow the Brouwer-Heyting-Kolmogorov-[Kreisel] interpretation:

- $\vdash p$ is justified by conclusive evidence that p is true;
- T is always justified and \perp is never justified;
- $A \supset B$ is justified by a method transforming
a justification of A into a justification of B
- $A \cap B$ is justified by evidence for A together with evidence for B
- $A \cup B$ is justified by evidence for A or by evidence for B.

Claim: If elementary formulas are intuitionistically meaningful, so are all assertive types.

But how to extend the BHK interpretation to hypothetical types?
From legal argomentation theory, borrow the notion of scintilla of evidence [Gordon and Walton 2009].

- $\boldsymbol{H} p$ is justified by a scintilla of evidence that p is true;
- $C \backslash D$ is justified by a scintilla of evidence that there is a justification of C and no justification of D; etc.

NO: start with co-ILL where \curlyvee is replaced by par!

3.8. A game-like semantics for co-ILL.

Define simultaneously evidence pro and con.

elementary:
evidence pro $\boldsymbol{\psi} p$:
evidence con нр:
conclusive evidence that p is false;
subtraction:
evidence pro $C \backslash D$:
a scintilla of evidence that there is evidence con C and evidence con D;
evidence con $C \backslash D$: a method transforming evidence pro C into evidence pro D and evidence con D into evidence con C;
disjunction:
evidence pro $C \wp D$: a method transforming
evidence con C into evidence pro D and evidence con D into evidence pro C;
a scintilla of evidence that p is true;
evidence con $C \wp D$: evidence con C together with evidence con D.
[From the game-semantics for linear logic and Nelson 1949.]

Claim: The game interpretation of co-ILL

 is intuitionistically meaningful. Try to extend this to p-bi-IL.
4.1. 'Polarized' bi-Heyting Algebras.

- A bi-Heyting algebra $\mathcal{C}=(C, \wedge, \vee, \rightarrow,-, \top, \perp$,
is polarized if it has substructures A and H such that
- A is the sub-Heyting algebra of \mathcal{C} generated by $\left\{a_{1}, \ldots\right\}$;
- H is sub-co-Heyting algebra of \mathcal{C} generated by $\left\{c_{1}, \ldots\right\}$;
- there is a bijection p of generators $a_{i} \mapsto c_{i}$ with $a_{i} \leq c_{i}$;
- the negations of \mathcal{C} yield a duality, namely,
(1) $\sim(a \wedge b)=\sim a \vee \sim b, \quad \neg(c \vee d)=\neg c \wedge \neg d ;$
(2) $\sim(a \vee b)=\sim a \wedge \sim b, \quad \neg(c \wedge d)=\neg c \vee \neg d ;$
(3) $\sim(a \rightarrow b)=\sim b-\sim a, \quad \neg(c-d)=\neg d \rightarrow \neg c$
for all $a, b \in A$ and $c, d \in H$, and
($) \quad \neg \sim a=a \quad$ and $\quad \sim \neg c=c$.

From (\star) it follows that
$\neg \sim c=\square c=\neg \sim \square c \quad$ and $\quad \sim \neg a=\diamond a=\sim \neg \diamond a$.

4.1.1. Polarized bi-Heyting algebra (cont.)

- The sets $\mathcal{E x p}=\left\{\square a_{i}, \ldots\right\}$ and $\mathcal{C} o n j=\left\{\diamond c_{i} \ldots\right\}$ generate Boolean algebras, that aren't sub-lattices of \mathcal{C} (Johnstone 1983, prop.1.13)
- $\mathcal{E} x p$ has joins $\square(A \vee B)$ and \mathcal{C} onj has meets $\diamond(C \wedge D)$.

4.2. Classical Logic, Intuitionistic Modalities.

Claim 1: In polarized bi-IL $\square={ }_{d f} \Rightarrow \approx$ and $\diamond={ }_{d f} \approx \Rightarrow$ are intuitionistic acceptable polaritychanging modalities.

Let \mathcal{L}^{E} be the language
$\operatorname{Exp} E, F:=\mathcal{E} p|\top| E \supset F|E \cap F| E \cup F \mid \neq E$ Hy-at $:=\mathcal{H} p \mid \approx \mathcal{H} p$ with the axioms $\mathcal{E} p \equiv \square \mathcal{H} p$.

Let us call the fragment of polarized bi-IL on the language \mathcal{L}^{E} logic of expectations.

Claim 2: The logic of expectations is an intuitionistically acceptable intermediate logic where $\neg \exists E \equiv E$ but the law of excluded middle does not hold.

Fact: A Natural Deduction system for the logic of expectations is a typing system for Parigot's $\lambda \mu$-calculus.

4.3. Translation in classical in S4.

Language \mathcal{L}^{\square} of classical S4.
$A, B:=p|\top| \perp|A \wedge B| A \vee B|A \rightarrow B| \square A$
Define $\neg A={ }_{d f} A \rightarrow \perp$ and $\diamond A={ }_{d f} \neg \square \neg A$.
From now on, ‘ $\neg, \wedge, \vee, \rightarrow$ ' are reserved for classical connectives.

$$
\begin{array}{cc}
(\mathrm{T})^{M}={ }_{d f} \top & (\perp)^{M}={ }_{d f} \perp \\
(\neg \mathbf{p})^{\mathrm{M}}={ }_{d \mathrm{df}} \square \mathbf{p} & (\mathcal{H p})^{\mathrm{M}}={ }_{\mathrm{df}} \diamond \mathbf{p} \\
(\mathbf{A} \supset \mathbf{B})^{\mathrm{M}}={ }_{\mathrm{df}} \square\left(\mathbf{A}^{\mathrm{M}} \rightarrow \mathbf{B}^{\mathrm{M}}\right) & (\mathbf{C} \backslash \mathbf{D})^{\mathrm{M}}={ }_{\mathrm{df}} \diamond\left(\mathbf{C}^{\mathrm{M}} \wedge \neg \mathbf{D}^{\mathrm{M}}\right) \\
\left(A_{1} \cap A_{2}\right)^{M}={ }_{d f} A_{1}^{M} \wedge A_{2}^{M} & \left(C_{1} \curlyvee C_{2}\right)^{M}={ }_{d f} C_{1}^{M} \vee C_{2}^{M} \\
\left(A_{1} \cup A_{2}\right)^{M}={ }_{d f} A_{1}^{M} \vee A_{2}^{M} & \left(C_{1} \curlywedge C_{2}\right)^{M}={ }_{d f} C_{1}^{M} \wedge C_{2}^{M} \\
(\neg \mathbf{A})^{\mathrm{M}}=\square \neg \mathbf{A}^{\mathrm{M}} & (\approx \mathbf{C})^{\mathrm{M}}=\diamond \neg \mathbf{C}^{\mathrm{M}} \\
(\neg C)^{M}=\neg C^{M} & (\approx A)^{M}=\neg A^{M}
\end{array}
$$

The modalities of polarized bi-IL

The modalities of $\mathbf{S} 4$

4.4. Features of polarized bi-IL

- Polarized bi-IL has models in (ordinary) topological spaces.
- Assertive formulas become open sets and
- hypothetical formulas closed sets.
- A sequent calculus for polarized bi-IL where sequents are of the form

$$
\begin{aligned}
& \Theta ; \Rightarrow A ; \Upsilon \\
& \Theta ; C \Rightarrow ; \Upsilon
\end{aligned}
$$

- Θ a sequence of assertive A_{1}, \ldots, A_{m};
- γ a sequence of hypothetical C_{1}, \ldots, C_{n}. (see rules in table below).

Theorem. The sequent calculus for p-bi-IL

 is sound and complete for the Kripke semantics induced by the modal translation.
identity rules

logical axiom: logical axiom:
$\Theta ; C \Rightarrow ; C, \Upsilon \quad A, \Theta ; \Rightarrow A ; \Upsilon$ cut $_{A}$:
$\frac{\Theta ; \Rightarrow A ; \Upsilon \quad A, \Theta^{\prime} ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon^{\prime}}{\Theta, \Theta^{\prime} ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon, \Upsilon^{\prime}}$
$\frac{\Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon, C^{c u t_{H}:} \Theta^{\prime} ; C \Rightarrow ; \Upsilon^{\prime}}{\Theta, \Theta^{\prime} ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon, \Upsilon^{\prime}}$
logical rules for implication, subtraction

$$
\begin{aligned}
& \text { right } \supset \text { : } \\
& \frac{\Theta, A ; \Rightarrow B ; \Upsilon}{\Theta ; \Rightarrow A \supset B ; \Upsilon} \quad \frac{\Theta ; C \Rightarrow ; \Upsilon, D}{\Theta ; C \backslash D \Rightarrow ; \Upsilon} \\
& \text { left } \supset: \\
& \frac{A \supset B, \Theta ; \Rightarrow A ; \Upsilon \quad B, \Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon}{A \supset B, \Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon} \\
& \frac{\Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon, C^{\text {right }} \Theta:}{\Theta ; D \Rightarrow ; \Upsilon, C \backslash D}
\end{aligned}
$$

Rules for dualities:
right $\approx:$
$\frac{A, \Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon}{\Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon, \approx A}$
right \Rightarrow :
$\frac{\Theta ; C \Rightarrow ; \Upsilon}{\Theta ; \Rightarrow \neg C ; \Upsilon}$
$\stackrel{\text { left } 7:}{\Rightarrow}: \Upsilon \stackrel{\epsilon^{\prime}}{\Rightarrow} ; \Upsilon, C$
$\ni C, \Theta ; \epsilon \Rightarrow \epsilon^{\prime} ; \Upsilon$

5. Conclusions.

(1) We have reconsidered C. Rauszer's bi-Heyting algebras [1974], and G. Reyes and H.Zolfaghari's treatment of modalities [1996] in them.
(2) We have shown that the usual tense-epistemic KtT4 of bi-IL is untenable because of an ambiguous interpretation of atomic sentences.
(3) We have reviewed results by T. Crolard [2001] showing that bi-IL has only degenerate topological and categorical models.
(4) T. Crolard's result that even co-IL does not have a model in Set gave motivations for linearizing coIL. We provide a categorical model of linear co-IL in monoidal left-closed categories with extra structure by dualizing Benton, Bierman, dePaiva and Hyland's 1993 model of ILL.
(5) A philosophical analysis of bi-intuitionistic logic as a logic of assertions and hypotheses, extending Dalla Pozza and Garola's logic for pragmatics framework [1995] motivates the introduction of 'polarized’ biIL, in which topological models are no longer degenerate and the modal translation is again in $\mathbf{S} 4$.
(6) A 'rich' proof-theory for polarized bi-IL is now possible by combining the dual categorical models of IL (cartesian closed categories) and the model of coILL in monoidal categories.

Note. Another promising way to obtain categorical models of polarized bi-IL is to modify the categorical construction of mixed linear and non-linear logic in [Benton 1995]. We have not done (6) here.
(7) We have extended the BHK interpretation of IL to polarized bi-IL obtaining a "game-like semantics" which we claim to be intuitionistically acceptable.
(8) We have shown that in the framework of polarized bi-IL Reyes and Zolfaghari's modalities become intuitionistically acceptable polarity-changing modalities and allow us to define a logic of expectations satisfying the double negation rule, but not the Iaw of excluded middle.

APPENDIX. I.1.Crolard's computational

 bi-ILNote. Crolard $(2001,2004)$ studies subtractive logic as an extension of classical logic: rules for subtraction are added to a Gentzen system for classical logic.

- He defines a calculus for constructive bi-IL by restricting permissible logical dependencies in the classical proof-system.
- The analysis of dependencies is reminiscent of Hyland and De Paiva proof-system for FILL (intuitionistic linear logic with par).
- Crolard's approach is relevant to the analysis of the call-by-name and call-by-value strategies of computation (Curien 2002).

A.I.2. Computational Interpretations.

The $\lambda \mu$-calculus.

variables:	x_{0}, x_{1}, \ldots		names:	$\alpha_{0}, \alpha_{1}, \ldots$
terms:	M, N	$:=$	$x\|\lambda x . M\| M N \mid \mu \alpha . Q$	
commands:	Q	$:=$	$[\alpha] M$	$(\alpha$ abstraction $)$

Substitutions:

ordinary: $\quad M[N / x]$ (capture avoiding);
renaming: $\quad Q[\alpha / \beta]$;
structural: $\quad T[\alpha \Leftarrow L]:[\alpha] N$ replaced by $[\alpha] N L$ in T.
Reductions:

(β)	$(\lambda x \cdot M) N$	\rightsquigarrow	$M[N / x] ;$
(μ)	$(\mu \beta \cdot Q) N$	\rightsquigarrow	$\mu \beta \cdot Q[\beta \Leftarrow N] ;$
(ren)	$[\alpha] \mu \beta \cdot Q$	\rightsquigarrow	$Q[\alpha / \beta] ;$
($\mu \eta$)	$\mu \alpha \cdot[\alpha] M$	\rightsquigarrow	M.

Typed $\lambda \mu$-calculus and classical logic.

- Types: $\quad A, B:=p|\perp| A \supset B$
- Sequents: $\quad \Gamma \vdash t: A \mid \Delta \quad$ where
$\Gamma=x_{1}: C_{1}, \ldots, x_{m}: C_{m}$ and $\Delta=\alpha_{1}: D_{1}, \ldots, \alpha_{n}: D_{n}$.
To the Simply Typed λ-calculus add naming rules:

$$
\frac{\Gamma \vdash t: A \mid \alpha: A, \Delta}{\Gamma \vdash[\alpha] t: \perp \mid \alpha: A, \Delta}[\alpha] \quad \frac{\Gamma \vdash t: \perp \mid \alpha: A, \Delta}{\Gamma \vdash \mu \alpha . t: A \mid \Delta} \mu
$$

Type system: classical logic (of \supset) (Parigot 1992).
Categorical models: control categories (Selinger 2001).

A.I.3. Crolard's calculus of coroutines.

$$
\begin{aligned}
& \frac{\Gamma \vdash t: A \mid \Delta}{\Gamma \vdash \text { make-coroutine }(t, \beta): A \backslash B \mid \beta: B, \Delta} \backslash I \\
& \frac{\Gamma \vdash t: A \backslash B|\Delta \quad \Gamma, x: A \vdash u: B| \Delta}{\Gamma \vdash \text { resume } t \text { with } x \mapsto u: C \mid \Delta}
\end{aligned}
$$

A redex of the form
reduces to

$$
\frac{\Gamma \vdash t: A|\Delta \quad \Gamma, x: A \vdash u: B| \Delta}{\Gamma \vdash u[t / x]: B \mid \Delta} \text { substitution } \quad \frac{\Gamma \vdash[\beta] u[t / x]: \perp \mid \beta: B, \gamma: C, \Delta^{\prime}}{} \frac{\Gamma \beta]}{\Gamma \vdash \mu \gamma \cdot[\beta] u[t / x]: C \mid \beta: B, \Delta^{\prime}} \mu \mathrm{C}
$$

[In the $\backslash-E$ there is an implicit weakening: the type of resume could be \perp.]

- Crolard defines a class of safe coroutines typable in his system of constructive bi-IL.

APPENDIX 2. Bi-IL Rough-sets seman-

 tics.- Nelson 1949, Constructive falsity. To characterize a logic constructively, need to characterize not only provability but also refutability.
- idea related to game semantics (see also Bellin Chu's construction. A proof-theoretic apporach 2003).
- for bi-IL need interpretations where the refutations of A do not coincide trivially with proofs of A^{\perp}.

A.II.1. Rough equivalence.

Definition. Indiscernibility space (U, E), U finite set, E equivalence relation.
$\mathrm{AS}(U)=$ the atomic Boolean algebras having the set of equivalence classes U / E as atoms - ($U, \mathbf{A S}(U)$) is a topological space (the Approximation Space of (U, E));
$\mathcal{I}, \mathcal{C}: \wp(U) \rightarrow \mathbf{A S}(U)$ the induced interior operator and a closure operators. X is roughly equal to Y iff $\mathcal{I}(X)=\mathcal{I}(Y)$ and $\mathcal{C}(X)=\mathcal{C}(Y)$.

- Any subset $G \subseteq U$ is a representative of ($\mathcal{I}(G), \mathcal{C}(G))$.
- Use the disjoint representation

$$
(\mathcal{I}(G),-\mathcal{C}(G))
$$

using the complement of the closure of G.

A.II.2. Pagliani's bi-IL semantics.

Pagliani 2009:
[1] $1=(U, \emptyset)$,
$0=(\emptyset, U) ;$
[2] $\left(X^{+}, X^{-}\right) \wedge\left(Y^{+}, Y^{-}\right)=\left(X^{+} \cap Y^{+}, X^{-} \cup Y^{-}\right)($conjunction);
[3] $\left(X^{+}, X^{-}\right) \vee\left(Y^{+}, Y^{-}\right)=\left(X^{+} \cup Y^{+}, X^{-} \cap Y^{-}\right)($disjunction);
[4] $\left(X^{+}, X^{-}\right) \rightarrow\left(Y^{+}, Y^{-}\right)=\left(-X^{+} \cup Y^{+}, X^{+} \cap Y^{-}\right)($Nelson's implication)
[5] $\cdot\left(X^{+}, X^{-}\right)=\left(-X^{+}, X^{+}\right)$(weak negation or supplement);
[6] $\left(X^{+}, X^{-}\right)^{\perp}=\left(X^{-}, X^{+}\right)$(orthogonality);
[7] $\left(X^{+}, X^{-}\right) \Rightarrow\left(Y^{+}, Y^{-}\right)=\left(\left(-X^{+} \cup Y^{+}\right) \cap\left(-Y^{-} \cup\right.\right.$ $\left.X^{-}\right),-X^{-} \cap Y^{-}$) (Heyting's implication); [8] $-\left(X^{+}, X^{-}\right)=\left(X^{+}, X^{-}\right) \Rightarrow(\emptyset, U)=\left(X^{-},-X^{-}\right)$ (intuitionistic negation);
[9] $\left(X^{+}, X^{-}\right) \backslash\left(Y^{+}, Y^{-}\right)=\left(X^{+} \cap-Y^{+},\left(-X^{+} \cup Y^{+}\right) \cap\right.$ $\left(-Y^{-} \cup X^{-}\right)$(co-intuitionistic subtraction).
A.II.3. Problem: completeness + polarization.

Problem 1. Need to start with infinite sets to obtain a complete semantics for intuitionistic logic.

Problem 2. To represent polarized bi-IL need to keep the representations of IL and co-IL separate:
idea: represent assertive A as $\left(A_{o}^{+}, A_{c}^{-}\right), A_{o}^{+}$ open, A_{c}^{-}closed and hypothetical C as $\left(C_{c}^{+}, C_{o}^{-}\right), C_{c}^{+}$closed, C_{o}^{-} open.

A.II.4. Desiderata.

[1] $\curlyvee^{R}=(U, \emptyset)$ and $\curlywedge^{M}=(\emptyset, U)$ (clopen, clopen);
[2] $(A \cap B)^{R}=\left(A_{o}^{+}, A_{c}^{-}\right) \wedge\left(B_{o}^{+}, B_{c}^{-}\right)=\left(A_{o}^{+} \cap B_{o}^{+}, A_{c}^{-} \cup B_{c}^{-}\right)$;
[3] $(C \curlyvee D)^{R}=\left(C_{c}^{+}, C_{o}^{-}\right) \vee\left(D_{c}^{+}, D_{O}^{-}\right)=\left(C_{c}^{+} \cup D_{c}^{+}, C_{o}^{-} \cap\right.$ D_{o}^{-});
[4] $\left(A_{o}^{+}, A_{c}^{-}\right) \rightarrow\left(B_{o}^{+}, B_{c}^{-}\right)=\left(\mathcal{I}\left(-A_{o}^{+} \cup B_{o}^{+}\right), \mathcal{C}\left(A_{o}^{+} \cap B_{c}^{-}\right)\right)$
[5] $(\approx C)^{R}=-\left(C_{c}^{+}, C_{o}^{-}\right)=\left(\mathcal{C}\left(-C_{c}^{+}\right), \mathcal{I}\left(C_{c}^{+}\right)\right)$and $(\approx A)^{R}=-\left(A_{o}^{+}, A_{c}^{-}\right)=\left(-A_{o}^{+}, A_{o}^{+}\right)$;
[6] $\left(A_{o}^{+}, A_{c}^{-}\right)^{\perp}=\left(A_{c}^{-}, A_{o}^{+}\right)$and $\left(C_{c}^{+}, C_{o}^{-}\right)^{\perp}=\left(C_{o}^{-}, C_{c}^{+}\right)^{*}$;
[7] $(A \supset B)^{R}=\left(A_{o}^{+}, A_{c}^{-}\right) \Rightarrow\left(B_{o}^{+}, B_{c}^{-}\right)=$
$=\left(\mathcal{I}\left(-A_{o}^{+} \cup B_{o}^{+}\right) \cap \mathcal{I}\left(-B_{c}^{-} \cup A_{c}^{-}\right), \mathcal{C}\left(-A_{c}^{-} \cap B_{c}^{-}\right)\right)$;
[8] $(\Rightarrow A)^{R}=-\left(A_{o}^{+}, A_{c}^{-}\right)=\left(\mathcal{I}\left(A_{c}^{-}\right), \mathcal{C}\left(-A_{c}^{-}\right)\right)$and
$(\Rightarrow C)^{R}=-,\left(C_{c}^{+}, C_{o}^{-}\right)=\left(C_{o}^{-},-C_{o}^{-}\right)$;
[9] $(C \backslash D)^{R}=\left(C_{c}^{+}, C_{o}^{-}\right) \backslash\left(D_{c}^{+}, D_{c}^{-}\right)=$
$=\left(\mathcal{C}\left(C_{c}^{+} \cap-D_{c}^{+}\right), \mathcal{I}\left(-C_{c}^{+} \cup D_{c}^{-}\right) \cap \mathcal{I}\left(-D_{o}^{-} \cup C_{o}^{-}\right)\right)$.
*There is no specific connective for orthogonality in $\mathcal{L}^{A H}$.

References.

G. Bellin, M. Carrara and D. Chiffi. A pragmatic logic of hypotheses, submitted to Logic and Logical Philosophy spring 2013.
G. Bellin. Categorical Proof Theory of Co-Intuitionistic Linear Logic, submitted to LOMECS, autumn 2012.
G. Bellin and A. Menti. On the π-calculus and cointuitionistic logic. Notes on logic for concurrency and $\lambda \mathrm{P}$ systems, Fundamenta Informaticae, accepted for publication, 1 December 2012
G. Bellin, M. Carrara and D. Chiffi. A pragmatic framework for intuitionistic modalities: Classical Logic and Lax logic, submitted to the Journal of Logic and Computation, spring 2012.
G. Bellin. Assertions, hypotheses, conjectures: Roughsets semantics and proof-theory, to appear in Proceedings of the Natural Deduction Conference Rio 2001, Dag Prawitz Festschrift (revised 2010).
G. Bellin. A term Assignment for Dual Intuitionistic Logic, conference paper presented at LICS'05IMLA'05 Workshop, Chicago IL, June 30, 2005.
G. Bellin and C. Biasi. Towards a logic for pragmatics. Assertions and conjectures. In: Journal of Logic and Computation, Volume 14, Number 4, 2004, pp. 473506.
G. Bellin and C. Dalla Pozza. A pragmatic interpretation of substructural logics. In Reflection on the Foundations of Mathematics (Stanford, CA, 1998), Essays
in honor of Solomon Feferman, W. Sieg, R. Sommer and C. Talcott eds., Association for Symbolic Logic, Urbana, IL, Lecture Notes in Logic, Volume 15, 2002, pp. 139-163.
P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models, Computer Science Logic, Lecture Notes in Computer Science, 1995, Volume 933, 1995, pp.121-135.
P.N.Benton, G.M.Bierman, J.M.E.Hyland and V.C.V.dePaiva.

A term calculus for Intuitionistic Linear Logic. In: Typed Lambda Calculi and Applications, Lecture Notes in Computer Science, Volume 664, 1993, pp.75-90.
J. L. Castiglioni and R. Ertola Biraben. Strict Paraconsistency of Truth-Degree Preserving Intuitionistic Logic with Dual Negation, preprint February 2013
T. Crolard. Subtractive logic, in Theoretical Computer Science 254,1-2, 2001, pp. 151-185.
T. Crolard. A Formulae-as-Types Interpretation of Subtractive Logic. In: Journal of Logic and Computation, vol.14(4), 2004, pp. 529-570

P-L.Curien. Abstract Machines, Control and Sequents. Barthe, Dybjer, Pinto, Saraiva (eds.) APPSEM 2000, Springer LNCS 2395, 2002.
J. Czemark. A remark on Gentzen's calculus of sequents, Notre Dame Journal of Formal Logic 18(3) pp. 471-474, 1977.
C. Dalla Pozza and C. Garola. A pragmatic interpretation of intuitionistic propositional logic, Erkenntnis 43. 1995, pp.81-109.
M. Dummett. The Logical Basis of Metaphysics Cambridge, Mass.: Harward University Press, 1991.
M.Dummett. Thought and Reality, Oxford UP 2006
T. F. Gordon and D. Walton. Proof burdens and standards. in: I. Rahwan and G. Simari eds., Argumentations in Artificial Intelligence, pp.239-258, 2009.
R. Goré. Dual intuitionistic logic revisited, in R. Dyckhoff, Tableaux00: Automated Reasoning with AnaIytic Tableaux and Related Methods, Springer, 2000.
P. J. Johnstone. Stone Spaces, Cambridge University Press, 1982.
F. W. Lawvere, Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In A. Carboni, M.C. Pedicchio and G. Rosolini (eds.), Category Theory (Como 1990), Lecture Notes in Mathematics 1488, Springer-Verlag 1991, pp. 279-297.
D. Nelson. Constructible falsity, The Journal of Symbolic Logic, 14, pp. 16-26, 1949
P. Pagliani. Intrinsic co-Heyting boundaries and information incompleteness in Rough Set Analysis. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. Lecture Notes in Computer Science, vol. 1424, pp. 123130. Springer, Heidelberg, 2009.
M. Parigot. Lambda-My-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In Voronkov ed. Logic Programming and Automated Reasoning, Proceedings of the International Conference LPAR'92, St. Petersburg, Russia, July 15-20, 1992. Springer Lecture Notes in Computer Science 624, 1992, ISBN 3-540-55727-X, pp. 190-201.
L. Pinto and T. Uustalu. Relating sequent calculi for Bi-intuitionistic Propositional Logic, van Bakel, Berardi and Berger eds. Proceedings Third International Workshop on Classical Logic and Computation. EPTCS 47, 2010. pp.57-72.
D. Prawitz. Natural deduction. A proof-theoretic study. Almquist and Wikksell, Stockholm, 1965.
D. Prawitz. Meaning and Proofs: On the Conflict Between Classical and Intuitionistic Logic, Theoria 43 (1), 1977, pp. 2-40.
C. Rauszer. Semi-Boolean algebras and their applications to intuitionistic logic with dual operations, in Fundamenta Mathematicae, 83, 1974, pp. 219-249.
C. Rauszer. Applications of Kripke Models to HeytingBrouwer Logic, in Studia Logica 36, 1977, pp. 61-71.
G. E. Reyes and H. Zolfaghari. Bi-Heyting algebras, toposes and modalities, Journal of Philosophical Logic 25, 1996, pp.25-43.
L. Tranchini. Natural Deduction for Dual-intuitionistic Logic, Studia Logica, published online June 2012
Y. Shramko. Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research, Studia Logica 80, 2005, pp. 347-367.
I. Urbas. Dual-intuitionistic logic, Notre Dame Journal of Formal Logic 37, pp. 440-451, 1996.
T. Uustalu. A note on anti-intuitionistic logic. Abstract presented at the Nordic Workshop on Programming Theory (NWPT'97), Tallinn Estonia, 1997.

